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- Galaxy clustering observables:  Angular positions + 
redshifts of the galaxies.

- Analysis of 3D maps in cartesian space requires that we 
assume a cosmology in order to estimate the observed 
power spectrum or 2-pt correlation function.

- If we bin the survey in Nz radial shells and then we use the  
Nz angular autocorrelations + Nz(Nz-1)/2 cross-correlations 
between the redshift bins, i.e. Cl(z1,z2) we can recover the 
3D clustering information, paying the price of increasing the 
number of observables and the use of potentially large 
covariance matrices.  

- Interest on the optimal bin configuration for the 2D 
analysis
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Figure 1. Top panel shows the redshift distribution in the spec-
troscopic and narrow band photo-z survey (violet). For the nar-
row band case we show how the true redshift distributions given
by Eq. (1) look like if we divide the volume in eight consecutive
redshift bins. Bottom panel shows the same but for a broadband
photometric survey divided in five bins.

2.1.2 Narrow Band Photometric survey

This case intends to be representative of a configuration such
as the one proposed for the PAU survey where a set of nar-
row band filters is expected to deliver “low-resolution” spec-
tra in a redshift range actually broader than the one con-
sidered here (Beńıtez et al. 2009; Gaztañaga et al. 2012).
Hence our narrow-band photo-z survey has accurate photo-
metric redshifts of σz = 0.004, in the same redshift range of
the spectroscopic case (0.45 < z < 0.65). The bias (b = 2)
and the shot-noise cases considered match those of Sec. 2.1.1
(and are given in Table 1).

In turn the bin configurations assumed for the 2D to-
mography are also the same as for the spectroscopic sur-
vey given in Table 2, but with bin limits that now refer to

Number of bins ∆z ∆r (h−1 Mpc)

1 0.20 468
4 0.05 113 - 122
8 0.025 56 - 61
16 0.0125 28 - 31
20 0.010 22 - 25

Table 2. Bin configurations used for the 2D tomography in the
case of the spectroscopic and the narrow band photometric survey
in a redshift range of 0.45 < z < 0.65. We show the number of
radial bins and their range of widths in redshift and comoving
distance.

photometric redshifts. Thus the true redshift distribution of
galaxies in each bin is no longer a top hat, but rather has
a small overlap with the nearest neighbouring bins due to
the photo-z error, as described in Eq. (18) below. In the top
panel of Fig. 1 we show this effect for the particular case of
8 bins.

2.1.3 Broad Band Photometric survey

On the other hand we consider a photometric survey that
uses broad-band filters such as DES 5, Pan-Starrs 6 or the
future imaging component of Euclid 7. These surveys are
expected to achieve photometric redshift estimates with ac-
curacies σz ∼ 5%/(1 + z) (Banerji et al. 2008; Ross et al.
2011). In what follows we do not consider a possible red-
shift evolution of the photometric error but instead assume
a conservative value of σz = 0.1.

Typically optical photo-z surveys are fainter and sample
a much larger number of galaxies than spectroscopic ones,
hence we assume a broader redshift range, 0.4 < z < 1.4,
and only a low shot-noise case as given in Table 1. For the
redshift range assumed this implies ∼ 150 × 106 galaxies.
Table 3 show the bin configurations we have considered for
this case. While in the previous cases we have assumed the
bias is constant with redshift (because of the narrow redshift
range), for the broadband photometric survey we introduce
an evolution following (Fry 1996),

b(z) = 1 + (b� − 1)
D(z�)
D(z)

(2)

where b� = 2 is the bias at z� = 1. In turn for the evolution
of bias we have always assume the fiducial cosmology.

