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Regime of interest 
‣ The transition from linear to quasi-linear regime

How far, beyond 0.1 h Mpc-1, can we go 
from first principle calculations ?



A self-gravitating 
expanding dust fluid
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Francis Bernardeau IPhT Saclay

A self-gravitating expanding dust fluid

The Vlasov equation (collisionless Boltzmann equation) - f(x,p) 
is the phase space density distribution - are fully nonlinear.

This is what N-body codes aim at simulating...
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‣ Data show that large-scale structure has formed from small density inhomogeneities since time of 
matter dominated universe with a dominant cold dark matter component

Peebles 1980; Fry 1984
FB, Colombi, Gaztañaga, 
Scoccimarro, Phys. Rep. 
2002

The rules of the game: 
single flow equations

+ expansion with respect to initial density fields

�(x, t) = �(1)(x, t) + �(2)(x, t) + . . .
GR corrections effects:
Yoo et al., PRD, 2009...

...  X



A reformulation of the theory with a FT like approach
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Scoccimarro ‘97

doublet linear propagator
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‣ Linear solution
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‣ Dynamical equations
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‣ Diagrammatic representation

Note : detailed effects of baryons versus DM can be taken into account (Somogyi & 
Smith 2010; FB, Van de Rijt, Vernizzi '12) with a 4-component multiplet, for neutrinos it 
is more complicated...

Pαβ (k) =
k

Ψα(1)(k) Ψβ(1)(k)

Pα'β' (k,η0) 

Ψβ(1)(k)Ψα(3)(k,q,-q)
q-q

Ψα(2)(q,k-q) Ψβ(2)(q,k-q)
++

‣ Integral representation of the motion equations

�a(k, ⌘) = g b
a (⌘)�b(k, ⌘ = 0) +

Z ⌘

0
d⌘0g b

a (⌘ � ⌘0)� cd
b (k1,k2)�c(k1, ⌘

0)�d(k2, ⌘
0)

linear evolution mode coupling tems



Time-flow (renormalization) equations         M. Pietroni ’08
From the field evolution equation to the multi-
spectra evolution equation

The closure theory Taruya, Hiramatsu,  ApJ 2008, 2009

Valageas P.,  A&A, 2007

Motion equations for correlators are derived using the Direct-Interaction (DI) approximation in 
which one separates the field expression in a DI part and a Non-DI part.  At leading order in Non-
DI >> DI, one gets a closed set of equations, 

These equations can more rigorously be derived in a 
large N expansion.

The eikonal approximation
FB, Van de Rijt, Vernizzi  2012

Methods of Field Theory

Anselmi, Pietroni  '12

Effective Theory approaches Pietroni et al '12, or "a la Senatore" 

Renormalization Perturbation Theory                                             
Crocce & Scoccimarro ’05, 06



The Multi-Point 
Propagator expansion 
(Gamma expansion)



The diagram contributing to the power spectrum 
up to 2-loop order:

linear power spectrum



The key ingredients : the (multipoint) propagators
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Scoccimarro and Crocce PRD, 2005

Gab(k) = k

FB, Crocce, Scoccimarro, PRD, 2008

�(2)
abc(k1,k2,k3) =

�(p)
ab1...bp

(k1, . . . ,kp, ⇥)�D(k� k1...p) =
1
p!

�
�p⇥a(k, ⇥)

�⇤b1(k1) . . . �⇤bp(kp)

⇥



‣ This suggests another scheme: to use the n-point propagators as 
the building blocks
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Sum of positive terms

‣The reconstruction of the power spectrum :

‣ Also provide the building 
blocks for higher order 
moments...

