Tension in the Void arXiv:1201.2790

Miguel Zumalacárregui

Institute of Cosmos Sciences, University of Barcelona

with Juan Garcia-Bellido and Pilar Ruiz-Lapuente

Modern Cosmology Workshop 2012, Benasque

Outline

A-Void Dark Energy

- The Standard Cosmological Model
- Inhomogeneous Universes

Observational constraints

- The BAO scale in LTB universes
- MCMC analysis

The Standard Model of Cosmology

Commercial name: $\Lambda \text{CDM}^{\odot}$

Ingredients

 $GR + FRW + Inflation + SM + CDM + \Lambda$

- Theory of Gravitation: General Relativity
- Ansatz for the metric: Homogeneous + Isotropic
- Initial conditions: Inflationary perturbations
- Standard particle content: γ , ν 's, p⁺, n, e⁻
- Cold Dark Matter: some new particle species
- Cosmological constant: Λ

 $\mathsf{Homogeneity} + \mathsf{Isotropy} \longrightarrow \mathsf{Spherical Symmetry}$

The Lemaitre-Tolman-Bondi metric

$$ds^{2} = -dt^{2} + \frac{A'^{2}(r,t)}{1-k(r)} dr^{2} + A^{2}(r,t) d\Omega^{2}$$

 $\mathsf{Homogeneity} + \mathsf{Isotropy} \longrightarrow \mathsf{Spherical Symmetry}$

The Lemaitre-Tolman-Bondi metric

$$ds^2 = -dt^2 + \frac{A'^2(r,t)}{1-k(r)} dr^2 + A^2(r,t) d\Omega^2$$

• Two expansion rates: $H_R = \dot{A}'/A' \neq \dot{A}/A = H_T$

 $\mathsf{Homogeneity} + \mathsf{Isotropy} \longrightarrow \mathsf{Spherical Symmetry}$

The Lemaitre-Tolman-Bondi metric

$$ds^2 = -dt^2 + \frac{A'^2(r,t)}{1-k(r)} dr^2 + A^2(r,t) d\Omega^2$$

- Two expansion rates: $H_R = \dot{A}'/A' \neq \dot{A}/A = H_T$
- Matter/curvature profile $k(r) \Rightarrow \Omega_M(r)$

 $\mathsf{Homogeneity} + \mathsf{Isotropy} \longrightarrow \mathsf{Spherical Symmetry}$

The Lemaitre-Tolman-Bondi metric

$$ds^2 = -dt^2 + \frac{A'^2(r,t)}{1-k(r)} \, dr^2 + A^2(r,t) \, d\Omega^2$$

- Two expansion rates: $H_R = \dot{A}'/A' \neq \dot{A}/A = H_T$
- Matter/curvature profile $k(r) \Rightarrow \Omega_M(r)$
- Expansion rate $H_0(r) \Rightarrow$ time to big-bang $t_{\rm BB}(r)$

 $\mathsf{Homogeneity} + \mathsf{Isotropy} \longrightarrow \mathsf{Spherical Symmetry}$

The Lemaitre-Tolman-Bondi metric

$$ds^2 = -dt^2 + \frac{A'^2(r,t)}{1-k(r)} \, dr^2 + A^2(r,t) \, d\Omega^2$$

- Two expansion rates: $H_R = \dot{A}'/A' \neq \dot{A}/A = H_T$
- Matter/curvature profile $k(r) \Rightarrow \Omega_M(r)$
- Expansion rate $H_0(r) \Rightarrow$ time to big-bang $t_{
 m BB}(r)$

Homogeneous Big-Bang: $t_{BB}(r) = t_0$

- Relates $H_0(r) \leftrightarrow \Omega_M(r)$ up to a constant $H_0 \leftrightarrow t_0$
- **I** Evolution from very homogeneous state at early times

 $\mathsf{Homogeneity} + \mathsf{Isotropy} \longrightarrow \mathsf{Spherical Symmetry}$

The Lemaitre-Tolman-Bondi metric

$$ds^2 = -dt^2 + \frac{A'^2(r,t)}{1-k(r)} \, dr^2 + A^2(r,t) \, d\Omega^2$$

- Two expansion rates: $H_R = \dot{A}'/A' \neq \dot{A}/A = H_T$
- Matter/curvature profile $k(r) \Rightarrow \Omega_M(r)$
- Expansion rate $H_0(r) \Rightarrow$ time to big-bang $t_{
 m BB}(r)$

