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Graphene: Electrons in “Flatland”

Truly bidimensional array of carbon atoms. Unique progesrti
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Proposed in 1984:
e G.W. Semenoff, Phys. Rev. Leti3, 2499 (1984).

ALMOST obtained in 2004:

e K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhai&gV.
Dubonos, I.V. Grigorieva, A.A. Firsov, Scien806, 666 (2004).




Effective model for charge carriers

\ /
B—

A A
B_A/ \ /b, \
/L /

A a T\B —A \;)'Z—A/
\_° \_/

\
BA
\\ \/

FIG. 1. The honeycomb lattice as a superposition of
two triangular sublattices. The basis vectors are
@, =(v3/2, — 3)a; 7,=(0,1)a and the sublattices are

connected by b,=(1/2v3,7)a; b,=(1/2V3, - L)a;
E3=(—1/\/§,O)a.

A sites generated by, andas

by, bs, b3 connectA to B sites

Tight binding Hamiltonian

V(A+b)+ VI(A+b)U(A)) .




In momentum space

¢(k) = 0 at the six corners of the Brillouin zone.




identified sides

ij= €m
jk= mn
ké= ni
equivalent corners
i k=m
j £=n

Take K, = +-3° (O, ! ) as the two non-equivalent ones. Conductio

e
and valence bands touchAt; .

V3a




Expand around<. (k = K4+ + p). In the continuum limit¢ — 0, with
t a constant), to first order

ta\/g

P(p+ K1)~ 5

(—ipz F py)

Up+ Ky)

CallingVv =
Vip+ Kx)

We obtain

0 — 1Dy
— Pz + Dy

1Pz T Dy 0

Dirac Hamiltonian for massless fermioms2+1 dimensions with

Fermi velocityvy = ta¥3 ~ 106™




P.R. Wallace, Phys. ReVl, 622 (1947)
Gordon W. Semenoff, Phys. Rev. Leb3, 2449 (1984)

Effective theory graphene - Dirac like theory in a reduc@presentation

Valleys K - the two irreducible representationspfmatrices in 2+1

A and B type of sites - upper and lower componentsboi each
representation

Graphene is gaplessnaterial




Hall conductivity for mono and bi-layer graphene
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Note that the behavior around the origin is "unexpected”




Our approach to the Hall conductivity through planar QED

Study of Dirac fields in 3-dimensional Euclidean space, with

chemical potential in the presence of a constant magnelik fie
perpendicular to the — y plane.

Evaluate the partition function and density of fermion n@mgor
charge) at finite temperature, via zeta regularization.

Lorentz boost to include electric field and determinatioiafl’s

current.

Analysis of different selections of the phase of the deteami at
each valley, and of the effect on Hall's conductivity.

C.G.Beneventano and E.M.S., Jour. Phys. A 39, 7457 (2006).

C.G.Beneventano, P. Giacconi, E.M.S. and R. Soldati, Jhws. A: Math. Theor40, F435
(2007).

C.G.Beneventano and E.M.S., Jour. Phys. A: Math. Th&hrl64035 (2008).




Partition function at finite temperature and density

Study a massless Dirac Field in 3-dimensional Euclideanesa finite temperature
Uniform magnetic fieldB perpendicular to the sample chemical potential

1

Choose Landau gauget = (i%, —By,0) and0 < 7 < 3 = =

Evaluate the Euclidean effective action

log Z = log det(iP+ eA) ap

Antiperiodic boundary conditions to insure Fermi statisti

Use zeta regularization

log Z = _%L:o ((s, @2reMary _ _%JS:O S

To apply zeta regularization: solve eigenvalue problenttferDirac operator, wittL?
integrability condition, and (to satisfy antiperiodicity

eiAlTeik::v ka,l(y)

\/ 273 Xk,1(Y)

\Ijk,l(Ta x, y) —

A = (20 + )%




The spectrum has two pieces: X\, = (20 +1)Z —ip

1) Asymmetric piec€associated to a zero mode of the Hamiltonian)

w; = A with [ = —o0,...,00

2) Symmetric piece

Wi,n = :I:\/S\l2 + 2neB with n=1,...,00 [ = —00,...,00

Degeneracy (per unit area) in all cases:

eB

27

A =

In the other irreducible representationpmatrices (around the vallelf ), the asymmetric
piece of the spectrum changes the sign




Analytic extension of (s, (imff)“)

Two contributions:
Gl =AY [@+)Z —ik]”

T ((2l+1)1 Y

o2 af3 o

[27163

The extension of> (s, 1) is standard. One uses the Mellin transform

— dtts~ e t? R(z) >0
['(s) /0

and the definition of the Jacobi theta functi®g(z, z) = Z;’i_oo o— Tl e?72l together