FB, Crocce, Scoccimarro, PRD, 2008

‣ re-organisation(s) of the perturbation series

Γ-expansion method



Reconstruction of the power spectrum: from sPT 
to Multi-point propagator reconstruction



The eikonal 
approximation



‣ In wave propagations: it leads to geometrical optics

‣ In quantum field theory such as QED 

photon wavelength is much 
shorter than any other lengths

�� ⇥

p� l in

The eikonal approximation : FB, Van de Rijt, Vernizzi  2011

"Relativistic eikonal expansion",  Abarbanel and Itzykson, 1969



dynamics : @

@⌘
�a(k, ⌘) + ⌦ b

a(⌘)�b(k, ⌘) = � bc
a (k1,k2)�b(k1)�c(k2)

Impact of the long-wave modes into the short wave modes (of interest)

1. Split the interaction term into 2 parts: 

2. Compute the first part using simplified form for the vertices

 It leads to a "renormalized" theory that takes into account the 
long wave modes in a nonlinear manner.

3. Taking ensemble average over Ξ	 leads to the standard results 
assuming linear growing modes and Gaussian initial conditions.

• k1 ⇤ k2 or k2 ⇤ k1 (soft domain)
• k1 ⇥ k2 (hard domain)

@
@⌘�a(k, ⌘) + ⌦ b

a(⌘)�b(k, ⌘)� ⌅ b
a(k, ⌘)�b(k, ⌘) = � bc

a (k
1

,k
2

)�b(k1

)�c(k2

)|
hard domain

⌅ b
a(k, ⌘) =

R
d3q

�
� cb
a (q,k) + � bc

a (k,q)
�
�c(q, ⌘)|soft domain

Non trivial k dependence!

The eikonal approximation : FB, Van de Rijt, Vernizzi  2011



velocity field component only

The "renormalized" theory at linear order

What is in this new term ?

A multi-component fluid analysis with adiabatic modes 
and iso-curvature/density modes 

adiabatic term non-adiabatic term

=

Z
k.q

q2
�d(q)d

3q

@
@⌘�a(k, ⌘) + ⌦ b
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⌅ b
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R
d3q

�
eik.� cb

a (q,k) +eik. � bc
a (k,q)

�
�c(q, ⌘)|soft domain



The eikonal 
approximation in the 
Gamma-expansion 

context



Back with the adiabatic modes. Main outcome is the 
following :

(adiabatic) displacement field

Consequences for propagators

Gab(k) = k
=

⌦
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c.t. =
1
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tree� b1...bp
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k2�2

d

2
one�loop� b1...bp

a

A regularization scheme = how to interpolate between 
n-loop results and the large-k behavior ?

An ad-hoc solution was provided by Crocce and Scoccimarro (RPT) for the 
one-point propagator but it cannot be generalized all cases.

‣The proposed form is the following
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‣This is our proposition for regularized propagators: 
our best guess!

FB, Crocce, Scoccimarro '12



The two-point propagator 
at 1-loop and 2-loop orders



Comparison with numerical 
simulations at tree and one-loop order 
for the 3-point propagator
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Power spectra in the 
RegPT and  
MPTbreeze 

prescriptions



The RegPT and MPTbreeze propositions

one loop order

two loop order

Taruya , FB, Nishimichi, Codis '12 very soon

Paa0(k) = Reg�(1) b

a(k)
Reg�(1) b

0
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0c0
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Crocce, Scocimarro, FB, '12
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up to 2 loops

Performances of RegPT



Performances of MPTbreeze

Results compared to halofit and simulations
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And if you really insist



Accelerated computational method: RegPT -fast

PNL(k) = F [Plin.; k]

= F [�P0; k] +
�

dk� ⇥F [�P0; k]
⇥�P0(k�)

(Plin(k�)� �P0(k�)) + . . .

fiducial model (arbitrary 
normalization)

departure from fiducial 
model 

✦   Approach is valid for any model where the explicit dependence 
with linear P(k) can be given.
✦  Calculations can be made extremely rapid from precomputed 
functions.
✦  It leads to the concept of Kernel functions.

✦   Normalization is chosen in order to minimize difference 
between P(k) and fiducial model.



RegPT-fast compared to RegPT direct

Discrepancies between 
RegPT and RegPT-fast are 

negligible...

