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Quantum field theory has developed through its interaction with
many fields. Besides elementary paricle physics, statistical
mechanics, and, in particular, the theory of critical phenomena
have played a very important role in the development of
Quantum Field Theory. This stimulated the development of
Wilson’s renormalization group ideas. Random walks and their
interactions provide examples of critical phenomena. Field
theories arise naturally. By analyzing these theories rigorously
we hope to learn something more about both interacting
random walks as well as rigorous renormalization group
analysis.
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Consider two classes of walks on the lattice Zd : those with
nearest neighbour jumps (simple walks) and those with long
range jumps (Lévy walks). An interaction is then added to make
them self repelling. The strength of the interaction is kept weak.
They are called respectively: (weakly) SAWs and SALWs.
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The Green’s function of a weakly self avoiding walk on the
lattice Zd can be represented as the two point correlation
function of a supersymmetric field theory. In this talk I will
discuss the critical limit of a class of weakly self avoiding walks
via rigorous renormalization group analysis.
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The Green’s function of a random walk from x to y is the
expected sum of all walks to go from x to y . For a continuous
time walk this is in terms of the transition probability

𝒢(x , y) =

∫︁ ∞

0
dt pt (x , y)

The end to end distance for a walk starting at the origin is
E(|xt |). The root mean square distance is

√︀
E(|xt |2).
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SAWs: Rigorous results:

d > 4: Critical SAWs are diffusive (Brydges-Spencer, [CMP
1984] ). Proof by expansion methods.

d = 4 is the critical dimension. Brydges-Slade (in preparation)
use supersymmetric representation plus rigorous RG methods
to prove for critical continuous time SAWs canonical behaviour
for the Green’s function

𝒢(x − y) ∼ const .|x − y |−2

This is canonical behaviour in d = 4
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In d=4, perturbative RG calculations say

E(x2
t ) ∼ const . t log

1
4 t

This has been proved for the hierachical s.a. walk
(Brydges-Imbrie) but it has not been yet proved rigorously in
general. It is part of the program of Brydges and Slade.
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In d=3 there are no rigorous results, analogous to the situation
for the d=3 Ising model. However 𝜖 expansion in the n = 0 limit
of the n-vector model (Le Guillou, Zinn-Justin) and direct Monte
Carlo studies (Madras-Sokal) indicate non-trivial scaling

E(x2
t ) ∼ const . t2𝜈

with 𝜈 ̸= 1
2 .
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SALWs:

What is the upper critical dimension? There are two parameters
in play: The dimension d and the (Lévy Khintchine) parameter
𝛼 with 0 < 𝛼 ≤ 2. 𝛼 = 2 corresponds to simple random walk.
For SALWs the upper critical dimension (mean field theory) is
d = 2𝛼. This means that 𝜖 = 2𝛼− d can be a small parameter
analogous to the 𝜖 in Wilson and Fisher’s 𝜖 expansion.
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SALWs: The the idea that 𝜖 = 2𝛼− d > 0 can taken as a small
parameter has been exploited by Mitter and Scoppola ([MS]
-2008). They take d = 3 and obtain rigorous results towards
the critical Green’s function of a class of continuous time
weakly self avoiding Lévy walks (long range jumps) (SALW).
They use the supersymmetric representation and recently
developed rigorous RG methds. Low orders in perturbation
theory in 𝜖 plus control of remainder.
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SALW: [MS] give a theorem on a global RG trajectory for the
critical supersymmetric lattice field theory in Z3. The trajectory
for the supermeasure is uniformly bounded on all RG scales
and defines a non-Gaussian field theory. Non-Gaussian fixed
point in underlying continuum theory. From this plus some more
work one can prove

𝒢(x − y) ∼ const .|x − y |−(3−𝛼)
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If x𝛼t is the continuous time SALW starting at he origin, define
the critical exponent 𝜈 by

E(|x𝛼t |) ∼ const .t𝜈

𝜈 has not been established rigorously. However there is an
𝜖 = 2𝛼− d expansion prediction for our case:

𝜈 = 𝜈L

(︁
1 +

𝜖

6
+ O(𝜖2)

