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OUTLINE

• Non-Gaussianity primer

• Initial Conditions for N-body 
Simulations

• Analysing results of N-body 
Simulations

• Comparison to Halo model and 1-
loop Corrections (+ simple fitting 
formula)
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• Standard Inflation ... Require slow-roll 
to satisfy the horizon and flatness 

problems.

Quantum
Fluctuations

Stretching due to
inflation

• Inflation = paradigm to explain observed density fluctuations

• Prediction... Gaussian primordial 
fluctuations

@ the primordial level

• Conditions of standard case:
               (a) Single scalar field           (b) Canonical kinetic energy

            (c) Slow roll                           (d) Standard vacuum state
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Negatively skewed

Positively skewed

Gaussian distribution

Skewness ... Bispectrum

Kurtosis ... Trispectrum

2.7. Background I : Primordial Cosmology and the CMB – Non-Gaussianity 17

Parameter WMAP WMAP+ SDSS

Ωtot 1.054
+0.064
−0.046 1.003

+0.010
−0.009

ΩΛ 0.761
+0.032
−0.037 0.761

+0.017
−0.018

ω −0.82
+0.23
−0.19 −0.941

+0.087
−0.101

αs −0.056
+0.031
−0.031 −0.040

+0.027
−0.027

r < 0.65(95%) < 0.33(95%)

nt + 1 0.9861
+0.0096
−0.0142 0.9861

+0.0096
−0.0142

ων < 0.024(95%) < 0.010(95%)

b 1.896
+0.074
−0.069

Qnl 30.3+4.4
−4.1

Table 2.2: Current constraints on the extra 9 parameters beyond the ΛCDM model.

The constraints are obtained from [12] which uses WMAP observations and data from

the Sloan Digital Sky Survey. We note that the values of b and Qnl are only obtained

from large scale structure and hence from the SDSS data set. The quoted constraints are

68% bounds unless otherwise stated.

to the standard paradigm it is, therefore, necessary to measure higher order correlators

beyond the power spectrum. Of particular interest are the bispectrum and trispectrum

which are related to the skewness and kurtosis of the underlying primordial distribution.

The primordial bispectrum is defined by

�Φ(k1)Φ(k2)Φ(k3)� = (2π)
3δ(k1 + k2 + k3)BΦ(k1, k2, k3), (2.52)

where the Dirac delta symbol imposes the closure condition on the wavevectors. The

bispectrum, BΦ, defined at a particular scale on a triangle is therefore parametrised by

three variables which we may choose to be the wavenumbers (k1, k2, k3) (see Figure 2.2).

Similarly the primordial trispectrum is given by

�Φ(k1)Φ(k2)Φ(k3)Φ(k4)�c = (2π)
3δ(k1 + k2 + k3 + k4)TΦ(k1,k2,k3,k4), (2.53)

where the notation �. . . �c is used to denote the connected component. The closure condi-

tion now implies that the trispectrum, TΦ is defined on a quadrilateral. Such a quadrilat-

eral may be expressed using the four wavenumbers and its two diagonals (see Figure 2.3).

The trispectrum may be decomposed according to the symmetries involved in exchanging

Trispectrum=(connected)4-point correlator
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where the notation �. . . �c is used to denote the connected component. The closure condi-

tion now implies that the trispectrum, TΦ is defined on a quadrilateral. Such a quadrilat-

eral may be expressed using the four wavenumbers and its two diagonals (see Figure 2.3).
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Break any of these Non-Gaussianities
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Local Bispectrum ... superhorizon evolution
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• DBI inflation

• Ghost inflation

• Second order corrections to single field inflation

• Warm inflation

• Inflation with non-standard vacua (&/or higher order kinetic 
terms)

• Inflation with a step in the potential

• Infation with osci%atory modifications to the potential

• Non-local inflation

• ...

