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Graphene: Electrons in “Flatland”

Truly bidimensional array of carbon atoms. Unique properties

Proposed in 1984:

• G.W. Semenoff, Phys. Rev. Lett.53, 2499 (1984).

ALMOST obtained in 2004:

• K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang,S.V.

Dubonos, I.V. Grigorieva, A.A. Firsov, Science306, 666 (2004).



Effective model for charge carriers

 

A sites generated bya1 anda2

b1, b2, b3 connectA toB sites

Tight binding Hamiltonian

H = t
∑

A,i

(

U †(A)V (A+ bi) + V †(A+ bi)U(A)
)

.



In momentum space

H=

∫

ΩB

d2q

(2π)2
(

U †(k), V †(k)
)

H(k)





U(k)

V (k)



 ,

H(k) =





0 φ(k)

φ(k)
∗

0





φ(k) = t
(

eik.b1 + eik.b2 + eik.b3

)

,

φ(k) = 0 at the six corners of the Brillouin zone.



 

TakeK± = ± 4π√
3a

(

0, 1√
3

)

as the two non-equivalent ones. Conduction

and valence bands touch atK±.



Expand aroundK± (k = K± + p). In the continuum limit (a→ 0, with
t a constant), to first order

φ(p+K±) ≈
ta
√

3

2
(−ipx ∓ py)

CallingΨ± =





U(p+K±)

V (p+K±)





We obtain

H± = vF





0 −ipx ∓ py

ipx ∓ py 0





Dirac Hamiltonian for massless fermionsin 2+1 dimensions with

Fermi velocityvF = ta
√

3
2 ≈ 106 m

s



P.R. Wallace, Phys. Rev.71, 622 (1947)

Gordon W. Semenoff, Phys. Rev. Lett.53, 2449 (1984)

Effective theory graphene - Dirac like theory in a reduciblerepresentation

ValleysK± - the two irreducible representations ofγ matrices in 2+1

A andB type of sites - upper and lower components ofΨ in each

representation

Graphene is agaplessmaterial

GG

K

K’

Electrons

Holes



Hall conductivity for mono and bi-layer graphene

σxy (4e2/h)ρxx (kΩ)
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Note that the behavior around the origin is ”unexpected”



Our approach to the Hall conductivity through planar QED

• Study of Dirac fields in 3-dimensional Euclidean space, with

chemical potential in the presence of a constant magnetic field

perpendicular to thex− y plane.

• Evaluate the partition function and density of fermion number (or

charge) at finite temperature, via zeta regularization.

• Lorentz boost to include electric field and determination ofHall’s

current.

• Analysis of different selections of the phase of the determinant at

each valley, and of the effect on Hall’s conductivity.

C.G.Beneventano and E.M.S., Jour. Phys. A 39, 7457 (2006).

C.G.Beneventano, P. Giacconi, E.M.S. and R. Soldati, Jour.Phys. A: Math. Theor.40, F435

(2007).

C.G.Beneventano and E.M.S., Jour. Phys. A: Math. Theor.41, 164035 (2008).



Partition function at finite temperature and density

Study a massless Dirac Field in 3-dimensional Euclidean space, at finite temperature

Uniform magnetic fieldB perpendicular to the sample+ chemical potentialµ

Choose Landau gauge:A = (iµ
e
,−By, 0) and0 < τ < β = 1

kT

Evaluate the Euclidean effective action

logZ = log det(i∂/+ eA/)AP

Antiperiodic boundary conditions to insure Fermi statistics

Use zeta regularization

logZ = − d
ds

⌋

s=0
ζ(s,

(i∂/+eA/)AP

α
) = − d

ds

⌋

s=0

∑

ω−s
n

To apply zeta regularization: solve eigenvalue problem forthe Dirac operator, withL2

integrability condition, and (to satisfy antiperiodicity)

Ψk,l(τ, x, y) =
eiλlτ eikx

√

2πβ

(

ϕk,l(y)

χk,l(y)

)

λl = (2l + 1)
π

β



The spectrum has two pieces: λ̃l = (2l + 1) π
β
− iµ

1) Asymmetric piece(associated to a zero mode of the Hamiltonian)