)︁
𝜈L = 1

𝛼 is the exponent of the Lévy walk.
Thus we expect a non-trivial critical exponent. Proving this is a
challenging problem.
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Let x𝛼t ∈ Zd , 0 < 𝛼 ≤ 2, be a continuous time Lévy process
(called a Lévy walk). This is a compound Poisson process with
i.i.d jumps. Jump distribution depends on 𝛼. For 𝛼 = 2 we have
simple random walks: nearest neighbour jumps. For 𝛼 < 2 the
jump distributions have long range tails.
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The characteristic function is given by the Lévy Khintchine
formula

E(ei(k ,x (𝛼)
t )) = e(2d)𝛼/2 t 𝜓𝛼(k)

𝜓𝛼(k) = −(1 − 1
d

d∑︁
j=1

cos kj))𝛼/2

E(ei(k ,x (𝛼)
t )) = e−t(−Δ̂)(k)𝛼/2
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For 𝛼 = 2 the characteristic function is that of a simple random
walk. But for 0 < 𝛼 < 2 it can be shown that the transition
probability

Pt (x , y) ∼ const . |x − y |−(d+𝛼)

This means that the variance is infinite but for 𝛼 > 1 the mean
distance is finite.
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For d = 3 the walk is transient and the Green’s function is

C(x − y) =

∫︁ ∞

0
dt P(𝛼)

t (x , y) = (−∆)−𝛼/2(x − y)

∼ |x − y |−(3−𝛼)

when |x − y | → ∞ . We will choose 𝛼 = 3+𝜖
2 , with 0 < 𝜖 ≤ 1.
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Let Λ ⊂ Zd be a finite subset. The local time spent by the walk
at x ∈ Λ (upto time T ) is

𝜏T (x) =:

∫︁ T

0
ds 𝛿(x𝛼s − x)

where 𝛿 is the lattice delta function. Let dx be the counting
measure. Define

𝜏T (Λ) =

∫︁
Λ

dx 𝜏T (x)
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𝜏2
T (Λ) =

∫︁
Λ

dx 𝜏T (x)2 =

∫︁ T

0

∫︁ T

0
ds dt 𝛿d (xt − xs) Ixt ,xs∈Λ

This is a measure of the self intersection.
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A weakly self-avoiding Lévy walk

We define the expectation for a weakly self-avoiding Lévy
process by the law

E (s.a.)
g,T ,Λ(f (x𝛼t )) = Z−1 E

(︁
f (x𝛼t ) e− g2

2 𝜏
2
T (Λ)

)︁
Z is a normalization factor.

The exponential factor makes the walk tend to repel itself
(weakly) in Λ for finite g.
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The Green’s function is defined by

𝒢𝜇(x , y) = lim
Λ↑Z3

𝒢𝜇Λ(x , y)

where

𝒢𝜇Λ(x , y) =

∫︁ ∞

0
dT Ex (e− g2

2 𝜏
2
T (Λ)−𝜇𝜏T (Λ)Ix𝛼

T =y )

This limit exists for a suitable choice 𝜇 = 𝜇c = h(g), the critical
mass which is related to the critical killing rate.
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FIELD THEORY REPRESENTATION:

Let 𝜑1, 𝜑2 be independent identically distributed Gaussian
random fields in Z3 with covariance 1

2C, and C is the Green’s
function of the walk.

𝜑 = 𝜑1 + i𝜑2 and 𝜑 its complex conjugate.

𝜓,𝜓 are Grassmann fields (scalar fermions) of degree 1 and
−1 respectively.
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Φ = (𝜑, 𝜓), Φ̄ = (𝜑, 𝜓)

Inner product:

(Φ,Φ) = ΦΦ̄ = 𝜑𝜑+ 𝜓𝜓
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Let Λ ⊂ Z3 be a finite subset. Define

V (Λ,Φ,g, 𝜇) = g
∫︁
Λ

dx(ΦΦ̄)2(x) + 𝜇

∫︁
Λ

dxΦΦ̄(x)

where the coupling constant g0 > 0 and dx is the counting
measure in Z3. Define the |Λ| × |Λ| matrix CΛ by

CΛ(x , y) = C(x − y) : x , y ∈ Λ

CΛ is a symmetric, positive definite matrix.