2.2 Spatial (3D) power spectrum

Since we are only interested in quasi-linear scales we as-
sume the following simple model for the 3D galaxy power
spectrum in redshift space,

Pg(k, µ, z) = (b+ fµ2)2 D2(z)P0(k)e
−k2σ2

t (z)µ
2

, (3)

5 www.darkenergysurvey.org
6 pan-starrs.ifa.hawaii.edu
7 www.euclid-imaging.net
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There are Nz angular power spectrum, one per radial

bin. But if we want to study all the clustering information

we should add to our observables the Nz(Nz − 1)/2 cross-

correlations between different redshift bins. These are given

by

Cij
� =

2

π

�
dk k2P (k)

�
Ψi

�(k) +Ψi,r
� (k)

��
Ψj

�(k) +Ψj,r
� (k)

�

(15)

Therefore, we are considering Nz(Nz + 1)/2 observable an-

gular power spectra when reconstructing clustering informa-

tion from tomography using Nz bins.

2.3.1 Radial selection functions

The radial selection functions φi in Eqs. (12,15) are the prob-

ability to include a galaxy in the given redshift bin. There-

fore, they are the product of the galaxy redshift distribution

and a window function that depends on selection character-

istics (e.g binning strategy),

φi(z) =
dNg

dz
W (z) (16)

where dNg/dz is given by Eq. (1). We consider two different
W (z) depending on the kind of redshifts estimation. In an

spectroscopic redshift surveyW (z) is a top hat function with

the dimensions of the redshift bin. On the other hand, if we

include the effect of photo-z then

Wi(z) =

�
dzpP (z|zp)Wi(zp), (17)

where zp is the photometric redshift and P (z|zp) is the prob-
ability of the true redshift to be z if the photometric estimate

is zp. For the photometric surveys we assume a top-hat se-

lection W (zp) in photometric redshift and that P (z|zp) is

gaussian with standard deviation σz. This leads to,

φi(z) ∝
dNg

dz

�
erf

�
zp,max − z√

2σz

�
− erf

�
zp,min − z√

2σz

��
(18)

where zp,min and zp,max are the (photometric) limits of each

redshift bin considered. In the equation above and through-

out this paper we assume σz is constant in redshift.

2.3.2 Covariance matrix of angular power spectra

The covariance between angular spectra of redshift bins ij
and redshift bins pq is given by

Cov�,(ij)(pq) =
Cobs,ip

� Cobs,jq
� + Cobs,iq

� Cobs,jp
�

N(l)
(19)

where N(�) = (2� + 1)∆�fsky is the number of transverse

modes at a given � and ∆� is typically chosen to make

Cov block-diagonal (Cabré et al. 2007; Crocce, Cabré, &

Gaztañaga 2011). For simplicity we consider an ideal full

sky survey and use ∆� = 1 and fsky = 1. In this way we

avoid correlations between different modes in the covariance

matrix, which is diagonal with respect to � (which is con-

sistent with assuming the 3D covariance is also diagonal in

k).
Therefore, for each � we define a matrix withN(N+1)/2

elements, where N is the number of observables discussed in

Sec. 2.3, to account for the covariances and cross-covariances

of auto and cross-correlations. In order to include observa-

tional noise we add to the auto-correlations in Eq. (19) a

shot noise term

Cobs,ij
� = Cij

� + δij
1

Ngal(j)

∆Ω

(20)

that depends on the number of galaxies per unit solid an-

gle included in each radial bin. We define the χ2
2D assuming

the observed power spectrum Cobs
� correspond to our fidu-

cial cosmological model discussed in Sec. (2.5), while we call

Cmod
� the one corresponding to the cosmology being tested,

χ2
2D =

�

�

�
Cobs

� − Cmod
�

�†
Cov

−1
�

�
Cobs

� − Cmod
�

�
. (21)

Notice that each term in the sum is the product of Nz(Nz +

1)/2-dimensional vectors Cij
� where (ij) label all possible

correlations of Nz redshift bins, and a Nz(Nz + 1)/2 ×
Nz(Nz + 1)/2 matrix corresponding to their (inverse) co-

variance.

Recall that we use the exact calculation of C� using

CAMB sources, rather than the well-known Limber approxi-

mation (Limber 1954).