Many more examples...
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2.9. Background I : Primordial Cosmology and the CMB – Inhomogeneities from

anisotropies - Collisional Boltzmann equation 27

The source functions may be evaluated using the Boltzmann moment equations described

above. Due to backreaction from higher modes it is necessary to solve these equations

to l ≈ 10. Given the source function, we may again decompose into moments using the

following expansion of the exponential function,

eik.x =
�

l

il(2l + 1)jl(kx)Pl(µ), (2.102)

where µ = k̂.x̂. The multipole moments are then given by

Θl =

� τ0

0

S(k, τ)jl(k(τ0 − τ))dτ. (2.103)

The radiation transfer functions, ∆l(k) are defined by setting

Θl = 4∆l(k)Φ(k), (2.104)

and may be found by setting the initial condition Φ(k) = 1 in the above equations. The

temperature anisotropies ∆T/T = Θ/4 may now be represented using the alm coefficients

of a spherical harmonic decomposition of the cosmic microwave sky,

∆T

T
(n̂) =

�

lm

almYlm(n̂), (2.105)

where

alm =

�
dΩ

∆T

T
(n̂)Y ∗

lm(n̂). (2.106)

From equation (2.90) we have

∆T

T
(k, n̂) =

1

4

�

l

(−i)l(2l + 1)Θl(k, τ)Pl(µ)

= π
�

lm

(−i)l∆l(k, τ)Φ(k)Ylm(n̂)Y ∗
lm(k̂), (2.107)

where in the second line we use the following expansion of the Legendre polynomial,

Pl(µ) =
4π

2l + 1

�

m

Ylm(n̂)Y ∗
lm(k̂). (2.108)

Evaluating the solid angle integral (2.106) gives

alm = 4π(−i)l

�
d3k

(2π)3
∆l(k)Φ(k)Y ∗

lm(k̂). (2.109)

Therefore, we interpret the alm coefficients as the spherical harmonics of the projection
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CMB Bispectrum Primordial Bispectrum

2.10. Background I : Primordial Cosmology and the CMB – Signatures of infla-

tion - CMB 30

first mode representing the first compression mode formed from the photon-baryon fluid

moving from an under-dense to over-dense region. In turn the second peak represents the

first mode that has compressed and then rarefied to an expansive maximum, etc. This

succession of peaks are known as the Doppler peaks. Due to dissipation as the photons

make a random walk through the baryons during recombination the acoustic peaks are

damped exponentially on scales smaller than this photon diffusion scale. This effect is

commonly known as Silk damping.

CMB Bispectrum

As detailed earlier, motivation for the study of the higher order correlators, such as

the bispectrum and trispectrum, arises for the prospect of distinguishing more complex

models of inflation which can produce non-Gaussianity. In order to measure deviations

from Gaussianity, a measure of the skewness and kurtosis must be performed. While

the power spectrum corresponds to a measure of the variance (2.112), the bispectrum

and trispectrum can be shown to correspond to measures of the skewness and kurtosis

respectively.

The CMB bispectrum is defined to be the three-point correlator of the alm,

Bl1l2l3
m1m2m3

= �al1m1al2m2al3m3�. (2.120)

Substituting in the expression for the alm in equation (2.109) we find

Bl1l2l3
m1m2m3

=
(4π)3

(2π)9
(−i)l1+l2+l3

�
d3k1d

3k2d
3k3∆l1(k1)∆l2(k2)∆l3(k3)

× �Φ(k1)Φ(k2)Φ(k3)�Y ∗
l1m1

(k̂1)Y
∗
l2m2

(k̂2)Y
∗
l3m3

(k̂3). (2.121)

We recall that the primordial bispectrum is given by

�Φ(k1)Φ(k2)Φ(k3)� = (2π)3δ(k1 + k2 + k3)BΦ(k1, k2, k3). (2.122)

Due to momentum conservation the wavevectors must form a closed triangle, as imposed

by the delta function. This closure condition implies that the bispectrum may be expressed

as a function of it’s wavenumbers only. Note also that the delta function may be written
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in the following forms,

δ(k1 + k2 + k3) =

�
d3x

(2π)3
ei(k1+k2+k3).x

= 8
�

limi

il1+l2+l3

��
dxx2jl1(k1x)jl2(k2x)jl3(k3x)

�

× Yl1m1(k̂1)Yl2m2(k̂2)Yl3m3(k̂3)

�
dΩx̂Y

∗
l1m1

(x̂)Y ∗
l2m2

(x̂)Y ∗
l3m3

(x̂),

(2.123)

where in the second line we use the expansion of the exponential (2.102).

