MODELING DARK ENERGY WITH GENETIC ALGORITHNS

Benasque 2012 9th August 2012

arXiv:1205.0364 Juan García-Bellido IFT-UAM/CSIC Madrid

Outline/Summary

In collaboration with Savvas Nesseris [1205.0364]

- A decade since the discovery of acceleration, and we still don't know what Dark Energy is!
- We need a model-independent and bias-free reconstruction of the observables that we deduce from data.
- We propose a new method: Genetic Algorithms
- Error estimation with Path Integral formalism
- Show how it works for SnIa, BAO & growth data
- Conclusions: ACDM works pretty well...

How can we infer the DE dynamics?

- Characterize observables as functions of redshift
- Operate on functions (differentiate, integrate)
- Search for relationships between functions
- Derive other physical quantities from them
- Look for consistency relations
- Only then compare with Dark Energy models

Genetic Algorithm does that for you!

Evolution at work!

How does evolution work?

- Individuals have a genome (a pool of genes)
- The genome mutates and mixes (via sex)
- There is a rate of mutation and crossover
- Next generation's genome is different
- Natural selection "crops the tree": speciation
- Only a few individuals (species) survive
- Some species live for a long time (survival)

How do Genetic Algorithms work?

Population (individuals)

Generations (genome)

Functions (cont. & differen.) **Grammar** (poly, exp, trig, log)

Fitness (survival) χ^2 (minimized)

Mutations (rand.) Operations (rand.)

Crossover (sex) Recombination

Lineage (species) Convergence (limit)

How do Genetic Algorithms work?

- The grammar and the allowed operations determines how the Genetic Algorithm works
- There are two important parameters:
 - The mutation rate (5 10%) is the probability that an arbitrary part of a genome changes
 - The selection rate (10 20 %) is the fraction of individuals that finally produce offsprings
- If rates are larger then GA may not converge
- If rates are smaller then GA converges too slowly
- Important: jumps between different minima, in order to explore the whole space of functions

Advantages of Genetic Algorithms

- No "a priori" assumptions on the DE model (e.g. # free parameters)
- In general DE models are not well understood (parameter space too large or too complex)
- OUR GOAL: minimize a functional $\chi^2(f(z))$ thru stochastic processes based on GA evolution.
- Similar to a Path Integral, but where dynamics is dictated by the data w/o `a priori' assumptions.
- Use the DATA to find the MODEL
- The end result doesn't have any free parameters

- Assume our grammar includes basic functions: polynomials, trigonometric, exponentials, logs, ...
- 1.- Set up random initial population M(0), e.g.

$$f_{GA,1}(x) = \ln x$$
$$f_{GA,2}(x) = -1 + x + x^2$$
$$f_{GA,3}(x) = \sin x$$

[Note: The number of functions in a generic population is typically of a few hundreds!]

2.- Given some data points w/ errors (x_i, y_i, σ_i) , the algorithm measures the fitness of each function

$$\chi^{2}(f) \equiv \sum_{i=1}^{N} \left(\frac{y_{i} - f(x_{i})}{\sigma_{i}} \right)^{2}$$

In our example:

$$\chi_1^2(x) = 200$$

 $\chi_2^2(x) = 500$
 $\chi_3^2(x) = 1000$

3.- Selection is done via "tournament method", sorting population w.r.t. fitness χ^2 each individual

A fixed % total population, adjusted by selection rate, are chosen out (in our example only 2 of 3).

Reproduction = crossover & mutation

- **Crossover** will randomly combine parts of parent solutions

$$f_{GA,1}(x) \oplus f_{GA,2}(x) \rightarrow (\bar{f}_{GA,1}(x), \bar{f}_{GA,2}(x), \bar{f}_{GA,3}(x)) \\ = \left(\ln(x^2), -1 + \ln(x^2), -1 + \ln(x)\right)$$

- Mutation will randomly change the functions, according to mutation rate, e.g. exponent of some terms or the value of a coefficient.

$$\bar{f}_{GA,3}(x) = -1 + \ln(x) \to -1 + \ln(x^3)$$

Then the next generation becomes:

$$M(1) = (\bar{f}_{GA,1}(x), \ \bar{f}_{GA,2}(x), \ \bar{f}_{GA,3}(x)) = (\ln(x^2), -1 + \ln(x^2), -1 + \ln(x^3))$$

3.- Back to beginning: evaluate fitness χ^2 of each individual:

 $\chi_1^2(x) = 150, \quad \chi_2^2(x) = 300, \quad \chi_3^2(x) = 400$

Even after a single generation, the combined χ^2 of each individual has decreased significantly!

It usually takes ~ 100 generations to reach a reasonable χ^2 and ~ 500 generations to converge to a minimum χ^2 , and ~ 1000 generations until a predetermined goal has been reached.