Homogeneous Big-Bang: $t_{BB}(r) = t_0$

- Relates $H_0(r) \leftrightarrow \Omega_M(r)$ up to a constant $H_0 \leftrightarrow t_0$
- **I** Evolution from very homogeneous state at early times

+ $ho_b \propto
ho_m \,
ightarrow$ growth of an spherical adiabatic perturbation

Observations in adiabatic LTB universes

Observations in adiabatic LTB universes

Observations in adiabatic LTB universes

Observations in adiabatic LTB universes

Miguel Zumalacárregui

The BAO scale in LTB universes MCMC analysis

Observations in adiabatic LTB universes

Miguel Zumalacárregui

The BAO scale in LTB universes MCMC analysis

Baryon acoustic oscillations - Standard Rulers

-Sound waves in the baryon-photon plasma travel a finite distance

-Initial baryon clumps \rightarrow more galaxies

-Statistical standard ruler

The BAO scale in LTB universes MCMC analysis

Baryon acoustic oscillations - Standard Rulers

-Sound waves in the baryon-photon plasma travel a finite distance

-Initial baryon clumps \rightarrow more galaxies

-Statistical standard ruler

• LTB: Do these clumps/galaxies move? \rightarrow Geodesics

The BAO scale in LTB universes MCMC analysis

Baryon acoustic oscillations - Standard Rulers

-Sound waves in the baryon-photon plasma travel a finite distance

-Initial baryon clumps \rightarrow more galaxies

-Statistical standard ruler

 \bullet LTB: Do these clumps/galaxies move? \rightarrow Geodesics

$$\ddot{r} + \left[\frac{k'}{2(1-k)} + \frac{A''}{A'}\right]\dot{r}^2 + 2\frac{\dot{A}'}{A'}\dot{t}\dot{r} = 0$$

 $\dot{t} \gg \dot{r} \Rightarrow$ Constant <u>coordinate</u> separation (zero order)

The BAO scale in LTB universes MCMC analysis

Baryon acoustic oscillations - Standard Rulers

-Sound waves in the baryon-photon plasma travel a finite distance

-Initial baryon clumps \rightarrow more galaxies

-Statistical standard ruler

 \bullet LTB: Do these clumps/galaxies move? \rightarrow Geodesics

$$\ddot{r} + \left[\frac{k'}{2(1-k)} + \frac{A''}{A'}\right]\dot{r}^2 + 2\frac{\dot{A}'}{A'}\dot{t}\dot{r} = 0$$

 $\dot{t} \gg \dot{r} \Rightarrow$ Constant <u>coordinate</u> separation (zero order)

• Alonso *et al.* 1204.3532: N-body \Rightarrow locally \sim FRW w $\Omega_M(r)$ February *et al.* 1206.1602: Linear PT $\Rightarrow \sim 1\%$ shift

 \bullet Coordinate BAO scale on lightcone known \checkmark

- \bullet Coordinate BAO scale on lightcone known \checkmark
- <u>Physical</u> distances given by $g_{rr} = \frac{A'^2(r,t)}{1-k(r)}$, $g_{\theta\theta} = A^2(r,t)$

- Coordinate BAO scale on lightcone known \checkmark
- <u>Physical</u> distances given by $g_{rr} = \frac{A'^2(r,t)}{1-k(r)}$, $g_{\theta\theta} = A^2(r,t)$

$$l_R(r,t) = \frac{A'(r,t)}{A'(r,t_e)} l_{\text{early}}, \quad l_T(r,t) = \frac{A(r,t)}{A(r,t_e)} l_{\text{early}}$$

- \bullet Coordinate BAO scale on lightcone known \checkmark
- <u>Physical</u> distances given by $g_{rr} = \frac{A'^2(r,t)}{1-k(r)}$, $g_{\theta\theta} = A^2(r,t)$

$$l_R(r,t) = \frac{A'(r,t)}{A'(r,t_e)} l_{\text{early}}, \quad l_T(r,t) = \frac{A(r,t)}{A(r,t_e)} l_{\text{early}}$$

• LTB: evolving (t), inhomogeneous (r) and anisotropic $l_T \neq l_R$ FRW \rightarrow only time evolution!