Substituing these expressions into (2.124) reveals

Bl1l2l3
m1m2m3

=

�
2

π

�3 �
dxdk1dk2dk3(xk1k2k3)

2∆l1(k1)∆l2(k2)∆l3(k3)BΦ(k1, k2, k3)

× jl1(k1x)jl2(k2x)jl3(k3x)

�
dΩx̂Y

∗
l1m1

(x̂)Y ∗
l2m2

(x̂)Y ∗
l3m3

(x̂). (2.124)

This expression is simplified further by noting that the Gaunt integral is given by

Gl1l2l3
m1m2m3

=

�
dΩx̂Y

∗
l1m1

(x̂)Y ∗
l2m2

(x̂)Y ∗
l3m3

(x̂) = hl1l2l3

�
l1 l2 l3
m1 m2 m3

�
, (2.125)

where
�

l1 l2 l3
m1 m2 m3

�
(2.126)

is the Wigner 3j symbol and hl1l2l3 =

�
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

�
l1 l2 l3
0 0 0

�
. The

Gaunt integral is the analog of the Dirac delta symbol in multipole space, imposing

constraints on the multipoles li. Defining the reduced bispectrum, bl1l2l3 , as

Bl1l2l3
m1m2m3

= Gl1l2l3
m1m2m3

bl1l2l3 , (2.127)

we have

bl1l2l3 =∆2
Φ

�
2

π

�3 �
dk1dk2dk3∆l1(k1)∆l2(k2)∆l3(k3)S(k1, k2, k3)

×
�

dxx2jl1(k1x)jl2(k2x)jl3(k3x), (2.128)
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where we define the shape function

S(k1, k2, k3) =
(k1k2k3)2

∆2
Φ

BΦ(k1, k2, k3). (2.129)

The shape function is the dimensionless form of the bispectrum. Substituting the primor-

dial local bispectrum into this formula, (2.63), we find

blocal
l1l2l3 = 2f local

NL

�
x2dx (αl1(x)βl2(x)βl3(x) + 2 permutations) , (2.130)

where

αl(x) =
2

π

�
dkk2∆l(k)jl(kx), (2.131)

βl(x) =
2

π

�
dkk2PΦ(k)∆l(k)jl(kx), (2.132)

We may approximate this in the Sachs Wolfe limit for which ∆l(k) ≈ jl(kxdec)/3 to find

blocal SW
l1l2l3 =

2f local
NL ∆2

Φ

27π2

�
1

l1(l1 + 1)l2(l2 + 1)
+

1

l1(l1 + 1)l3(l3 + 1)
+

1

l2(l2 + 1)l3(l3 + 1)

�
.

(2.133)

Similarly for the constant model for which S(k1, k2, k3) = 1 we find

bconstant SW
l1l2l3 =

∆2
Φ

27

1

(2l1 + 1)(2l2 + 1)(2l3 + 1)

�
1
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(2.134)

This solution is used commonly as a benchmark with which to compare the reduced CMB

bispectra of other models. Many other models have been studied in the literature such as

the equilateral model [33], the warm model [34], etc. (for a review see [35]).

As is clear from equation (2.128), analysis of the CMB bispectrum becomes much sim-

pler given a separable shape function, i.e. a shape function of the form S(k1, k2, k3) =

X(k1)Y (k2)Z(k3). In a similar fashion to the above formulae for the local model, such

shapes reduce the dimension of integration from four dimensions to two dimensions, thus

greatly reducing the computational time required. In [14] a general method for decompos-

ing a shape function into a sum of a products of separable functions has been established.

In particular, a (scale-invariant) shape function may be decomposed in the form

S(k1, k2, k3) =
�

prs

αprsqp(k1)qr(k2)qs(k3), (2.135)

where the qp are basis mode functions spanning the space of all functions on the bispectrum
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At late times fluctuations grow & non-Gaussianity is 
induced by gravitational evolution
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Drawback: Non-linear evolution...difficult to distinguish 
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simulations
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For simplicity, however, we restrict attention here to quadspectra that are non-diagonal,

depending only on the wavenumbers k1, . . . , k5, that is, Q̃(k1,k2,k3,k4,k5) = Q̃(k1, k2, k3, k4, k5).