2.4 Nonlinear Scales

Both χ3D and χ2D depend sensibly on the maximum kmax

(or minimum scale) allowed in the analysis. In this paper,

we chose to fix kmax for all the bins and relate it to angu-

lar scales through �max = kmax r(z̄), where z̄ is the mean

redshift of the survey. In our fiducial cosmology we find

r(z̄) = 1471h−1
Mpc in the redshift range 0.45 < z < 0.65

and r(z̄) = 2219h−1
Mpc when 0.4 < z < 1.4. In addition,

we do not consider a dependence of lmax with redshift (i.e.

same �max for all redshift bins and their cross-correlation).

For the largest scale we use kmin = 10
−4 hMpc

−1
in

the 3D analysis and �min = 2 in the angular case. We have

not found any significant dependence on kmin or �min.

2.5 Cosmological model and growth history

We assume the underlying cosmological model to be a flat

ΛCDM universe with cosmological parameters w = −1, h =

0.73, ns = 0.95, Ωm = 0.24, Ωb = 0.042 and σ8 = 0.755.
These parameters specify the cosmic history as well as the

linear spectrum of fluctuations P0. In turn, the growth rate

can be well approximated by,

f(z) ≡ Ωm(z)γ (22)

and γ = 0.545 for ΛCDM. Consistently with this we obtain

the growth history as

D(z) ≡ exp

�
−
� z

0

f(z)
1 + z

dz

�
(23)

(where D is normalized to unity today). The parameter γ is

usually employed as an effective way of characterizing mod-

ified gravity models that share the same cosmic history as

GR but different growth history (Linder 2005). In part of
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- Considered model for 3D and 2D power spectra:
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and γ = 0.545 for ΛCDM. Consistently with this we obtain

the growth history as
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σt(z) =
cσz

H(z)

- Covariances given by sample variance + shot noise



- Spectroscopic Survey
- Narrow redshift range 0.45<z<0.65

- Non bias evolution 

- Narrow redshift range 0.45<z<0.65

- Non bias evolution 

- Gaussian photo-z: σz = 0.004

- Broad Band Photometric Redshift

- Broad redshift range 0.4<z<1.4

- Linear bias evolution 

- Gaussian photo-z: σz = 0.1

- Narrow Band Photometric Redshift

“PAU-like”

“DES-like”

 Full sky assumption in all of them
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Figure 2. Spectroscopic survey & bias fixed. Top panels show FoMΩm (2D) and FoMΩm (3D) as a function of the number of bins in
which we divide the survey for the analysis (left panel for a low shot-noise survey and right to a high shot noise). Dashed line corresponds
to the 3D analysis, dotted to the 2D tomography using only auto-correlations and solid to auto plus cross correlations. Different colors
correspond to different minimum scales, as detailed in the bottom panel inset labels. Bottom panels show the ratio of FoMΩm (2D) (auto
plus cross) and FoMΩm (3D) as a function of the bin width ∆r normalized by the minimum scale assumed in the 3D analysis. Remarkably
the recovered constrains from full tomography match the 3D ones for ∆r ∼ λ3D

min for all λ3D
min.

narrower bins, we also include information of radial modes

by adding the cross-correlation between different redshift

bins (illustrated by the solid line in Fig. 2 that corresponds

to the total FoM from auto plus cross-correlations).

Note how adding the cross-correlations to the autocor-

relations (solid lines in Fig. 2) only increases the FoM mod-

erately as compared to the autocorrelation result (dotted

line). This reflects the fact that there are less radial modes

than transverse ones while the shape of P (k), where much

of the Ωm constrain comes from, is isotropic.

The bottom panels of Fig. 2 show the ratio of the 2D

and 3D FoM’s against the bin width (instead of Nz) now

normalized by the minimum scale used in the 3D analysis

λ3D
min =

2π
kmax

(for three different kmax as before). We find

FoM(2D) ∼ FoM(3D) when λ3D
min ∼ ∆r for all λ3D

min. More

precisely:

∆r = c∆z/H(z) � 0.8 λ3D
min (29)

Basically this means that the 3D clustering information

is recovered once the binning is such that the radial bin

width equals the minimum scale probed in the 3D analysis.

In such case one is able to constrain the parameters without

loss of information compared to three dimensional analysis.