�m = 0.234

�b/�m = 0.175

h = 0.734
�8 = 0.76

�� = 0.766
�m = 0.279

�b/�m = 0.165

h = 0.701
�8 = 0.817

�� = 0.721

Fiducial (wmap3) Target (wmap5)

Typical time for computation:
For 200 output points in k-space

5-10 min. for RegPT 
and few secs for 
RegPT-fast
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‣ Can be used for Non-Gaussian initial conditions

‣ In the large k limit we now have :

Crocce, Sefusatti, FB, 2010‣ The Gamma-expansion is still valid.

The eikonal approximation is very powerful 

‣ Can be used in Lagrangian coordinates
FB, Valageas 2008

‣ For any fluid content, in particular including dark matter 
and baryons (new modes appear); FB, Van de Rijt, Vernizzi  2011

‣ The basis for the regularization schemes in which one 
can incorporate loops at arbitrary order;

FB et al. 2011

Conclusions

G(k) ! exp

"
�

1X

p=2

h(d.k)pic
p!

(e⌘ � e⌘0
)

p

#



Two-loop calculations can now be done 
routinely (and very rapidly)

•  Public codes for fast computations of power spectra at 2-loop order 
are now available. Codes take a few seconds to compute power spectra.

http://maia.ice.cat/crocce/mptbreeze/
http://www-utap.phys.s.u-tokyo.ac.jp/~ataruya/
regpt_code.html

•  So far performances are focused on mild values of k for the density 
field.  Theoretical predictions are within 1% accuracy.
•  Extensions to velocity components are under construction with the 
same methods.
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η2k

 a(k, ⌘;⌅
adiab.) = ⇠ b

a (k, ⌘, ⌘0;⌅
adiab.) b(⌘0)

Theorem1: multi-spectra are independent on the large-scale adiabatic modes 
(in the eikonal limit)

This is a direct consequence of the functional dependance on the large-scale 
adiabatic displacement field.

Theorem 2: multi-spectra are independent on the large-scale adiabatic modes 
at any order in standard Perturbation Theory

One-loop correction to power spectrum

+
η2k

+
η2k  = 0

k1

k2

k3

q1

k1-q1or ... any poly-spectrum at any loop order

FB, Van de Rijt, Vernizzi, '12 in prep.

adiabatic 
modes

� b
a

⇠ b
a (k, ⌘, ⌘0;⌅

adiab.
) = g b

a (⌘, ⌘0) exp

✓
i

Z ⌘

⌘0

d⌘0 k.vadiab.
(⌘0)

◆

But not necessarily so for all PT schemes...



What is true for adiabatic modes is not true for non-adiabatic 
modes!

η2
+

η2k +
η2k  ≠ 0

Resulting power spectrum in the eikonal limit (beyond one-loop results)

z=40 z=10

non-adiabatic 
modes

"Relative velocity of dark matter and baryonic fluids and the formation of the first 
structures",  D. Tseliakhovich and C. Hirata, PRD, '10

FB, Van de Rijt, Vernizzi, '12 in prep.

modes mainly produced at horizon scale at decoupling

P�(k;⌅
iso.) = ⇠ a

1

(k, ⌘, ⌘
0

;⌅iso.) ⇠ b
1

(k, ⌘, ⌘
0

;⌅iso.)P init.
ab (k, ⌘

0

)



Bad news for biasing...

Galaxy formation is potentially modulated by large scale 
velocity modes (at 100-10 Mpc scales).

Dalal, Pen, Seljak '10

Yoo, Dalal, Seljak '11

In general however non-adiabatic modes have very 
little (totally negligible ?) impact on modes of interest 
here.

FB, Van de Rijt, Vernizzi  2011

Somogyi & Smith 2010



Into the heart of 
darkness

in PT calculation



Kernels in Pertubation theory calculations
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FB, Taruya, Nishimichi, '12 in prep.
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Kernels for the 2-point propagators at p-loop order

k

Convergence properties

ns > �1

1-loop

k

ns > �2

2-loop
3-loop

q1

k
k k+ q1

ns > �2.33

3-loop

P ]�loop

NL (k) =

Z
dq

q
K]�loop(k, q) Plin.(q)

It comes as a reminder of impact of small scale physics (e.g. shell crossings, 
baryon physics)  

Valageas '10; Pueblas & Scoccimarro '08; Pietroni et al. '11