The expectation value of the quadspectrum estimator is then given by
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(7.38)

where the integral over the five spherical Bessel functions serves also to define the al-

lowed quadspectrum domain VQ. The expression (7.38) may be used to derive a weight

to decompose the quadspectrum in the form

�
Π5

i=1v(ki)/
�

P (ki)

�
Q̃(k1, k2, k3, k4, k5) =

�
n αnQn(k1, k2, k3, k4, k5) where n ↔ {r, s, t, u, v} and Qn(k1, k2, k3, k4, k5) =

q{r(k1)qs(k2)qt(k3)qu(k4)qv}(k5), and where imposing scale invariance sets v(k) = k9/10
.

The resulting separable estimator is directly analogous to that for the non-diagonal

trispectrum (7.36), but for brevity we will only discuss initial conditions with a non-

trivial quadspectrum.

7.4 Efficient generation of arbitrary non-Gaussian ini-

tial conditions

The generation of non-Gaussian initial conditions for N -body simulations with a given

primordial bispectrum has been achieved to date only for bispectra which have a simple

separable form (see, e.g., [169, 170, 171, 172]). For N -body codes to efficiently produce

non-Gaussian initial conditions for an arbitrary non-separable bispectrum, will require

a well-behaved separable mode decomposition, as achieved for CMB map simulations in

ref. [14]. However, we can do even better by simulating initial data given both an arbi-

trary bispectrum and trispectrum, as shown for the CMB in ref. [2]. As we have discussed

already, this is of particular interest for measurements of the large-scale structure bispec-

trum, because of nonlinear contributions expected from the trispectrum. We describe the

non-Gaussian primordial potential perturbation as

Φ = ΦG
+

1

6
FNLΦB

+
1

24
τNLΦT , (7.39)

where ΦG
is a Gaussian random field with the required power spectrum P (k). Following

ref. [14] for the primordial bispectrum B(k1, k2, k3) with separable expansion (7.11), the

Hint: Try the modal approach arXiv:1008.1730 Fergusson,DMR,Shellard

Complexity of N^6 (N=512!)

FFT  only!!
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where ΦG is a Gaussian random field with the required
power spectrum P (k). This expression, written in con-
volved form, was used to tackle some specific separable
bispectrum models in refs. [12, 13]. It is directly related
to that employed for creating non-Gaussian CMB map
simulations [4] which was generalised with modal meth-
ods in ref. [16]. The modal approach eliminated poten-
tial non-Gaussian contributions to the CMB power spec-
trum. Here, however, the power spectra in the denomina-
tor must also be symmetrised to mitigate against these
spurious effects [13]. The expression (2) is the natural
choice for initial conditions since, for the local model of
inflation, this procedure reduces to the usual convolution
ΦG ∗ ΦG. The primordial perturbation, Φ, given by

Φ = ΦG +
FNL

2
ΦB , (3)

then obeys (in the limit of weak non-Gaussianity) the
desired relations

�Φ(k1)Φ(k2)� = (2π)3δD(k1 + k2)P (k1),

�Φ(k1)Φ(k2)Φ(k3)� = (2π)3δD(
�

ki)FNLB(k1, k2, k3).

(4)

The direct calculation of initial conditions via this pre-
scription is not efficient in general due to the non-
separable form of the integrand on the second line of
(2). However, this term may be rewritten in a separable
form using the modal techniques described in [14–16]. In
particular, we may expand the integrand within (2) in
the form

B(k, k�, k��)

P (k)P (k�) + P (k)P (k��) + P (k�)P (k��)
=

�

rst

αQ
rstqr(k)qs(k

�)qt(k
��), (5)

where the qr are one dimensional orthogonal polynomi-
als on the domain of validity of the bispectrum, that is,
the tetrahedral region prescribed by the closure condition
imposed by the Dirac delta function. Note that the form
of these mode functions qr is not important - whether
polynomial, trigonometric, wavelet, etc - provided they
form a complete set (those used in this paper are close to
Legendre polynomials and are defined in ref. [16]). We
may introduce a partial ordering on the indices used in
their 3D products and write

�
rst α

Q
rstqr(k)qs(k

�)qt(k��) =�
n={prs} α

Q
n q{r(k)qs(k

�)qt}(k
��), where {. . . } represents

the symmetrised quantity2. The coefficients αQ
n charac-

terise the specific model under scrutiny. As has been
shown in [18], relatively few modes (nmax = O(30)) are