Pronob K. Mitter Self-Avoiding Walks and Field Theory: Rigorous Renormalization Group Analysis



Introduction
Green’s function and supersymmetric field theory

RG analysis of supermeasure

Green’s function
The Parisi-Sourlas representation.

Then our field theory in finite volume Λ is defined by the
supermeasure

d𝜇Λ(Φ) = d𝜇CΛ
(Φ)e−V0(Λ,Φ,g,𝜇)

where d𝜇CΛ
(Φ) is the Gaussian supermeasure

d𝜇CΛ
(Φ) =

∏︁
x∈Λ

dΦ(x) e−(Φ,C−1
Λ Φ̄)L2(Λ)

dΦ(x) = d𝜑1(x)d𝜑2(x)d𝜓(x)d𝜓(x)
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Integration over the Grassmann fields is Berezin integration and
d𝜇Λ(Φ) is interpreted as a linear functional on the Grassman
algebra ΩΛ (generated by the 𝜓,𝜓 over the ring of functions
which are functionals of the 𝜑, 𝜑). Determinants have cancelled
out.
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An important fact is that the potential V0(Λ,Φ) is
supersymmetric. Here by supersymmetry we mean invariance
under the transformation 𝒬 defined on the fields as follows

𝒬𝜑 = 𝜓, 𝒬𝜑 = −𝜓

𝒬𝜓 = 𝜑, 𝒬𝜓 = 𝜑

This induces in a natural way a supersymmetry transformation
𝒬 on functionals of fields. 𝒬 is nilpotent on gauge invariant
functionals F

𝒬2F = 0
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The supermeasure 𝜇Λ is 𝒬 invariant. For any functional F (Φ)

𝜇Λ(𝒬F ) = 0

If in addition 𝒬F = 0 then

𝜇Λ(F ) = F (0)

.
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As a consequence we have that the supermeasure d𝜇Λ(Φ) is
normalized : ∫︁

d𝜇Λ(Φ) 1 = 1

No vacuum energy will be generated.
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The McKane-Parisi-Sourlas representation says that:

𝒢𝜇Λ(x , y) =

∫︁
d𝜇CΛ

(Φ)e−V (Λ,Φ)𝜑(x)𝜑(y)

Proof: (Brydges, Evans and Imbrie and more recently Brydges,
Imbrie, Slade).
We want to analyze the supermeasure

d𝜇CΛ
(Φ)e−V (Λ,Φ)

by lattice renormalization group transformations. We will
generate a sequence of measures (the RG trajectory) living in
smaller and smaller cubes in finer and finer lattices.
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A function C(x , y) is said to have finite range L if

C(x , y) = 0 : |x − y | ≥ L

Consider case where C is translation invariant. We are
interested in positive definite functions (distributions) C which
have expansions

C =
∑︁

Cn

where each Cn is positive definite, finite range Ln and smooth.
Green’s functions of self adjoint, second order elliptic operators
defined by Dirichlet forms in the continuum or on the lattice
have such expansions (Brydges, Guadagni and Mitter, JSP
2004). Fractional powers thereof have such expansions.
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Let 𝒳 = Rd or Zd . Suppose 𝜑 : 𝒳 → R is a Gaussian random
variable distributed according to the covariance C. We have an
expansion:

𝜑 =
∑︁
n≥0

𝜁n

where the 𝜁n are independent Gaussian random variables
distributed according to Cn. The 𝜁n have finite range
correlations:

E(𝜁n(x)𝜁n(y)) = 0 : |x − y | ≥ Ln
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Let Λ ⊂ 𝒳 is a large cube. Let F (𝜑,Λ)) be an L1 function (on
probablity space). Typically to begin with F = exp − V where V
is a local functional.