Lastly, note that including shot noise does degrade the

FoM as shown in the right panel of Fig. 2. However this does

not change the conclusions above.

3.1.2 Bias free case

We now turn to the bias free case we assume we know per-

fectly the shape of the power spectrum so all the parameters

are fixed at their fiducial values except the bias b and the

growth index γ.
In Fig. 3 we plot the combined FoM obtained for bias b

and growth index γ, and the FoM of each of these 2 parame-

ters marginalized over the other, as a function of the number

c� 2012 RAS, MNRAS 000, 1–10

Spectroscopic survey: Ωm

- Same constrains than in 3D 
analysis when the width of 
the redshift bins is similar to 
the minimum scale that we 
have included in the 3D 
analysis.

- In this case, most of the 
information comes from the 
shape of the power spectrum.  
T h e r e f o r e , n o m u c h 
difference if we add the radial 
modes including the cross-
correlations between redshift 
bins or not. 
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Figure 3. Spectroscopic survey & bias free. Top panels show the combined b−γ constrain resulting from 3D clustering (dashed lines) or
2D tomography considering as observables only auto correlations in redshift bins (dotted lines), or adding to this the cross-correlations
(solid lines). The x-axis corresponds to the number of radial bins considered in the analysis. Different colors label different minimum
scales assumed (same values and labels as in Fig. 2). Middle and bottom correspond to individual b or γ constrains after marginalization
over γ or b respectively. As for the bias fixed we find that 3D information can be recovered but now the role of radial modes is much for
important because RSD (our bias free case) relies on the relative clustering amplitude of radial and transverse mode.

of redshift bins considered in the analysis (for a fixed survey

redshift range 0.45 < z < 0.65). As in Fig. 3, dashed line

corresponds to the 3D analysis, dotted line to the 2D tomog-

raphy using only auto-correlations
9
and solid line to the full

2D case where we add auto and cross angular correlations.

We find a similar trend for the evolution of the dif-

ferent FoM of the γ and b parameters (either combined or

marginalized) than when varying Ωm. Constrains given by

spatial power spectrum are stable while constrains from pro-

jected power spectrum in the bins increases with the num-

ber of bins in which we divide the survey. However there

is a substantial difference in regards to the contribution of

radial modes. Now the contribution of cross-correlations is

very large (compare solid to dotted lines in the left panel of

9 We note that we refer here to observables. The covariance of the
auto-correlations does include cross-correlations of redshift bins,
see Eq. (19).

Fig. 19). In fact, without cross-correlations we do not recover

all the 3D information. This is because redshift space distor-

tions (i.e. our bias free case) is based in the relative cluster-

ing amplitude between modes parallel and transverse to the

line of sight. The contribution from radial modes is much

more evident for the γ constrain (FoMγ and then FoMbγ)

because γ is basically what quantifies this relative clustering

amplitude (in addition f ≡ Ω(z)γ depends on redshift while

we assume bias does not).

As we have done with FoMΩm we show in Fig. 4 the

dependence of the ratios between 2D and 3D FoM with re-

spect to λ3D
min/∆r. We find that both analyses produce the

same constrains when the mean redshift bin width is slightly

smaller than λ3D
min (and we use auto and cross 2D correla-

tions). Comparing these results with the bias fixed case, it

seems that for the RSD probe we need to extract more radial

information. In this case:

∆r = c∆z/H(z) � 0.6 λ3D
min (30)

c� 2012 RAS, MNRAS 000, 1–10
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Figure 4. Spectroscopic survey & bias free. Top panels show the ratio between combined FoMbγ (2D) (auto plus cross correlations) and

FoMbγ (3D) with respect to λ3D
min = 2π/kmax, normalized by the mean width of the redshift bins ∆r in the analysis. Middle and bottom

panels show the same but for ratios of FoMb and FoMγ , respectively. We show results for Low Shot Noise and High Shot Noise in left

and right panels, respectively. To reconstruct RSD information in practice, one need bins slightly smaller than λ3D
min.

as compared to 0.8 in Eq. (29). This means that we have
to include more radial bins when developing the fit to an-
gular correlations than when only fitting Ωm if we want to
match the constrains from 3D clustering. This in practice
corresponds to using slightly narrower redshift bins.