ωl = λ̃l with l = −∞, ...,∞

2) Symmetric piece

ωl,n = ±
√

λ̃2
l + 2neB with n = 1, ...,∞ l = −∞, ...,∞

Degeneracy (per unit area) in all cases:

∆L =
eB

2π

In the other irreducible representation ofγ matrices (around the valleyK−), the asymmetric

piece of the spectrum changes the sign



Analytic extension ofζ(s, (i∂/+eA/)AP

α )

Two contributions:

ζ1(s, µ) = ∆L

∑∞
l=−∞

[

(2l + 1) π
αβ

− i µ
α

]−s

ζ2(s, µ, eB) = (1 + (−1)−s)∆L

∞
∑

n = 1

l = −∞

[

2neB

α2
+

(

(2l+ 1)
π

αβ
− i

µ

α

)2
]− s

2

The extension ofζ2(s, µ) is standard. One uses the Mellin transform

z−s =
1

Γ(s)

∫ ∞

0

dt ts−1e−tz ℜ(z) > 0

and the definition of the Jacobi theta functionΘ3(z, x) =
∑∞

l=−∞ e−πxl2e2πzl, together

with its well known inversion formula: Θ3(z, x) = 1√
x
e(

πz2

x
)Θ3

(

z
ix
, 1

x

)



The analytic extension ofζ1(s, µ) introduces the “PHASE”

ζ1(s, µ) = ∆L

∞
∑

l=−∞

[

(2l + 1)
π

αβ
− i

µ

α

]−s

ζ1(s, µ) = ∆L

(

2π

αβ

)−s

[

∞
∑

l=0

[

(l+
1

2
) − i

µβ

2π

]−s

+

∞
∑

l=0

[

−(l +
1

2
) − i

µβ

2π

]−s

]

= ∆L

(

2π

αβ

)−s [

ζH

(

s,
1

2
− iµβ

2π

)

+

+

∞
∑

l=0

e−isθ
(

(2l + 1)
π

β
− iµ e−iθ

)−s

]

Usual choice (don’t go through zeros):(−1)−s = eiπsign(µ)s κ = −1

Opposite choice (go through infinite zeros):(−1)−s = e−iπsign(µ)s κ = 1



ζ1(s, µ) = ∆L

(

2π

βα

)−s [

ζH

(

s,
1

2
− iµβ

2π

)

+

e−iκπsign(µ)sζH

(

s,
1

2
+
iµβ

2π

)]

Contribution to the effective action:

logZ1(κ) = ∆L

{

log

[

2 cosh(
µβ

2
)

]

+ κ
|µ|β
2

}

Total effective action per unit area and one irreducible representation

logZ(κ) =∆L

{

log

[

2 cosh(
µβ

2
)

]

+ κ
|µ|β
2

+ β
√

2eBζR

(

−1

2

)

+

∞
∑

n=1

log

[(

1 + e−(
√

2neB−µ)β
)(

1 + e−(
√

2neB+µ)β
)]

}

Same in the other representation (valley) if the phase is chosen with the same criterium. No

fundamental reason for doing so. So, around the other valleyκ→ κ′ (±1).



Hall current in the presence of electric field

Fermion number (per unit area) in one i.r.N = 1
β

d
dµ

logZ

N(κ) = ∆L

{

1

2

[

tanh (
µβ

2
) + κsign(µ)

]

+

∞
∑

n=1

[

e−(
√

2neB−µ)β

1 + e−(
√

2neB−µ)β
− e−(

√
2neB+µ)β

1 + e−(
√

2neB+µ)β

]

}

Charge density:j0 = −eN
Zero temperature limit (β → ∞) of charge density (recovering physical units)

Without electric field:

j0(2ec2h̄Bn < µ2 < 2eBc2h̄(n+ 1)) =

−(n+ 1+κ
2

)ce2B

h
sign(µ)

To include electric fieldE′
y

Perform a Lorentz boost with velocityvx = −E′

yc

B′

z
(E′

y < eB′
z) gives as a result



j′0 =
−(n+ 1+κ

2
)ce2B′

z

h
sign(µ)

j′x =
−(n+ 1+κ

2
)e2E′

y

h
sign(µ) , j′y = 0

Hall conductivity,one irreducible representation and two ”flavors” (spins of the electron)

σxy =
−2(n+ 1+κ

2
)e2

h
sign(µ)

How to combine the phases in both representations?