Suppose we want to calculate the expectation E(F (𝜑,Λ)). We
write this as a multiple expectation with respect to all the 𝜁n,
n = 1,2, ..., and carry out the expectations over each n starting
with n = 1 sequentially. At each step we also perform a
rescaling. Together we have a RG step. These steps generalize
to super expectations.
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Problem: Each such expectation is over fields in a very large
region. We have to decouple distant parts to proceed efficiently.

Suppose we have performed n − 1 RG steps. At this stage we
have the fluctuation field 𝜁n and the unintegrated fields
𝜑 =

∑︀
j≥n+1 𝜁j . Let Fn−1 denote the evolved random function.
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Pave 𝒳 with unit blocks. Λ has the induced paving. Polymers
are connected subsets of blocks. A polymer activity is a
functional of fields over polymers.

The evolved random function Fn−1(𝜁n, 𝜑) can be written as a
sum of products of activities of disjoint polymers with the
spaces in between filled by local functionals of fields
independent of 𝜁n. Suppose the polymers are sufficiently
disjoint. Then the 𝜁n expectation factorizes by the finite range
property. We are left to study the expectation over a small
region. No cluster expansion is necessary.
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Lattice RG transformations will be based on finite range
expansion of the covariance C, [BGM 2004]. This is an
alternative to Kadanoff- Wilson block spin RG.
Let L be a large triadic integer (3p). Let 𝛿n = L−n. Let
ds = (3−𝛼)

2 . We have a sequence of compatible lattices (𝛿nZ)3

and positive definite functions Γn : (𝛿nZ)3 → R of finite range L
2

such that for all x , y ∈ (Z)3

C(x − y) =
∑︁
n≥0

L−2nds Γn

(︁x − y
Ln

)︁
The series converges in L∞(Z3)
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Regularity properties
The fluctuation covariances Γn have good regularity properties
uniform in the lattice scale n. For example

‖𝜕m
𝛿n

Γn‖L∞((𝛿nZ)3) ≤ cL,m

Moreover the sequence Γn converges exponentially fast to a
smooth positive definite continuum function Γ* of finite range L

2
in the following sense: For all n ≥ l ≥ 0, with l fixed we have

‖𝜕m
𝛿n

Γn − 𝜕m
c Γ*‖L∞((𝛿lZ)3) ≤ cL,mL−qn

for some q > 0.
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Define by recursion the positive definite functions Cn on (𝛿nZ)3

Cn(x) = Γn(x) + L−2dsCn+1(
x
L

)

The Cn have regularity properties uniformly in the lattice scale.
They, and their lattice derivatives, converge to smooth
continuum functions. Now we can define RG transformations.
As usual this is the composition of fluctuation integration ( next
frame) with rescaling of fields. The scale transformation SL is
defined by SLΦ(x) = L−ds Φ(x/L).

Pronob K. Mitter Self-Avoiding Walks and Field Theory: Rigorous Renormalization Group Analysis



Introduction
Green’s function and supersymmetric field theory

RG analysis of supermeasure

A finite range multiscale expansion
Renormalization group transformations
coordinates for densities
RG map on coordinates
Banach spaces for RG coordinates
Stable manifold

Let (−Lm/2,Lm/2) ⊂ R3 and define Λm,n = Λm ∩ (𝛿nZ)3. Start
with the density 𝒵0(ΛN,0,Φ) = exp(−V0(ΛN,0,Φ)) with initial
parameters g0, 𝜇0 in a large cube on the unit lattice. There is a
sequence of RG transformations which gives the evolution of
densities belonging to the Grassman algebra over the ring of
bosonic fields on finer and finer lattices

TN−n,n : Ω0(ΛN−n+1,n−1) → Ω0(ΛN−n,n)

defined by

𝒵n(ΛN−n,n,Φ) = 𝜇Γn−1 * 𝒵n−1(ΛN−n+1,n−1,SLΦ)