2 In what follows we use the compact notation Qn(k, k�, k��) to
represent q{r(k)qs(k

�)qt}(k
��).

needed to accurately account for most of the models de-
scribed in the literature. We also express the Dirac delta
function in the form

δD(k) =
1

(2π)3

�
d3xeik.x. (6)

The bispectrum contribution may now be efficiently eval-
uated as

ΦB(k) =
�

n

αQ
n q{r(k)

�
d3xeik.xMs(x)Mt}(x), (7)

where the filtered density perturbations, Ms(x), are
given by

Ms(x) =

�
d3k

(2π)3
ΦG(k)qs(k)e

−ik.x. (8)

Thus the evaluation has been reduced to the calculation
of a series of fast Fourier transforms. These expressions
are to be evaluated in a box corresponding to a maximum
wavenumber kmax. Care must be taken to account for
unwanted realisations of the discretisation of the Dirac
delta function when the wavevectors, ki, align. This can
be accounted for simply by restricting the range of the
wavevectors to |ki| < 2kmax/3 for the calculation of ΦB .
This limitation is more than offset by the vast improve-
ment in numerical speed and accuracy that the modal
method offers.
Once the non-Gaussian primordial potential ΦB(k) is

generated it can be translated into the linear density per-
turbation δk,z at some initial redshift z using the Poisson
equation and transfer function T (k). From δk,z one can
get initial particle positions and velocities for N-body
codes using the Zel’dovich approximation [24] or second-
order Lagrangian perturbation theory [25, 26].

Trispectrum

As indicated already, we shall only consider the spe-
cial class of diagonal-free trispectra in this paper. Such
trispectra are given by the following four-point connected
correlator

�Φ(k1)Φ(k2)Φ(k1)Φ(k1)�c =(2π)3δD(k1 + k2 + k3 + k4)

×GNLT (k1, k2, k3, k4).
(9)

A primordial perturbation with the correct power spec-
trum and trispectrum is then given by

Φ = ΦG +
GNL

6
ΦT , (10)

where

ΦT (k) =

�
d3k�d3k��d3k��

(2π)6
δD(k− k� − k�� − k���)

× T (k, k�, k��, k���)

P (k)P (k�)P (k��) + 3 perms
ΦG(k�)ΦG(k��)ΦG(k���).

(11)
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In this paper we present the implementation of an efficient formalism for the generation of arbitrary
non-Gaussian initial conditions for use in N-body simulations. The methodology involves the use of
a separable modal approach for decomposing a primordial bispectrum or trispectrum. This approach
allows for the far more efficient generation of the non-Gaussian initial conditions already described
in the literature, as well as the generation for the first time of non-separable bispectra and the
special class of diagonal-free trispectra. The modal approach also allows for the reconstruction of
the spectra from given realisations, a fact which is exploited to provide an accurate consistency
check of the simulations.

INTRODUCTION

Testing for deviations of primordial density fluctua-
tions from Gaussianity represents one of the most ac-
tive areas of research in cosmology today (see for exam-
ple [1–11]). Detection of an appreciable deviation would
violate the current slow-roll inflationary paradigm. To
date most tests of non-Gaussianity have focussed on con-
straining the primordial skewness, described by the three-
point function or bispectrum, using the cosmic microwave
background (CMB). The resultant CMB non-Gaussianity
may be simply related to its primordial ‘seed’ via trans-
fer functions. This relationship reflects the fact that the
CMB is well described by linear theory. Large scale struc-
ture (LSS) as a three dimensional data source, unlike the
two dimensional CMB, offers the possibility of a vast im-
provement in constraining non-Gaussianity. However, a
major drawback is the non-linear relation between the
primordial density fluctuation and the resulting distri-
bution of structure. For this reason, the investigation
of non-Gaussianity using LSS must take a more empir-
ical approach relying on N-body simulations. Owing to
the complexity involved in generating non-Gaussian ini-
tial conditions, relatively few models have been studied
to date. In fact, aside from the local model only the
non-Gaussian bispectra of the equilateral and orthogonal
shapes have been studied [12, 13]. The implementation
in these latter cases involved an extremely computation-
ally expensive algorithm. In this paper we describe an
efficient method to create non-Gaussian initial conditions
for arbitrary bispectra and the special class of diagonal-
free trispectra. The approach makes use of the separable
decomposition of the primordial spectra, which has been
exploited to considerable success in the case of the CMB
[14–20]. In this paper we present a brief overview of the
formalism (for a more detailed exposition see ref. [21]).
We detail a non-trivial check of the simulations, verifying
the accuracy and consistency of the approach. Finally we
summarise our findings.