7'('22

with its well known inversion formula: ©3(z, z) = %e( = )O3 (i l)

x’ x




The analytic extension dfi (s, p) introduces the “PHASE”

Ci(s,p) = A i {(25 1) — iﬁ} h
z

a3 «

Usual choice (don’t go through zerog):-1)—* = e!™sign(k)s x = —1

Opposite choice (go through infinite zerog):1) % = e~ 7sign(k)s x = 1




e—imwsign(u)sCH (S 1
' 2

Contribution to the effective action:

log Z1(k) = AL {log [2 Cosh( ; )} ‘“;ﬂ}

Total effective action per unit area and one irreducibleegsentation

log Z (k) zAL{log [2cosh('u2ﬁ)} + K |M|B —l—ﬁ\/iéh ( 1)

3 log Kl n e—(\/2neB—u)B> (1 n e—(\/2ne_B+u)B>}

n=1

Same in the other representation (valley) if the phase iseaith the same criterium. No
fundamental reason for doing so. So, around the other valley " (1).




Hall current in the presence of electric field

Fermion number (per unit area) in one i¥. = % % log Z

N(k) = AL {% [tanh (%) 4 /isign(,u)}

> e—(\/2neB—,u)B e—(\/QnGB—i—,u)B
+ _
Z_:l 14+ e—(V2neB—u)s 14+ e—(V2neB+u)s

Charge density;? = —eN
Zero temperature limitf — oo) of charge density (recovering physical units)

Without electric field:

j0(2602th < ,u2 < QeBc2h(n +1)) =

—(n + 1+T"’)ce2B
h

To include electric fieIdE?’J

sign (i)

/

Perform a Lorentz boost with velocity, = — By,c (B, < eB;)gives as aresult




—(n+ HT“)CG2B;

h

1+KxkN\ _2 v
—Y=)e“F
j° = 2P cign(w). 7=

Hall conductivity,one irreducible representation and two "flavors” (spinshefélectron)

—2(n + 1""T")ez
h

Oxy = sign(p)

How to combine the phases in both representations?




Our results in graphics
Opposite phases (monolayer)
Bothx = +1 (bilayer)
Bothk = —1 (?)
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arXiv Postings on Graphene by Year

700

600

500

400

300

200

100

0

2000

1999

2001

2002

2003

2004

2005

2006

2007

2008 [2010]

2008



Applications of graphene and boundary conditions in the
continuum model

Many applications foreseen:

e Graphene touchscreens, microdisplays and monitors,

e Graphene solar cells,

e Graphene biosensors,...
Major dream is to construct graphene-based ultra fast ctargpu

NEED TO OPEN AGAP




To this end, nothing like...




BOUNDARIES

ARMCHAIR
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Our work on boundary conditions

Study a family of local boundary conditions (b.c.) for massl Dirac fields fonanoribbons
andnanodots

Show that MIT bag b.c. give the best agreement with experisnen

C.G.B and E.M. Santangelo, arXiv:1011.2772

Study the eigenvalue problens, W (z,y) = F4 V4 (z,y),
with H+ = —i020, =+ Jlay
Domain of the differential operator defined by a family ofdbboundary conditions which:

1. Don’t mix valleys

2. Give a vanishing flux of current perpendicular to the baugd

3. Are defined through a self-adjoint projector

Study the problem arounfl L. When necessary, boundary conditions arofiind will be
discussed.




Put a boundary at

\111_0‘2 W proportional toperpendicular current

\Ifial W proportional tocurrent along boundary

The most general one-parameter family of b.c. satisfying3. t

(I 40167 2) 0 Jogy =0

Note: o = 0, 7 MIT bag boundary conditions
a = £ mimic zigzag boundary

Zigzag b.c.= tangential current at the boundary vanishes
MIT = current along the boundary proportional to density of charg

Propose, for eachy, ¥ (z,y) = e'Fv Yoy (x)




Half Plane
Take the boundary at = 0
Solve the eigenvalue problem with the normalizability aoond whenxz — oo

For alla # 0, 7, there are apart from bulk states, edge states, correspptadi

E = ky cos a, with £, sin o > 0, eigenfunctions decreasing exponentially with

Correspond t&v = 0 in the zigzag case>

Note: This shows zigzag b.c. do not define, in a compact regitmsmooth boundary, a
Lopatinski-Shapiro (elliptic) boundary problem.