∫︁
d𝜇C0𝒵0(ΛN,0,Φ) =

∫︁
d𝜇Cn𝒵n(ΛN−n,n,Φ)
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At any given step n of the sequence of RG transformations the
densities will be given coordinates gn, 𝜇n,Kn. Here gn, 𝜇n are
the evolved parameters of the local potential Vn. and Kn is a so
called irrelevant (contracting) term characterized as a polymer
activity. The density 𝒵n(ΛN−n,n,Φ) can be expressed in terms
of these coordinates in a polymer gas representation.
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Pave R3 with a disjoint union of open unit cubes which are
integer translates of (−1

2 ,
1
2)3. Take their intesection with a fine

lattice. These are unit blocks of the fine lattice. A polymer
X ⊂ ΛN−n,n is by default a connected union of unit blocks. Two
disjoint polymers are separated by a distance ≥ 1. A polymer
activity Kn is a map (X ,Φ) → Ω0(X ) and

𝒵n(ΛN−n,n) =
∑︁
N≥0

1
N!

e−Vn(Xc)
∑︁

X1,..XN

N∏︁
j=1

Kn(Xj)

The sum is over mutually disjoint connected polymers in ΛN−n,n.
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The density 𝒵n(ΛN−n,n,Φ + 𝜉) can also be written as

𝒵n(ΛN−n,n) =
∑︁
N≥0

1
N!

e−Ṽ (Yc)
∑︁

Y1,..YN

N∏︁
j=1

ℬK (Yj)

The sum is now over mutually disjoint connected L- polymers in
ΛN−n,n . ℬK is a non-linear functional of Kn, Ṽn which depends
on Φ, 𝜉. Ṽn is a yet to be chosen local potential which depends
only on Φ . Then the fluctuation map SL𝜇Γn* which integrates
out the 𝜉 factorizes over the product of polymer activities
because of the finite range property of Γn since the connected
L- polymers are separated by a distance ≥ L. Thus the polymer
representation is preserved after fluctuation integration.
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The fluctuation inntegration plus rescaling has given a map

Vn → Ṽn,L = SLVn, Kn → ℱKn

The image polymer activity lives on polymers in ΛN−1−n,n+1.
The polymers have become finer and the cube smaller.

We can profit from the arbitrariness in the choice of Ṽn to
subtract out the (localized) expanding parts of ℱKn, and absorb
them in Ṽn,L thus producing a flow of parameters. This
subtraction operation on ℱKn(X ,Φ) needs only to be be done
for small sets X , because large sets provide contracting
contributions. The new subtracted polymer activities have good
contraction properties (irrelevant terms). Finally note that
supersymmetry is preserved by these maps. No vacuum
energy terms are produced by supersymmetry.
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This procedure produces our final RG map fn+1

fn+1,V (Vn,Kn) = Vn+1, fn+1,K (Vn,Kn) = Kn+1

Using second order perturbation theory,

Kn = e−VnQn + Rn

Qn is a second order contribution. It is form invariant and
depends on gn, 𝜇n and a non-local kernel wn which converges
fast to continuum kernel. We will ignore it for simplicity. Rn is a
remainder. Let un = (gn, 𝜇n,Rn) represent a point on the RG
trajectory. The RG map produces a discrete flow:

un+1 = fn+1(un)
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The flow map in components is:

gn+1 = fn+1,g(un) = L𝜖gn((1 − L𝜖angn) + 𝜉n(un)

𝜇n+1 = fn+1,𝜇(un) = L
3+𝜖

2 𝜇n − L2𝜖bng2
n + 𝜌n(un)

Rn+1 = fn+1,R(un) =: Un+1(un)

The coefficients an are positive and converge fast to a limit
ac > 0. We have an approximate flow ḡn obtained by ignoring
the remainder 𝜉n and replacing an by its limiting value ac . This
approximate flow has an attractive fixed point ḡ = O(𝜖), for 𝜖
sfficiently small.
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Let g̃n = gn − ḡ. Then vn = (g̃n, 𝜇n,Rn) are the new
coordinates. Then

g̃n+1 = fn+1,g(vn) = (2 − L𝜖)g̃n + 𝜉n(vn)

𝜇n+1 = fn+1,𝜇(vn) = L
3+𝜖

2 𝜇n + 𝜌n(vn)

Rn+1 = fn+1,R(vn) =: Un+1(vn)

are the new flow equations. (2 − L𝜖) = (1 − O(logL)𝜖 is a
contraction factor.
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Banach spaces:

We will consider the RG action on polymer activities in the
formal infinite volume limit. This makes sense because of the
finite range property of fluctuation covariances.