ALGORITHM

In this section we describe briefly the algorithm for the
generation of non-Gaussian initial conditions. We assume
that the density field is statistically isotropic. Our treat-
ment is universal in that it covers general bispectra and
the class of trispectrum models which depend only on the
magnitude of its wavenumbers, i.e. diagonal-free trispec-
tra. This case covers almost all trispectra discussed to
date in the literature, except for the diagonal-dependent
local (τNL) trispectrum. However, the local τNL may
be simply generated using the following expansion about
two Gaussian fields, φG and ψG, (where �φGψG� = 0
[22])1

ζ = φG + ψG + fNL

�
φ2
G − �φ2

G�
�
. (1)

The algorithm described here incorporates the generation
of an explicit trispectrum in the absence of a bispectrum
and vice versa. It should be noted that the bispectrum
term also generates an implicit trispectrum. In the case
of the local model this ‘spurious’ trispectrum is the τNL

model described above. Such trispectra may not be de-
sirable in other models and so should be subtracted out
[21]. This issue will be addressed further in a future pa-
per.

Bispectrum

As described in [21], an arbitrary primordial bispec-
trum, B(k1, k2, k3), may be simulated by evaluating the
quantity

ΦB(k) =

�
d3k�d3k��

(2π)3
δD(k− k� − k��)ΦG(k�)ΦG(k��)

× B(k, k�, k��)

P (k)P (k�) + P (k)P (k��) + P (k�)P (k��)
, (2)

1 In the single field case ψG is set to zero and τNL = (6fNL/5)2.
In general τNL obeys the inequality τNL > (6fNL/5)2/2 [23].
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where ΦG is a Gaussian random field with the required
power spectrum P (k). This expression, written in con-
volved form, was used to tackle some specific separable
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their 3D products and write

�
rst α

Q
rstqr(k)qs(k

�)qt(k��) =�
n={prs} α

Q
n q{r(k)qs(k

�)qt}(k
��), where {. . . } represents

the symmetrised quantity2. The coefficients αQ
n charac-

terise the specific model under scrutiny. As has been
shown in [18], relatively few modes (nmax = O(30)) are

2 In what follows we use the compact notation Qn(k, k�, k��) to
represent q{r(k)qs(k

�)qt}(k
��).

needed to accurately account for most of the models de-
scribed in the literature. We also express the Dirac delta
function in the form

δD(k) =
1

(2π)3

�
d3xeik.x. (6)

The bispectrum contribution may now be efficiently eval-
uated as

ΦB(k) =
�

n

αQ
n q{r(k)

�
d3xeik.xMs(x)Mt}(x), (7)

where the filtered density perturbations, Ms(x), are
given by

Ms(x) =

�
d3k

(2π)3
ΦG(k)qs(k)e

−ik.x. (8)

Thus the evaluation has been reduced to the calculation
of a series of fast Fourier transforms. These expressions
are to be evaluated in a box corresponding to a maximum
wavenumber kmax. Care must be taken to account for
unwanted realisations of the discretisation of the Dirac
delta function when the wavevectors, ki, align. This can
be accounted for simply by restricting the range of the
wavevectors to |ki| < 2kmax/3 for the calculation of ΦB .
This limitation is more than offset by the vast improve-
ment in numerical speed and accuracy that the modal
method offers.
Once the non-Gaussian primordial potential ΦB(k) is

generated it can be translated into the linear density per-
turbation δk,z at some initial redshift z using the Poisson
equation and transfer function T (k). From δk,z one can
get initial particle positions and velocities for N-body
codes using the Zel’dovich approximation [24] or second-
order Lagrangian perturbation theory [25, 26].

