Renormalization Group Flows and Supersymmetry

A. Wipf

Theoretisch-Physikalisches Institut, FSU Jena

What is Quantum Field Theory? Manolo-Fest, Benasque, September 2011

Research Training Group Quantum and Gravitational Fields

seit 1558

Manifest supersymmetric flows for non-gauge models

Scale-dependence of super-potential

- Masses, Phases, Fixed Points, ...
- Exact solution for O(N)-models in large N limit

strong-coupling phenomena:

spectrum, phase transitions, collective condensations, etc.

exact solutions:

low dimensions, extended symmetry, integrable models, ...

- strong coupling expansions, large N, ...
- Iattice simulations:

problems: symmetries, doublers, chiral fermions, sign-problem, $\dots \implies$ wish complement to lattice studies

• functional renormalization group:

phase transitions, condensed matter systems, infrared sector of gauge theories, quantum gravity, renormalizability-proofs, ...

QFT = solution of functional renormalization group equation

Functional renormalization flow

generating functional for n-point functions: formally

$$Z[j] = \int \mathcal{D}\phi \, \mathrm{e}^{-S[\phi]+(j,\phi)} \quad , \quad W[j] = \log Z[j]$$

add momentum- and scale-dependent regulator term to S

$$\Delta S_k[\phi] = \frac{1}{2} \int \frac{\mathrm{d}^d \rho}{(2\pi)^d} \, \phi^*(\rho) R_k(\rho) \phi(\rho) = \frac{1}{2} (\phi, R_k \phi)$$

 \implies scale-dependent generating functionals

$$Z_k[j] = \int \mathcal{D}\phi \, \mathrm{e}^{-S[\phi] + (j,\phi) - \Delta S_k[\phi]} \quad , \quad W_k[j] = \log Z_k[j]$$

Requirements

- *R_k* regulates QFT in UV and IR
- recover full generating functionals in IR:

$$R_k(p) \xrightarrow{k \to 0} 0$$
 fixed p

- recover classical theory at cutoff Λ: R_k ^{k→Λ}→ ∞
 ⇒ interpolation between classical and quantum theory
- IR regularization

 $R_k(p) > 0$ for $p \to 0$

• e.g. optimized regulator $R_k(p) = (k^2 - p^2) \theta (k^2 - p^2)$

- compatible with symmetries
- flow equation for W_k[j]: Polchinsky equation

$$\partial_k W_k = -\frac{1}{2} \operatorname{tr} \left(\partial_k R_k W_k^{(2)} \right) - \frac{1}{2} \left(W_k^{(1)}, \partial_k R_k W_k^{(1)} \right)$$

 $W_k(n)$: n'th functional derivative of W_k

Legendre transform ⇒ scale dependent effective action

$$\Gamma_k[\varphi] = (\mathcal{L}W_k)[\varphi] - \Delta S_k[\varphi]$$

- Γ_k not necessarily convex, $\Gamma = \Gamma_{k \to 0}$ convex
- average field ↔ source

$$\varphi(x) = \frac{\delta W_k[j]}{\delta j(x)} \quad , \quad \frac{\delta \Gamma_k}{\delta \varphi(x)} = j(x) - (R_k \varphi)(x)$$

• exact flow equation for $\Gamma_k[\varphi]$: Wetterich equation

$$\partial_k \Gamma_k[\varphi] = \frac{1}{2} \operatorname{tr} \left(\frac{\partial_k R_k}{\Gamma_k^{(2)}[\varphi] + R_k} \right)$$

- nonlinear functional differential equation, 1-loop structure
- denominator: IR regularization
- numerator: $\partial_k R_k$ peaked at p = k
 - \Rightarrow quantum fluctuations near momentum shell $p \approx k$
- integrate 'down': collect quantum fluctuations below cutoff Λ
- nonperturbative, applicable to QFT's and statistical systems
- in particular: supersymmetric QFT's

Challenges

supersymmetry: Poincare algebra, fermionic supercharges

$$\{Q^{i}_{lpha}, ar{Q}^{j}_{\dot{lpha}}\} = 2\delta^{ij}\sigma^{\mu}_{lpha\dot{lpha}}P_{\mu} \quad, \quad \{Q^{i}_{lpha}, Q^{j}_{eta}\} = 2arepsilon_{lphaeta}Z^{ij}$$