Our results in graphics
Opposite phases (monolayer)
Bothκ = +1 (bilayer)
Bothκ = −1 (?)
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Applications of graphene and boundary conditions in the
continuum model

Many applications foreseen:

• Graphene touchscreens, microdisplays and monitors,

• Graphene solar cells,

• Graphene biosensors,...

Major dream is to construct graphene-based ultra fast computers

NEED TO OPEN AGAP



To this end, nothing like...



BOUNDARIES

.

ARMCHAIR

Z
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G
Z
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Our work on boundary conditions

Study a family of local boundary conditions (b.c.) for massless Dirac fields fornanoribbons

andnanodots

Show that MIT bag b.c. give the best agreement with experiments

C.G.B and E.M. Santangelo, arXiv:1011.2772

Study the eigenvalue problemsH±Ψ±(x, y) = E±Ψ±(x, y),

with H± = −iσ2∂x ± σ1∂y

Domain of the differential operator defined by a family of local boundary conditions which:

1. Don’t mix valleys

2. Give a vanishing flux of current perpendicular to the boundary

3. Are defined through a self-adjoint projector

Study the problem aroundK+. When necessary, boundary conditions aroundK− will be

discussed.



Put a boundary atx0

Ψ†
+σ2Ψ+ proportional toperpendicular current

Ψ†
+σ1Ψ+ proportional tocurrent along boundary

The most general one-parameter family of b.c. satisfying 1 to 3

(I + σ1 e
−iασ2 )Ψ+⌋x=x0

= 0

Note:α = 0, π MIT bag boundary conditions

α = ±π
2

mimic zigzag boundary.

Ψ†
+σ1Ψ+⌋x=x0

= − cos (α)Ψ†
+Ψ+⌋x=x0

Zigzag b.c.⇒ tangential current at the boundary vanishes

MIT ⇒ current along the boundary proportional to density of charge

Propose, for eachky , Ψ+(x, y) = eiky yψ+(x)



Half Plane

Take the boundary atx = 0

Solve the eigenvalue problem with the normalizability condition whenx→ ∞
For allα 6= 0, π, there are apart from bulk states, edge states, corresponding to

E = ky cosα, with ky sinα > 0, eigenfunctions decreasing exponentially withx.

Correspond toE = 0 in the zigzag case⇒
Note: This shows zigzag b.c. do not define, in a compact regionwith smooth boundary, a

Lopatinski-Shapiro (elliptic) boundary problem.



Graphene nanoribbon transistor



Nanoribbons and boundary conditions in QED

Put a second Boundary atx = W

Experiments show a gap, which is symmetric around the Dirac Point

Two ways of obtaining a symmetric spectrum:

1. Same projector at both boundaries-ZERO MODES∀α (Appear for all values ofky for
α = ±π

2
, and forky = 0 for α 6= ±π

2
.

2. Orthogonal projectors at both boundaries

We take ortogonal projectors at both boundaries

H+Ψ+(x, y) = E+Ψ+(x, y) ,

(I + σ1 e
−iασ2 )Ψ+⌋x=0 = 0 , (I − σ1 e

−iασ2 )Ψ+⌋x=W = 0

E = ±
√

k2
x + k2

y



Spectrum for MIT (α = 0, π)

cos (kxW ) = 0 ⇒ En = ±

√

(

(n+ 1
2
)π

W

)2

+ k2
y

• equally spaced spectrum inkx

• energy gap for MIT bag b.c.∆E = π
W

Spectrum for allα 6= 0, π

kx cos (kxW ) = ky sinα sin (kxW ), forE 6= ±ky ,

ky =
1

W sinα
, forE = ±ky .