3.2 Photometric redshifts

In this section we show how the results found in the pre-
vious section extend to the photometric surveys detailed in
Sec. 2.1.2 and 2.1.3. For concreteness we will only consider
the bias fixed study where all cosmological parameters are
fixed at their fiducial values except for Ωm.

3.2.1 Narrow-band photometric survey (PAU-like)

In top panels of Fig. 5 we show the Ωm constrains (bias
fixed case) from 3D and 2D analysis (dashed and solid lines
respectively) in a narrow band photometric survey with
σz = 0.004. In bottom panels we show how the ratio be-
tween 2D and 3D FoM depends on the ratio between the
minimum scale of the 3D analysis and the mean comoving
width of radial shells.

We basically find the same result than in the spec-
troscopic survey. Constrains from projected or unprojected
analysis are equivalent when the mean width of the radial
shells (set by our binning strategy) is equal to the minimum
scale considered in 3D analysis λ3D

min. The absolute value of
each FoM is degraded with respect the FoM reached with an
spectroscopic survey because photo-z errors dilute clustering

c� 2012 RAS, MNRAS 000, 1–10

Spectroscopic survey: RSD (b & γ)

- In this case, we need to include the cross correlations if we want to 
recover 3D information. 

- Also, we need more bins than in the case in which we basically measure the 
shape of P(k).
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Figure 5. Narrow band photometric survey (PAU-like) & bias fixed. Top panels show figures of merit FoMΩm (2D) (auto plus cross
correlations) and FoMΩm (3D) with respect to the number of bins for kmax = {0.05, 0.1, 0.2} hMpc−1 (red, violet and orange colours).
We plot 2D figures of merit with solid lines and 3D figures of merit using dashed lines. Bottom panels show the ratio between both
figures of merit with respect to minimum scale used in 3D analysis, λ3D

min = 2π/kmax, divided by the mean width ∆r of the redshift
bin. We conclude that we get similar constrains from 2D and 3D analysis when ∆r is close to λ3D

min and that in terms of bind width
optimization an spectroscopic and photometric analysis are almost identical.

in the radial direction. This broadens the selection functions
in the 2D analysis and introduces a cut off already at quasi-
linear scales in the 3D P (k). In both cases the consequence
is that signal to noise reduces and thus errors of observables
degrade. But if we compare Fig. 2 and Fig. 5 we realize that
the spectroscopic survey and a photometric one with very
accurate redshifts are almost indistinguishable in terms of
bin width optimization.

3.2.2 Broad-band photometric survey (DES-like)

If we now consider a deep survey (iAB < 24) with redshifts
estimated by photometry with broadband filters (σz = 0.1)
and use the full catalogue with 0.4 < z < 1.4, we obtain
FoM for Ωm as shown in the top left panel of Fig. 6.

Now the large photo-z error removes most of the radial
information, thus all FoMΩm are degraded with respect to
spectroscopic and narrow-band photometric surveys. In ad-

dition, we find that FoMΩm saturates with the number of
redshift bins included in the survey for every kmax. This ef-
fect is produced by the overlapping between true galaxy dis-
tributions at different bins induced by photo-z transitions.

We also find that the configuration in which spatial and
projected analysis constrain Ωm equally corresponds to the
same number of bins for all the kmax considered. Therefore,
as we can see in bottom left panel of Fig. 6, the scale given by
λ3D
min is not ruling the dependancies. Instead it is the scale of

the photometric redshifts which is affecting both clustering
analysis. This is shown in the right panel of Fig. 6 where
we plot the ratio of figures of merit (2D vs. 3D) against a
new scaling : σr/∆r. We find that for a DES-like case, with
the assumption of σz = 0.1, one needs roughly 5 bins for
the 2D tomography to optimally recover the 3D clustering
information. This corresponds to:

∆z � 2σz (31)

With a lower σz the number of bins will increase.
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- I f t h e s c a l e o f t h e 
photometr ic redsh i f t i s 
smaller than the minimum 
scale in which we trust in the 
3D analysis we find the same 
r e s u l t s t h a n i n t h e 
spectroscopic survey. 