- symmetry of renormalization flow ⇒
 Ward identities ⇒ mass degeneracy, non-renormalization theorems, ...
- fixed-point structure of susy theories
- finite temperature effects
- here: simple susy Yukawa models
 - d = 2: infinitely many fixed point solutions: superconformal QFT's
 - d = 3: two fixed point solutions; susy breaking, finite T, \ldots

Wess-Zumino models in 2 and 3 dimensions

- $\mathcal{N} = 1$: real superfield
- field content: scalar ϕ , Majorana ψ , auxiliary F
- off-shell Yukawa model

$$\mathcal{L}_{\mathrm{E}} = rac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + rac{i}{2} ar{\psi} \partial \!\!\!/ \psi - rac{1}{2} \mathcal{F}^2 + rac{1}{2} \mathcal{W}''(\phi) ar{\psi} \gamma_* \psi - \mathcal{F} \mathcal{W}'(\phi)$$

• eliminate dummy $F \Longrightarrow \text{on-shell}$ Yukawa model

$$\mathcal{L}_{\rm E} = \frac{1}{2} (\partial \phi)^2 + \frac{i}{2} \bar{\psi} \partial \psi + \frac{1}{2} W'^2(\phi) + \frac{1}{2} W''(\phi) \bar{\psi} \gamma_* \psi$$

- classical model \iff superpotential W
- Witten index ⇒ W(φ) ~ φ^m: m even: susy always unbroken m odd: susy breaking possible

- supersymmetric regulator
- on-shell: no quadratic regulator
- off-shell: quadratic regulators exist
- most general solution known, here

$$\Delta S_k = \frac{1}{2} \int d^d x \left(\phi \, p^2 r(p^2) \, \phi - \bar{\psi} \, p r(p^2) \, \psi - r(p^2) \, F^2 \right)$$

- susy ⇒ cut-off functions for component fields related ☺
- truncation: leading order local potential approximation

$$\Gamma_{k} = \int d^{d}x \left(\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{i}{2} \bar{\psi} \partial \psi - \frac{1}{2} F^{2} + \frac{1}{2} W_{k}^{\prime\prime}(\phi) \bar{\psi} \gamma_{*} \psi - W_{k}^{\prime}(\phi) F \right)$$

Georg Bergner, Jens Braun, Holger Gies, Daniel Litim, Marianne Mastaler, Franziska Synatschke-Czerwonka Phys. Rev. **D81** (2010) 125001; **D80** (2009) 085007; **D80** (2009) 101701 JHEP **0903** (2009) 028; ArXiv 1107.3011; including NLO

Flow of super potential

• project flow onto $F \implies$ flow equation for W_k :

$$\partial_k W_k(\phi) = -\frac{k^{d-1}}{A_d} \frac{W_k''(\phi)}{k^2 + W_k''(\phi)^2}$$

- nonlinear PDE
- $W_k \Longrightarrow$ flow for scalar potential $V_k = \frac{1}{2} W_k^{\prime 2}$
- $k = \Lambda$: classical potential
 - $k \rightarrow 0$: convex effective potential
- flow into susy broken phase:

Fixed point structure in 2 dimensions

• dimensionless quantities $t = \log(k/\Lambda)$, $W_k(\phi) = kw_t(\phi)$

$$\partial_t w_t(\phi) + w_t(\phi) = -\frac{1}{4\pi} \frac{w_t''(\phi)}{1 + w_t''(\phi)^2}$$

- nonlinear PDE
- even $w'_t \Rightarrow$ susy-breaking possible, Taylor series

$$w'_t(\phi) = \lambda_t(\phi^2 - a_t^2) + b_{4,t}\phi^4 + b_{6,t}\phi^6 + \dots$$

 $\Longrightarrow\infty\text{-system}$ of coupled ODE's

• fixed points: $\partial_t w_* = 0$

 $\Longrightarrow \infty$ -system of algebraic equations

fixed points continued

• linearization: $a_*/1/\sqrt{2\pi}$ always unstable

• keep terms up to $b_{2n,t}\phi^{2n} \Longrightarrow 2n$ non-Gaussian fixed points

$$\pm \left(\lambda_{p}^{*}, b_{4,p}^{*}, \ldots, b_{2n,p}^{*}\right), \quad p = 1, \ldots, n$$

• ordering
$$\lambda_n^* > \lambda_{n-1}^* > \ldots \Longrightarrow$$

 λ_n^* : 1 IR-unstable direction a_t^2

 λ_{n-1}^* : 2 IR-unstable directions

 λ_{n-2}^* : 3 IR-unstable directions

• root belonging to IR-stable fixed point $\lambda_n^* \xrightarrow{n \to \infty} \lambda_{crit} = 0.9816$