Best χ^2 **function** $f_{best \chi^2}(x) = x/(x^x + 2x/(4x+1))$

Error estimation for GAs

Construct a functional $\mathcal{L} = \mathcal{N} \exp\left(-\chi^2(f)/2\right)$

where
$$\chi^2(f) \equiv \sum_{i=1}^N \left(\frac{y_i - f(x_i)}{\sigma_i}\right)^2$$

Properly normalized functional

$$\int \mathfrak{D}f \ \mathcal{L} = \int \mathfrak{D}f \ \mathcal{N} \exp\left(-\chi^2(f)/2\right) = 1$$

where $\mathcal{N} = \left((2\pi)^{N/2} \prod_{i=1}^N \sigma_i\right)^{-1}$

Error estimation for GAs

The 1σ error around the best-fit function (BFF)

$$CI(x_{i}, \delta f_{i}) = \int_{f_{bf}(x_{i})-\delta f_{i}}^{f_{bf}(x_{i})+\delta f_{i}} df_{i} \frac{1}{(2\pi)^{1/2} \sigma_{i}} \exp\left(-\frac{1}{2}\left(\frac{y_{i}-f_{i}}{\sigma_{i}}\right)^{2}\right)$$
$$= \frac{1}{2}\left(\operatorname{erf}\left(\frac{\delta f_{i}+f_{bf}(x_{i})-y_{i}}{\sqrt{2}\sigma_{i}}\right) + \operatorname{erf}\left(\frac{\delta f_{i}-f_{bf}(x_{i})+y_{i}}{\sqrt{2}\sigma_{i}}\right)\right)$$
$$= \operatorname{erf}\left(1/\sqrt{2}\right) \qquad \text{at each point } \mathbf{x}_{i}$$

Then minimize to get $\delta f(x) - a$ band around BFF

$$\chi_{CI}^2(\delta f_i) = \sum_{i=1}^N \left(CI(x_i, \delta f_i) - \operatorname{erf}\left(1/\sqrt{2}\right) \right)^2$$

Concrete Example for DE

Data sets and models

Dataset	Information	FRW/DE models	LTB models
			2
SnIa	$d_L(z)$	$(1+z)\int_0^z rac{dx}{H(x)/H_0}$	$(1+z)^2 A(r(z), t(z))$
BAO	$H(z), d_A(z)$	$\frac{l_{BAO}(z_{drag})}{D_V(z)}$	$(1+z)\xi(z)\frac{l_{BAO}(r_{\infty},t_0)}{D_V(z)}a$
Growth-rate $f = \frac{dln(\delta)}{dlna}$	$\gamma, \Omega_{ m m}(a)$	$\Omega_{\mathrm{m}}(a) = rac{\Omega_{0\mathrm{m}}a^{-3}}{H(a)^2/H_0^2}$	$(1 - \Omega_M^{-1}(r)) \frac{A(r,t)}{r}$ b

^{*a*}where in both cases $D_V(z) = \left((1+z)^2 D_A(z)^2 \frac{z}{H(z)}\right)^{1/3}$ and $H(z) = H_L(z)$ for the LTB ^{*b*}where $\Omega_M(r)$ is the mass radial function.

Genetic Algorithm data functions

SnIa – luminosity distance

$$GA_1(z) \equiv D_L(z) = d_L(z) / H_0^{-1}$$

BAO – angular diameter distance

$$d_{z}(z) = \frac{l_{BAO}(z_{drag})}{D_{V}(z)} = \frac{l_{BAO}(\Omega_{0m} = 1)}{z}GA_{2}(z)$$

Growth rate of matter structures

$$f\sigma 8(z) \equiv f(z) \cdot \sigma_8(z) = GA_3(z)$$

Genetic Algorithms & SnIa data

Genetic Algorithms & SnIa data

Ζ

Genetic Algorithms & BAO data

Genetic Algorithms & BAO data

Ζ

Genetic Algorithms & growth data

Genetic Algorithms & growth data

Ζ

$$q(z) \equiv -1 + \frac{d \ln H(z)}{d \ln(1+z)}$$

$$w(z) = -\left(1 - \frac{d\ln H^2(z)}{d\ln(1+z)^3}\right) \left(1 - \Omega_{\rm m}(z)\right)^{-1}$$

Conclusions

- A decade since the discovery of acceleration, we still don't know what Dark Energy is!
- We need a model-independent and bias-free reconstruction of the observables that we deduce from data.
- We propose a new method: Genetic Algorithms
- Error estimation with Path Integral formalism
- Show how it works for SnIa, BAO & growth data
- ΛCDM works pretty well...
- Find slight deviations at 3σ on $\Omega_m G_{eff}$ @ z=0.5 and the Etherington relation