Narrow band photometric survey (PAU-like): Ωm
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Figure 6. Broad band photometric survey (DES-like) & bias fixed. Top right panel shows the figures of merit FoMΩm (2D) and FoMΩm

(3D) with respect to the number of bins Nz used in the analysis, for kmax = {0.05, 0.1, 0.2}hMpc
−1

(red, violet and orange colours,

respectively). 2D FoM are plotted with solid lines and 3D with dashed lines, and we only consider low shot noise. Bottom left panel

show the ratio of both figures of merit with respect to λ3D
min = 2π/kmax divided by ∆r. The equivalence of the recovered constrains now

changes for different kmax. However when this ratio is plotted with respect to the comoving scale of photo-z, σr (normalized by ∆r)
the different λmin lines cross each other for ∆r ∼ 2σr. This implies that is σr what sets the equivalence of 3D and 2D tomography. In

particular, for a DES-like survey one recovers the 3D constrains from 2D analysis using 5 redshift bins.

4 CONCLUSIONS

In our analysis, we have studied the optimal redshift bin
width that allows to recover the full 3D clustering constrains
from tomography of angular clustering. We explore three
surveys with different properties: a spectroscopic and a nar-
row band photometric survey in a redshift range 0.45 < z <

0.65 and a deeper broadband photometric survey that cov-
ers redshifts in the range 0.4 < z < 1.4. We have considered
how well we can recover the shape of the power spectrum
by allowing Ωm to be free and fixing the amplitude of clus-
tering, including bias. We call this the bias fixed case. We
have also explored how to recover the information from red-
shift space distortions (RSD), by measuring the anisotropic
amplitude of the power spectrum allowing for both a free
bias and a free growth index. This is the bias free case. We
restrict our study to quasi-linear scales and we only consider
scales above some minimum scale λ3D

min = 2π/kmax, where
k < kmax and kmax is either 0.05, 0.1 or 0.2 h/Mpc. In an-
gular space this corresponds to l < lmax � kmaxr(z), where
r(z) is the radial distance to the mean redshift bin.

In all the cases, we have found that the 3D analysis has
no dependance on the number of redshift bins, in contrast
to the 2D tomographic analysis which depends strongly on
the number of redshift bins or equivalently on redshift bin
widths. In the bias fixed case we have found that we recover
all the information with 2D tomography when the width
of the redshift bins that we use to do the tomography is

similar to the minimum scale used in the 3D observables,
λ3D
min. More precisely we find that the optimal bin width is

(see Fig.2 and Eq. (29)): ∆r = c∆z/H(z) � 0.8 λ3D
min

When studying RSD, i.e. in the bias free case, we see
that if we want to recover the 3D constrains on RSD, we need
radial shells which are slightly smaller, i.e. ∆r � 0.6λ3D

min

(see Fig.4), which means that we would need more bins than
in the case in which we just want to measure the shape
of P(k). In addition we find decisive to include in the ob-
servables the cross correlation between redshift bins. This
is expected because in the RSD case we are comparing the
clustering in radial and transverse direction to the light of
sight and therefore information from radial modes should be
more accurate than in the case in which we just study the
isotropic shape content of the power spectrum. Also note
how we can not recover the 3D information from RSD when
we just use autocorrelations (eg see dotted line in Fig.3).