The observed BAO scale

 $\mathsf{Observations} \to \mathsf{galaxy}$ correlation in angular and redshift space

Geometric mean $d \equiv \left(\delta \theta^2 \delta z\right)^{1/3}$

$$\delta\theta = \frac{l_T(z)}{D_A(z)}, \quad \delta z = (1+z)H_R(z)\,l_R(z)$$

The observed BAO scale

Observations \rightarrow galaxy correlation in angular and redshift space

Geometric mean $d \equiv \left(\delta heta^2 \delta z
ight)^{1/3}$

$$\delta\theta = \frac{l_T(z)}{D_A(z)}, \quad \delta z = (1+z)H_R(z)\,l_R(z)$$

Different result than FRW

 $d_{
m LTB}(z) = \xi(z) \, d_{
m FRW}(z)$ $\xi(z) =
m rescaling = (\xi_T^2 \, \xi_R)^{1/3}$ Inhomogeneous, anisotropic

The BAO scale in LTB universes MCMC analysis

MCMC data and models

-GBH profile: Ω_{in} , Ω_{out} , R, ΔR , H_0 , f_b - WiggleZ + Carnero *et al.* - Union 2 Compilation - $H_0 = 73.8 \pm 2.4$ \rightarrow SNe luminosity prior - CMB peaks information (cimplified analysis)

Adiabatic LTB models: $\Omega_{out} = 1$ and open $\Omega_{out} \leq 1$

Miguel Zumalacárregui

The BAO scale in LTB universes MCMC analysis

Adiabatic GBH, asympt. flat $\Omega_{out} = 1$

Filled: SNe+H0, BAO+CMB, Dashed: BAO, CMB peaks, Supernovae

The BAO scale in LTB universes MCMC analysis

Adiabatic GBH, asympt. flat $\Omega_{out} = 1$

Filled: SNe+H0, BAO+CMB, Dashed: BAO , CMB peaks, Supernovae

Depth of the Void:

- SNe $\rightarrow \Omega_{\rm in} \approx 0.1 \ (< 0.18)$
- BAO $\rightarrow \Omega_{\rm in} \approx 0.3 \ (> 0.2)$

New: 3σ Away!!!

The BAO scale in LTB universes MCMC analysis

Adiabatic GBH, asympt. flat $\Omega_{out} = 1$

Filled: SNe+H0, BAO+CMB, Dashed: BAO , CMB peaks, Supernovae

Depth of the Void:

- SNe $\rightarrow \Omega_{\rm in} \approx 0.1 \ (< 0.18)$
- BAO $\rightarrow \Omega_{\rm in} \approx 0.3 \ (> 0.2)$

New: 3σ Away!!!

Local Expansion Rate:

- SNe+H0 $\rightarrow h_{\rm in} \approx 0.74$
- **BAO+CMB** $\rightarrow h_{\rm in} \approx 0.62$

known, worse if full CMB used

The BAO scale in LTB universes MCMC analysis

Adiabatic GBH, asympt. flat $\Omega_{out} = 1$

Filled: SNe+H0, BAO+CMB, Dashed: BAO , CMB peaks, Supernovae

Depth of the Void:

- SNe $\rightarrow \Omega_{\rm in} \approx 0.1 \ (< 0.18)$
- BAO $\rightarrow \Omega_{\rm in} \approx 0.3 \ (> 0.2)$

New: 3σ Away!!!

Local Expansion Rate:

- SNe+H0 $\rightarrow h_{\rm in} \approx 0.74$
- **BAO+CMB** $\rightarrow h_{\rm in} \approx 0.62$

known, worse if full CMB used

Do asymptotically open models work better?

Miguel Zumalacárregui

The BAO scale in LTB universes MCMC analysis

Adiabatic GBH, asympt. open $\Omega_{out}=1~\Omega_{out}\leq 1$

Filled: SNe+H0, BAO+CMB, Dashed: BAO , CMB peaks, Supernovae

Depth of the Void:

- SNe $\rightarrow \Omega_{\rm in} \approx 0.1$
- BAO $\rightarrow \Omega_{in} \approx 0.3$

Still 3σ Away!!!