λ^*	$\Re(\theta')$ of non-Gaussian fixed points, truncation at 2n=16							
$\pm.9816$	-1.54	-7.43	-18.3	-37.3	-68.9	-120	-204	-351
$\pm.8813$	6.16	-1.64	-9.82	-25.6	-52.5	-96.9	-170	-300
$\pm.7131$	21.4	4.37	-1.57	-11.1	-30.1	-63.3	-120	-223
$\pm.5152$	28.7	13.3	3.33	-1.39	-11.6	-32.8	-71.7	-145
$\pm.3158$	20.0	20.0	8.40	2.57	-1.14	-11.6	-34.3	-80.4
$\pm.1437$	11.2	11.2	8.63	5.19	1.95	842	-11.1	-35.7
$\pm.0322$	4.20	4.20	2.86	2.72	2.72	1.47	540	-10.5
$\pm.0003$	1.57	1.57	1.43	1.43	1.14	.542	.542	-0.221

• back to fixed point equation for $u(\phi) = w_*''(\phi)$:

$$(1 - u^4)u'' = 2u'^2(3 - u^2)u - (1 - u^2)^34\pi u$$

• periodic solutions for $u'(0) < 2\lambda_{crit}$

previous polynomials converge to periodic solution

next-to leading-order flows

- wave function renormalization $\implies \eta = -\partial_t \log Z_k^2$
- θ^0 critical exponent of relevant direction a_t^2 (related to W)
- new superscaling relation (exact in NLO)

$$u_{\mathbf{w}} \equiv \frac{1}{\theta_0} = \frac{d-\eta}{2}$$

superscaling relation at maximally IR-stable fixed point (d=2)

2 <i>n</i>	2	4	6	8	10	12	14
η	0.3284	0.4194	0.4358	0.4386	0.4388	0.4387	0.4386
$1/\nu_W$	0.8358	0.7903	0.7821	0.7807	0.7806	0.78065	0.7807

• number of IR-unstable direction = number of nodes of *u* plus 1

Supersymmetry breaking

• supersymmetric phase: $\min_{\phi} V_{k=0}(\phi) = \min_{\phi} W_{k=0}^{\prime 2}(\phi) = 0$

• susy broken: $W'_{k=0}(\phi)$ has no node

left: flow of a potential $V = W'^2$ with susy breaking, $W'_{\Lambda}(\phi) = \bar{\lambda}_{\Lambda}(\phi^2 - \bar{a}^2_{\Lambda})$ right: phase diagram for couplings specified at Λ , different truncations.

masses of bosons and fermions

- supersymmetric phase:
- broken phase:

$$Z_k^4 m_{k,\text{boson}}^2 = W_k''^2 (\chi_{\min}/Z_k) = Z_k^4 m_{k,\text{fermion}}^2$$
$$Z_k^4 m_{k,\text{boson}}^2 = W_k'(0) W_k'''(0) \sim k^{1+\eta/2}$$

Wess-Zumino model in 3 dimensions

with J. Braun and F. Synatschke-Czerwonka

- one Wilson-Fisher fixed point
- a_t^2 defines the only IR-unstable direction
- LPA, polynomial expansion
- rapid convergence

Wilson-Fisher fixed point from polynomial expansion

2 <i>n</i>	$\pm\lambda^*$	$\pm b_4^*$	$\pm b_6^*$	$\pm b_8^*$	$\pm b_{ m 10}^{st}$	$\pm b_{12}^{*}$
4	1.546	2.305				
6	1.590	2.808	6.286			
8	1.595	2.873	7.150	13.41		
10	1.595	2.873	7.155	13.48	1.212	
12	1.595	2.870	7.118	12.90	-8.895	-183.3

2 <i>n</i>	critical exponents for different truncations								
6	-0.799	-5.92	-20.9						
8	-0.767	-4.83	-14.4	-38.2					
10	-0.757	-4.35	-11.5	-26.9	-60.8				
12	-0.756	-4.16	-9.94	-21.4	-43.8	-89.0			
14	-0.756	-4.10	-9.13	-18.3	-35.1	-65.4	-123		
16	-0.756	-4.08	-8.72	-16.4	-29.9	-52.9	-91.9	-163	
18	-0.756	-4.08	-8.54	-15.2	-26.4	-45.0	-75.0	-124	-209