Finally, we have seen than, in the bias fixed case, a
narrow band photometric survey is almost equivalent to an
spectroscopic survey and we therefore reach the same con-
clusions with respect to the optimal bin width for the tomog-
raphy of galaxy counts. In the case of a deeper broadband
photometric survey we find that the typical uncertainty in
photometric redshifts σz severely limits the accuracy of the
radial information for both 3D and 2D cases. In this case
the information recovery does not depend strongly on λ3D

min,
because this is smaller than the scale corresponding to the
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4 CONCLUSIONS

In our analysis, we have studied the optimal redshift bin
width that allows to recover the full 3D clustering constrains
from tomography of angular clustering. We explore three
surveys with different properties: a spectroscopic and a nar-
row band photometric survey in a redshift range 0.45 < z <

0.65 and a deeper broadband photometric survey that cov-
ers redshifts in the range 0.4 < z < 1.4. We have considered
how well we can recover the shape of the power spectrum
by allowing Ωm to be free and fixing the amplitude of clus-
tering, including bias. We call this the bias fixed case. We
have also explored how to recover the information from red-
shift space distortions (RSD), by measuring the anisotropic
amplitude of the power spectrum allowing for both a free
bias and a free growth index. This is the bias free case. We
restrict our study to quasi-linear scales and we only consider
scales above some minimum scale λ3D

min = 2π/kmax, where
k < kmax and kmax is either 0.05, 0.1 or 0.2 h/Mpc. In an-
gular space this corresponds to l < lmax � kmaxr(z), where
r(z) is the radial distance to the mean redshift bin.

In all the cases, we have found that the 3D analysis has
no dependance on the number of redshift bins, in contrast
to the 2D tomographic analysis which depends strongly on
the number of redshift bins or equivalently on redshift bin
widths. In the bias fixed case we have found that we recover
all the information with 2D tomography when the width
of the redshift bins that we use to do the tomography is

similar to the minimum scale used in the 3D observables,
λ3D
min. More precisely we find that the optimal bin width is

(see Fig.2 and Eq. (29)): ∆r = c∆z/H(z) � 0.8 λ3D
min

When studying RSD, i.e. in the bias free case, we see
that if we want to recover the 3D constrains on RSD, we need
radial shells which are slightly smaller, i.e. ∆r � 0.6λ3D

min

(see Fig.4), which means that we would need more bins than
in the case in which we just want to measure the shape
of P(k). In addition we find decisive to include in the ob-
servables the cross correlation between redshift bins. This
is expected because in the RSD case we are comparing the
clustering in radial and transverse direction to the light of
sight and therefore information from radial modes should be
more accurate than in the case in which we just study the
isotropic shape content of the power spectrum. Also note
how we can not recover the 3D information from RSD when
we just use autocorrelations (eg see dotted line in Fig.3).

Finally, we have seen than, in the bias fixed case, a
narrow band photometric survey is almost equivalent to an
spectroscopic survey and we therefore reach the same con-
clusions with respect to the optimal bin width for the tomog-
raphy of galaxy counts. In the case of a deeper broadband
photometric survey we find that the typical uncertainty in
photometric redshifts σz severely limits the accuracy of the
radial information for both 3D and 2D cases. In this case
the information recovery does not depend strongly on λ3D

min,
because this is smaller than the scale corresponding to the

c� 2012 RAS, MNRAS 000, 1–10

- In this case, photo-z scale is larger than the minimum scale of the 3D 
analysis and it is degrading both analysis. 

- The number of bins needed in the 2D analysis does not depend strongly on 
that minimum scale. In this case, this number is 5 (bins).

Broad band photometric survey (DES-like): Ωm



Conclusions

- When we observe galaxy we measure their redshift and angular 
position. If we want to use the 3D map we have to assume a cosmology 
to convert this to distances. In order to avoid that, we can bin the survey 
volume in radial shells and use angular correlations (auto+cross).

- Recovery of 3D clustering information in spectroscopic and 
narrow band photometric surveys in the case of Ωm when the 
width of the redshift bins is similar to the minimum scale used in the full 
3D analysis. Most of the information is given by the autocorrelations.

- When studying RSD we find that in order to recover 3D constrains we 
have to include all the cross-correlations because radial information is 
more important in this case than when most information comes from the 
shape of the power spectrum. This is important in order to do a full 
analysis of RSD + WL in 2D.

- For a broad band photometric survey, radial information is 
degraded in 3D and 2D cases and we the width of the z-bins that allow 
us to recover the 3D clustering information is not strongly related with 
the 3D minimum scale because photo-z scale is greater than the latter. 