Graphene nanoribbon transistor




Nanoribbons and boundary conditions in QED
Put a second Boundary at= W

Experiments show a gap, which is symmetric around the DicactP

Two ways of obtaining a symmetric spectrum:

1. Same projector at both boundargERO MODESVY« (Appear for all values ok, for
a = *5,andforky, =0fora # 3.

2. Orthogonal projectors at both boundaries

We take ortogonal projectors at both boundaries

HiVy (z,y) = B4V (z,y),

(I+01e ") Wy 40 =0, (I—01e " *2)Vy |,y =0

E=+,/k2 k2




Spectrum for MIT ¢ = 0, 7)

2
n—l—l T
cos (kaW)=0 = E, ==+ (%) —I—kg

e equally spaced spectrum kn.

v

e energy gap for MIT bag b.q AE =

Spectrum for alby #£ 0, 7

kz cos (kzW) = ky sinasin (kz W), for B # +k,,

1
ky — X
W sin «

, forE = Lky.

e Both equations break the invariance unélgr— —k,
Only recovered by imposing exactly the same boundary cimmditon the
eigenfunctions around the other valley

1
o Fork, =0, k; = (n;?)w, no matter the value af




e Vk, # 0, values ofk, not equally spaced, but continuous

e Imaginary as well as real values bf are allowed
Callingk = 1 kg, for E # £k,

1
k cosh (kW) = ky sin asinh(kW), for |ky| >

W | sin ¢

e Fora = + 3 (zigzag b.c.)energies arbitrarily close to zero=- NO GAP

o Va# +5 AE <




Comparison with the experiments

Experiments DO show a transport gap as the gate voltage gvdves performed at low
temperature and bias voltage.

Zigzag boundary conditions are then eliminated as canebdatdescribe this physical
situation.

Va # £ 3, recovering UnitsA £ < h"{/{j” = %mﬁ% = 12.37eV 35> (a is the nearest

neighbor distance).

For MIT bag boundary conditionsgx(= 0, ) the equal sign holds.

Experiment performed by Yu-Ming Lin et al. shows equallysgédplateaux in the
conductivity

This suggests that MIT bag boundary conditions are the anlee imposed in the
continuous model.

We obtained, for MIT bag b.cAAFE = 12.7eV 1. For a sample of widtfV = 30nm,
AFE = 46meV in good agreement with values obtained by Yu-Ming Lin et algéneral, a
bit smaller than the energy gap obtained by Melinda Y. Haliada C. Brant and Philip

Kim.
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Experiment performed by Melinda Y. Han, Barbafosyilmaz, Yuanbo
Zhang and Philip Kim shows the measured gap in the gate wttagsn’t
depend on the orientation of the boundary.

This is the case if MIT bag boundary conditions are written as
(I +n)yY(x=0,W) =0, wheren is the inward normal vector.




Quantum dots
Treat the case of a circular graphene dot of radtus
Polar coordinates

Boundary Value problem

70, +i 105 | 4(r,0) = Ew(r,0)

(I — fyre_w”@) Y(r=R,0)=0
P(r,0) = p(r,0 + 2m),

~" = o1 cos 0 + o2 sin 6 andfy@ = 09 cosf — oq1sinb.

Zigzag boundary conditiong(= =+ 7 ) allow for an infinite amount of zero modes
This was expected from the facts that they don’t satisfy thedtinski-Shapiro condition
and the region is compact with a smooth boundary.

Experiments on quantum dots also DO present a gap

Treat cases # + 5




Spectrum

(1—sina)Jp(|E|R)+scosa)Jn+1(|E|R) =0, n=0,...,00

(1—sina)Jnt+1(|F|R)—scosa)Jn(|F|R) =0, n=0,...,00

Jn, is the Bessel function of order, ands is the sign of the energy.

The experiment performed by S.Schnez et al shows clearyibagap in a quantum dot is
symmetric around the Dirac point.

This, again, points to the MIT boundary conditions as thatr@gpnditions to impose on the
continuum model in order to reproduce the experimentalt€since all the remaining
values ofa produce a spectral asymmetry.

S.Schnez, F. Molitor, C. Stampfer, JitEnger, I. Shorubalko, T. Ihn and K. Ensslin, Appl.
Phys. Lett.B94, 012107 (2009).




Conclusions

The relativistic model of graphene can nicely describe tbstraalient
properties of graphene, mainly the Hall conductivity.

Elliptic boundary conditions are the conditions to chodsme wants to
define a quantum theory and, in particular, a qguantum charge.

In this sense, MIT bag boundary conditions are the best dateli They
also show the best agreement with experiment, but...

not all the Condensed Matter physicists love relativisiearies; not
many of them care about such things as ellipticity.
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