• phase diagram from parameter study of $W'_{k\to 0}$

Finite temperature

• $\int dp_0 \longrightarrow$ summation over Matsubara frequencies

sums can be calculated explicitly => two flow equations

$$\partial_{k} W_{k}^{\prime \text{bos}} = -\frac{k^{2}}{8\pi^{2}} W_{k}^{\prime\prime\prime} \frac{k^{2} - W_{k}^{\prime\prime2}}{(k^{2} + W_{k}^{\prime\prime2})^{2}} \times F_{\text{bos}}(T, k)$$

$$\partial_{k} W_{k}^{\prime \text{ferm}} = -\frac{k^{2}}{8\pi^{2}} W_{k}^{\prime\prime\prime} \frac{k^{2} - W_{k}^{\prime\prime2}}{(k^{2} + W_{k}^{\prime\prime2})^{2}} \times F_{\text{ferm}}(T, k)$$

- susy breaking by thermal fluctuations
- T = 0: susy broken $\longleftrightarrow \mathbb{Z}_2$ unbroken
- study \mathbb{Z}_2 breaking at finite T

Phase diagram

finite-temperature phase diagram for fixed $\lambda_\Lambda=0.8$

Phase diagram, continued

finite-temperature phase diagram

Linear sigma-models

- O(N)-invariant supersymmetric action
- rescaled dimensionless field $\varrho \propto \vec{\phi} \cdot \vec{\phi}$
- rescaled superpotential $w(\varrho) \propto W(\varrho/N)$
- RGE: contribution from Goldstone modes and radial mode

$$\partial_t \mathbf{w} - \rho \mathbf{w}' + 2\mathbf{w} = -\frac{(1 - \frac{1}{N})\mathbf{w}'}{1 + \mathbf{w}'^2} - \frac{\frac{1}{N}(\mathbf{w}' + 2\rho \mathbf{w}'')}{1 + (\mathbf{w}' + 2\rho \mathbf{w}'')^2}$$

large-N limit: radial mode decouples ⇒

$$\partial_t u + \partial_\rho u \left[1 - \rho - u^2 \frac{3 + u^2}{(1 + u^2)^2} \right] = -u \qquad (u = w')$$

methods of characteristics => exact solution

$$\frac{\rho - 1}{u} - F(u) = G(ue^t)$$
, $F(u) = \frac{u}{1 + u^2} + 2 \arctan u$

- $u(\rho)$ at cutoff $\Lambda \Longrightarrow G(ue^t)$
- fixed point solutions depend on one real parameter c

$$\rho = 1 + H(u_*) + c u_*, \quad H(u_*) = u_* F(u_*)$$

- c exact marginal coupling
- one-parameter family of u_{*}
- two families: global vs. non-global

1-parameter family of fixed point solutions: one marginal coupling ~ 1/c weak coupling: c → ∞ ⇒ u_{*} = 0 horizontal line intermediate coupling: two fixed point solution strong coupling: c → 0 ⇒ not globally defined

eigenperturbation

flow in vicinity of fixed points

$$u(t,\rho) = u_*(\rho) + \delta u(t,\rho)$$

exact solution of linearized flow equation

$$\delta u(t,u) = C e^{\theta t} u_*^{\theta+1} u_*'.$$

• regularity at $\rho = 1 \implies$ all critical exponents

$$\theta = -1, 0, 1, 2, 3, \cdots$$

- 4 distinct massive and massless phases
- $N \rightarrow \infty$ limit not smooth Litim, Mastaler, Synatschke, W.: arXiv:1107.3011

summary and next

constructed manifest supersymmetric FRG

٩	masses and coupling in infrared	
٩	supersymmetry breaking, phase transitions	
٩	critical phenomena: fixed points, universal exp	ponents
٩	non-renormalization theorems	
٩	exact solution for W_k in $O(N \to \infty)$ sigma mo	del
٩	supersymmetric $O(n)$ and $CP(n)$ models	
	first lattice results for supersymmetric $CP(1)$	R. Flore, D. Körner, C. Wozar
	flow equations: how does spectrum vary with	heta R. Flore
٩	supersymmetric gauge theories	
	first lattice-results in $d = 1, 2, 3$	B. Wellegehausen
	study of flow equations	F. Synatschke-Czerwonka, M. Mastaler

On October 20th: Congratulations, Manolo

