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Introduction

Everybody knows
that we are living in
an accelerated Universe...
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SNla Hubble diagramm (2012)

SNLS

Very good fit from ACDM.
Main constraint on w(z)...
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Introduction

What if SNIa evolved 7

Am(2) = K(M)

h—14
Fit the Hubble diagramm with K and A
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Introduction

Cosmic microwave radiation fluctuations
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Cosmic microwave radiation fluctuations
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Cosmic microwave radiation fluctuations
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Degeneracy in parameters allows to reproduce the C;
Blanchard et al., 2003
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This was a prediction of ACDM
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(Very) Positive point for ACDM
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Standard Cosmological model: ACDM

Parameters in ACDM

...pretty well estimated

SNla, CMB, P(k)
Q,, =0.271 +0.015
Q, = —0.002 & 0.006
w = —1.069 £+ 0.091

Sullivan et al. (2011)
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Introduction

What does it mean?

COSMOLOGY MAreanS ON

he«’ l‘lne }, !

b A4t al come i
i ?

Whee The hel|
A1a [f all come

In GR, the source of gravity is p and P:

R

Observations need P = —p

—(p+3P)R

So that the gravity strength is repulsive and proportional to R
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Introduction

Luca's answers

Everything is in the Horndeski-Deffayet Lagrangian...
Cosmology reduces to 8 (?) quantities ?

Models fitting an observed set could be degenerated...
Can we really understand the origin of acceleration ?
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Quantum Vacuum contribution

Quantum vacuum as the source of the acceleration

Arnaud Dupays (LCAR), Brahim Lamine (LKB) & AB

In progress.
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A was introduced by Einstein
Nerst (1916) and Pauli discussed the possible contribution of
zero-point energy to the density of the Universe

(— Kragh arXiv:1111.4623)

Lemaitre (1934) made the comment that A is equivalent to a
Lorentz invariant non-zero vacuum, i.e.

p=—p

So is this the origin of the acceleration 7
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Quantum Vacuum contribution

Historical aspects

Nol!

The Vacuum catastroph (Weinberg, 1989):

1 Foo
py = (0| T9)0) = / k d3k
0

highly divergent :
puke) o< ===
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Quantum Vacuum contribution

Equation of state

The pressure:

N +oo
P = (1/3) S0T0) = S5 [k

1

So that any regularization that is applied to both quantities leads

to the e.o.s.: )
p= gP
i.e. eq. (1) + eq. (2) leads to :
pv=pv=0
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Quantum Vacuum contribution

Equation of state

The density and pressure can be computed by dimensional
regularization. Still diverging... but finite terms remain with the
correct equation of state:

m#* | m?
v =——>log | —
Pv= a2 8 e

So is zero for a massless field.
(cf J.Martin 2012)
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Quantum Vacuum contribution

Casimir effect

Where is there vacuum contribution in laboratory physics?

L7
Ly
\N/ '
/
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Casimir effect
with:
px =3p <0
and ...
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Quantum Vacuum contribution

Casimir effect

Where is there vacuum contribution in laboratory physics?

L7
Ly
\N/ '
/
<~ L
Casimir effect
with:
px =3p <0
and ...
P/ =—p

Brown & Maclay (1968)
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A new scenario

Casimir effect from higher dimension

Assume there is an additional compact dimension.

The quantification of gravitational field modes in the bulk leads to
a Casimir energy (Appelquist & Chodos, 1983).
This result can be established by evaluating zero mode
contributions (Rohrlich 1984). Dispersion relation:
2
2_ 42, N

Cosmology: at high energy, only modes with A smaller than ct have
to be taken into account i.e.:

5hc [ > 2\ /2
v = k?dk k% + —
P 87T3R/w d [ Z ( - R2>

>WH n=—o0
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A new scenario

Casimir effect: the horizon

At high energy, only modes with A smaller than ct have to be taken
into account i.e.:

S5hc 5 She  [“H
Py kl..]— k<dk]...
"8 3R/ Kokl 87r3R/0 dkl-]
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A new scenario

Casimir effect: the horizon

At high energy, only modes with A smaller than ct have to be taken
into account i.e.:

5hc S5hec [“H
Py k2dk — k2dk]...
83R/ dkl.-. 87r3R/0 dkl...]

However, as long as ct < 2w R vacuum should be that of a
massless field in a 4+1D space time i.e.:

pv =20
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A new scenario

Isotropy ends...

when wy ~ %, this is the last time at which symetries ensure

py = 0. Then
S5he [ 5hc  [Y/R
= k2dk][..] — k?dk[.]=0
Py 87T3R/0 dkl..] 87T3R/0 -]
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A new scenario

Isotropy ends...

when wy ~ %, this is the last time at which symetries ensure

py = 0. Then
S5he [ 5hc  [Y/R
= k2dk][..] — k?dk[.]=0
Py 87T3R/0 dkl..] 87T3R/0 L]

Later, when ct > 27R i.e. wy ~ 0

00 1/R
p, = e / KRdk[.] = 2 / KRdk ][]
0 0

~ 8R 8m3R

[]= [i (k2+g_z>1/2]

n=—0oo

with :

Alain Blanchard DISCUSSIONS



A new scenario

Isotropy ends...

The condition :

ensured only if n =0, so:

1/R A
o Shc / 1Bdk — S5hc
0

~ 8R 3273 R5
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A new scenario

Isotropy ends...

The condition :

ensured only if n =0, so:

5hc /I/Rk3dk 5hc
8mR Jo

Pv =

In the brane:
5hc

Pv = 16m2RA
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A new scenario

Isotropy ends...

The condition :

ensured only if n =0, so:

1/R
Shc / 1Bdk — 5hc
8m3R J, 32m3R®

Pv =

In the brane:
5hc

~ 1672R?
R ~ 25um fits data. Corresponding to E ~ 1TeV

Py
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A new scenario

Conclusion

Casimir effect from quantized massless field in additional
compact dimension can produce a non-zero vacuum
contribution to the density of the universe with the correct
equation of state for a cosmological constant.
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A new scenario

Conclusion

Casimir effect from quantized massless field in additional
compact dimension can produce a non-zero vacuum
contribution to the density of the universe with the correct
equation of state for a cosmological constant.

With R ~ 25um it produces a cosmological constant as
observed.— gravitation is modified on scales < 25um

Acceleration could be the direct manifestation of the quantum
gravitational vacuum: w = —1

This would be the simplest explanation...
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