We endow polymer activities Kn with a norm ‖ · ‖n. This norm
tends to a continuum norm as n → ∞. This gives us a Banach
space of Polymer activities at scale n. The norm measures:

1. Large 𝜑 field growth (large field regulator)

2. Partial derivatives in the 𝜑, 𝜓, finite number in 𝜑, and all in 𝜓.

3. Puts in a weight which says that large polymers contribute
small amount (large set regulator).
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We introduce a second norm | · |n. This is the same as the
previous norm except that we evaluate poymer activities at
𝜑 = 0, and therefore no large field growth to be measured.

We measure the remainder Rn in a norm ||| · |||n, where

|||Rn|||n = max{|Rn|, ḡ2||Rn||}

Define a Banach space En consisting of elements
vn = (g̃n, 𝜇n,Rn) with norm

||vn|| = max{(𝜈ḡ)−1|g̃n|, ḡ−(2−𝛿)|𝜇n|, ḡ−(11/4−𝜂)|||Rn|||n}

where 𝛿, 𝜂 > 0 are very small numbers and 0 < 𝜈 < 1/2.
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Let En(r) ⊂ En be an open ball of radius r centered at the
origin. Let vn ∈ En(1). Then our first theorem says

|𝜉n(vn)| ≤ CLḡ11/4−𝜂, |𝜌n(vn)| ≤ CLḡ11/4−𝜂

These are estimates for the error terms in the gn, 𝜇n flow.
Moreover Rn+1 = Un+1(vn) has the bound

|||Un+1(vn)|||n+1 ≤ L−1/4ḡ11/4−𝜂

On the right hand side we have a contraction factor. We also
have Lipshitz continuity in the above norms with the same
constants.
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Existence of stable manifold

We consider a Banach E space of sequences s = {vn}n≥0,
each vn ∈ En, supplied with the norm

||s|| = sup
n≥0

||vn||

E(r) ⊂ E is an open ball of radius r . Let v0 = (g̃0, 𝜇0,0). The
next theorem states that if g̃0 is held in a sufficiently small open
ball then there exists a Lipshitz continuous critical mass 𝜇c(g̃0)
such that the trajectory un+1 = fn+1(un) is uniformly bounded in
the norm on the space of sequences.
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Main Theorem:

Let L be sufficiently large, 𝜈 be sufficiently small depending on
L, then 𝜖 sufficiently small depending on L. Let v0 ∈ E0(1/32).
Let g̃0 ∈ U0(r) ⊂ R where U0(r) is an open ball of radius r
sufficiently small. Then there is a Lipshitz continuous function
h : U0(r) → R such that if 𝜇0 = h(g̃0) then there is a sequence
s = {vn}n≥0 in E(1/4) satisfying vn+1 = fn+1(vn) for all n ≥ 0.
The stable manifold is the graph WS = {g̃0,h(g̃0)}.

Corollary: the theorem implies vn ∈ En(1/4) for all n ≥ 0 and
hence |g̃n| = |gn − ḡ| ≤ 1/4𝜈ḡ. Since 0 < 𝜈 < 1/2, it follows
that gn is non-vanishing at all scales.
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Proof of the theorem is done in 2 steps inorder to circumvent
lattice artifacts.

First we iterate the RG map a large (but finite) number of times.
We come to a high scale (sufficiently fine lattice). We are then
able to prove the existence of the stable manifold starting at this
scale using a fixed point argument on the Banach space of
sequences plus an argument of Schub. Exponential
convergence of finite range fluctuation covariances to the
continuum plays an important role.
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Stable manifold has been established at a high scale. Now use
the Banach space implicit function theorem to prove that there
exists a unique unit lattice critical mass which is a C1 function
of g̃0 in a small enough neigborhood such that after a finite
number of iterations we arrive at the data of the stable manifold
at the high scale.
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