Local Expansion Rate:

 $\Omega_{\rm out} \approx 0.85 \leftrightarrow {\sf higher} \; H_{\rm in}$

 $t_0 \propto 1/H_{
m in}
ightarrow t_0 \lesssim 12 {
m Gyr}$

Only better H_0 , but Universe too young

Miguel Zumalacárregui

Best fit models

Tension in the Void

- Bad fit to SNe and BAO
- SNe measure distance BAO: distance+rescaling

complementary probes

Strongly ruled out

Miguel Zumalacárregui

• BAO and SNe alone strongly rule out the GBH model with homogeneous Big Bang and baryon fraction

- BAO and SNe alone strongly rule out the GBH model with homogeneous Big Bang and baryon fraction
- Possible ways to save large void models:
 - Change the profile $\Omega_M(r)$?

- BAO and SNe alone strongly rule out the GBH model with homogeneous Big Bang and baryon fraction
- Possible ways to save large void models:
 - Change the profile $\Omega_M(r)$?
 - Inhomogeneous Big Bang \leftrightarrow free H_0

- BAO and SNe alone strongly rule out the GBH model with homogeneous Big Bang and baryon fraction
- Possible ways to save large void models:
 - Change the profile $\Omega_M(r)$?
 - Inhomogeneous Big Bang \leftrightarrow free H_0
 - Large scale isocurvature $\rho_b = f_b(r) \, \rho_m$

- BAO and SNe alone strongly rule out the GBH model with homogeneous Big Bang and baryon fraction
- Possible ways to save large void models:
 - Change the profile $\Omega_M(r)$?
 - Inhomogeneous Big Bang \leftrightarrow free H_0
 - Large scale isocurvature $\rho_b = f_b(r) \, \rho_m$
- Purely geometrical result, whatever Luminosity & BAO scale
 ⇒ Standard Rulers vs Standard Candles

- BAO and SNe alone strongly rule out the GBH model with homogeneous Big Bang and baryon fraction
- Possible ways to save large void models:
 - Change the profile $\Omega_M(r)$?
 - Inhomogeneous Big Bang \leftrightarrow free H_0
 - Large scale isocurvature $\rho_b = f_b(r) \, \rho_m$
- Purely geometrical result, whatever Luminosity & BAO scale
 ⇒ Standard Rulers vs Standard Candles
- BAO are a powerful complement to SNe in more *general* inhomogeneous models

The BAO scale in LTB universes MCMC analysis

Backup Slides

Supernova Ia - Standard Candles

• Standar(izable) Candles: \approx Same (corrected) Luminosity

$$D_L(z) = \sqrt{rac{{\sf Luminosity}}{4\pi\,{\sf Flux}}} = H_0^{-1}f(z,\Omega_\Lambda,\Omega_M) ~({\sf FRW})$$

difficult to model SNe \Rightarrow Intrinsic Luminosity unknown!!

• For any L, comparison of low and high z SNe very useful

Supernova Ia - Standard Candles

• Standar(izable) Candles: \approx Same (corrected) Luminosity

$$D_L(z) = \sqrt{rac{{\sf Luminosity}}{4\pi\,{\sf Flux}}} = H_0^{-1}f(z,\Omega_\Lambda,\Omega_M) ~({\sf FRW})$$

difficult to model SNe \Rightarrow Intrinsic Luminosity unknown!!

- $\bullet\,$ For any L, comparison of low and high z SNe very useful
- FRW: Luminosity degenerate with Hubble rate \Rightarrow need L to determine H_0

Supernova Ia - Standard Candles

• Standar(izable) Candles: \approx Same (corrected) Luminosity

$$D_L(z) = \sqrt{rac{\mathsf{Luminosity}}{4\pi\,\mathsf{Flux}}} = H_0^{-1}f(z,\Omega_\Lambda,\Omega_M) \ \ (\mathsf{FRW})$$

difficult to model SNe \Rightarrow Intrinsic Luminosity unknown!!

- $\bullet\,$ For any L, comparison of low and high z SNe very useful
- FRW: Luminosity degenerate with Hubble rate \Rightarrow need L to determine H_0
- In LTB not quite true \Rightarrow convert constraint

 $H_0 = 73.8 \pm 2.4 \,\mathrm{Mpc/Km/s} \leftrightarrow L = -0.120 \pm 0.071 \,\mathrm{Mag}$

The BAO scale in LTB universes MCMC analysis

MCMC: FRW- Λ CDM reference model

Using BAO scale, CMB peaks, Supernovae and $H_0+BAO+CMB+SNe$

- BAO \sim SNe: Arbitrary length/luminosity (before adding CMB/H0)
- CMB constraints much weaker than usual $1 \Omega_k \lesssim 1\%$

 \Rightarrow don't take our CMB constraints too seriously