• Both equations break the invariance underky → −ky

Only recovered by imposing exactly the same boundary conditions on the
eigenfunctions around the other valley

• Forky = 0, kx =
(n+ 1

2
)π

W
, no matter the value ofα



• ∀ky 6= 0, values ofkx not equally spaced, but continuous

• Imaginary as well as real values ofkx are allowed

Callingκ = i kx, forE 6= ±ky

κ cosh (κW ) = ky sinα sinh(κW ), for |ky|>
1

W | sinα|

• Forα = ±π
2

(zigzag b.c.)energies arbitrarily close to zero⇒ NO GAP

• ∀α 6= ±π
2

∆E ≤ π
W



Comparison with the experiments

Experiments DO show a transport gap as the gate voltage grows, when performed at low
temperature and bias voltage.

Zigzag boundary conditions are then eliminated as candidates to describe this physical
situation.

∀α 6= ±π
2

, recovering units,∆E ≤ h̄vF π
W

= 3
2
πt a

W
= 12.37eV a

W
(a is the nearest

neighbor distance).

For MIT bag boundary conditions (α = 0, π) the equal sign holds.

Experiment performed by Yu-Ming Lin et al. shows equally spaced plateaux in the
conductivity

This suggests that MIT bag boundary conditions are the ones to be imposed in the
continuous model.

We obtained, for MIT bag b.c.∆E = 12.7eV a
W

. For a sample of widthW = 30nm,
∆E = 46meV in good agreement with values obtained by Yu-Ming Lin et al. In general, a

bit smaller than the energy gap obtained by Melinda Y. Han, Juliana C. Brant and Philip
Kim.



 

Experiment performed by Melinda Y. Han, BarbarosÖzyilmaz, Yuanbo

Zhang and Philip Kim shows the measured gap in the gate voltage doesn’t

depend on the orientation of the boundary.

This is the case if MIT bag boundary conditions are written as

(I + /n)ψ(x = 0,W ) = 0, wheren is the inward normal vector.



Quantum dots

Treat the case of a circular graphene dot of radiusR

Polar coordinates

Boundary Value problem
[

−iγθ∂r + i
γr

r
∂θ

]

ψ(r, θ) = Eψ(r, θ)

(

I − γre−iαγθ
)

ψ(r = R, θ) = 0

ψ(r, θ) = ψ(r, θ + 2π) ,

γr = σ1 cos θ + σ2 sin θ andγθ = σ2 cos θ − σ1 sin θ.

Zigzag boundary conditions (α = ±π
2

) allow for an infinite amount of zero modes
This was expected from the facts that they don’t satisfy the Lopatinski-Shapiro condition

and the region is compact with a smooth boundary.

Experiments on quantum dots also DO present a gap

Treat casesα 6= ±π
2



Spectrum

(1−sinα)Jn(|E|R)+s cosα)Jn+1(|E|R) = 0, n = 0, ...,∞

(1−sinα)Jn+1(|E|R)−s cosα)Jn(|E|R) = 0, n = 0, ...,∞
Jn is the Bessel function of ordern, ands is the sign of the energy.

The experiment performed by S.Schnez et al shows clearly that the gap in a quantum dot is

symmetric around the Dirac point.

This, again, points to the MIT boundary conditions as the right conditions to impose on the

continuum model in order to reproduce the experimental results, since all the remaining

values ofα produce a spectral asymmetry.

S.Schnez, F. Molitor, C. Stampfer, J. Güttinger, I. Shorubalko, T. Ihn and K. Ensslin, Appl.

Phys. Lett.B94, 012107 (2009).



Conclusions

The relativistic model of graphene can nicely describe the most salient

properties of graphene, mainly the Hall conductivity.

Elliptic boundary conditions are the conditions to choose if one wants to

define a quantum theory and, in particular, a quantum charge.

In this sense, MIT bag boundary conditions are the best candidate. They

also show the best agreement with experiment, but...

not all the Condensed Matter physicists love relativistic theories; not

many of them care about such things as ellipticity.



OUR TOAST TO MANOLO’S HAPPINESS



Thanks and...

LA VIDA COMIENZA A LOS SESENTA!!!


