

KiDS	5	Som	e n	uml	oers	5			1.5.5	-t
-0-	0	1500 sa.de	ea. of u	ari (~400	n VST)		filtei	r Exp (s	O16	UKIDSS
ratory		+ ZYJHK (~200n VISTA)					Z	- MA	23.1	-
	Ø	Deeper in r, with good seeing						400	22.4	+1.6
serv	0	Match seeing distribution on Paranal					0 ⁶⁵	400	22.2	+1.8
Obs	0	VST 2m deeper than SDSS (1) Shallower than CFHTLS)					Η	300	21.6	+1.6
en							К	500	21.3	+1.3
Leid	0	VISTA 1.5	m deep	er A	0.9-1.1" (20%)	f	ilter	Exp time (s)	Medn seeing (")	5-о 2" АВ
		Moon	SIL	(20%)			u'	900	1.0	24.8
		Dark	r'	g'	u'		g′	900	0.8	25.4
		() (/)	-	11-	-		r'	1800	0.7	25.2
S)		nt (35%)	i'	i'	i'		i′	1080	0.75	24.2

KiD5

Image Quality

- Main limiting factor for weak lensing measurements (S/N and systematics)
- Key design driver of OmegaCAM (VST camera)
 - active optics (M1 & M2) with online wavefrom sensing in CCD camera
 - @ 2-star guiding
 - Constant plate scale
 - ø small pixels (0.21")
 - well matched to Paranal seeing

Astro-WISE

- Developed at Groningen University ctr OmegaCEN (Valentijn et al.)
- archive+processing environment
- distributed
- all calibrations traceable
- 'make' paradigm
- processing engine made of well-established code:
 SExtractor, Swarp, ... with lots of own additions

KiDS

KiDS: a Shear tomography survey Intro measuring shear PSF Gaussianization photometric redshifts measuring magnification status

Push and squeeze Image: State of the state o

around massive foreground objects

PSF Gaussianization

Construct appropriate spatially varying kernel
 (shapelet formalism handy)

- Ø PSF-Gaussianized images very useful
 - ø shear measurement (SNAP-G; KSB should work!)
 - analytic matched-aperture photometry from different bands, instruments, plate scales, ...

 - accurate astrometry (no lopsidesness)

KiDS

Magnification mapping

- *∞* Lensing magnification is $[(1-\kappa)^2 \gamma^2]^{-1} \approx 1+2\kappa$
- Systematic modification of apparent lum. fn.
- Angular (anti-)correlation lenses x sources
- Can use unresolved sources as well

KiDS		Status
irvatory		The competition for KDDS A parches in OCMA _5 5055 at of 3022 de 64 3 542 cs
den Obse		The competitor for 505 K jusc bes in 0 CMJ g 505 S is of 302 d6 Gt 31 52 c3
Lei	RIDS-N	
Iniversited		The completion for 60546 patches in 05441 ; 5555 and 7502 406 408 (5.552.8)

Looking forward to:

- g-g lensing with excellent tomography
 - Allo flattening at few 100kpc radii
 - ⌀ intrinsic alignments
 - ø magnification mapping
- ø group lensing (GAMA catalogues!)
- cluster catalogues, strong lensing features
- strong lensing

KiD5

Leiden Observatory

+++, incl high-z qso's, brown dwarfs, Galactic halo, environmental studies of galaxies and AGN, ...