Trispectrum

As indicated already, we shall only consider the spe-
cial class of diagonal-free trispectra in this paper. Such
trispectra are given by the following four-point connected
correlator

�Φ(k1)Φ(k2)Φ(k1)Φ(k1)�c =(2π)3δD(k1 + k2 + k3 + k4)
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(9)

A primordial perturbation with the correct power spec-
trum and trispectrum is then given by

Φ = ΦG +
GNL

6
ΦT , (10)

where

ΦT (k) =

�
d3k�d3k��d3k��

(2π)6
δD(k− k� − k�� − k���)

× T (k, k�, k��, k���)

P (k)P (k�)P (k��) + 3 perms
ΦG(k�)ΦG(k��)ΦG(k���).

(11)
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Problem is non-separability...
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coverage over a modest redshift range, so that we can make the approximation that the

covariance matrix is nearly diagonal C−1(δobs
k ) ≈ δobs

k /P (k). With these replacements, the

estimator (7.1) becomes

E =

�
d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3

(2π)3δD(k1 + k2 + k3)B(k1, k2, k3)

P (k1)P (k2)P (k3)

×
�
δobs
k1

δobs
k2

δobs
k3
− 3�δsim

k1
δsim
k2
�δobs

k3

�
, (7.4)

where δsim
k represents simulated data with the known inhomogeneous systematic effects

included, while we also assume that shot noise is incorporated in the power spectrum

P + N → P̃ , along with incomplete sample coverage (though we will drop the tilde). We

note that, although this galaxy estimator with a linear term (7.4) has not been given in

this form explicitly before, the bispectrum scaling and signal-to-noise ratios here and in

what follows are consistent with the pioneering discussions in refs. [162, 44] (see also the

analogous CMB bispectrum estimator discussed in ref. [163] and elsewhere). In any case,

this large-scale structure bispectrum estimator (7.4) does not appear to be particularly

useful because its brute force evaluation would require at least l6max operations for a single

measurement (after imposing the triangle condition). The problem is compounded by

the many simulated realizations of the observational set-up which are required to obtain

an accurate linear term in (7.4). In fact, if the theoretical bispectrum B(k1, k2, k3) is

computed numerically, then this is even more computationally intensive, since it requires

many N -body simulations and bispectrum evaluations to achieve statistical precision.

Nevertheless, let us now suppose that we have a large set of simulated non-Gaussian

realisations δobs
k generated with the same theoretical bispectrum B(k1, k2, k3) (and the

same power spectrum P (k)). If we take the expectation value of the estimator (7.4) by

summing over these realisations, then we find the average to be

�E� =

�
d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
(2π)6δ2

D(k1 + k2 + k3)
B2(k1, k2, k3)

P (k1)P (k2)P (k3)

=
V

π

�

VB

dk1dk2dk3
k1k2k3 B2(k1, k2, k3)

P (k1)P (k2)P (k3)
, (7.5)

where VB is the tetrahedral region allowed by the triangle condition. The averaged esti-

mator (7.5) is an important expression, so it is instructive for subsequent calculations to

outline the explicit steps that take us between these two lines. First, the second Dirac

δ-function contributes only a volume factor δ(0) = V/(2π)3. Secondly, we complete the

angular integration by expanding the integral form of the remaining δ-function in spherical
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mator (7.5) is an important expression, so it is instructive for subsequent calculations to
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Modal approach to the rescue!
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7.2.2 Separable mode expansions and bispectrum reconstruc-

tion

The averaged estimator (7.5) gives a natural measure for defining separable mode func-

tions

Qn(k1, k2, k3) =
1
6 [qr(k1) qs(k2) qt(k3) + 5perms] ≡ q{r(k1) qs(k2) qt}(k3) , (7.10)

which we can use to decompose an arbitrary bispectrum (here, for convenience, the label

n, denotes a linear ordering of the 3D products n ↔ {rst}). We choose to expand the

bispectrum B(k1, k2, k3) in its noise-weighted form (see ref. [14]),

B(k1, k2, k3) v(k1)v(k2)v(k3)�
P (k1)P (k2)P (k3)

=

�
αQnQn(k1, k2, k3) , (7.11)

where we have used the freedom to introduce a separable modification to the weight

function w(k1, k2, k3) = k1k2k3/v2(k1)v2(k2)v2(k3) in (7.5). Series convergence usually

can be improved with scale-invariance, suggesting the choice v(k) =
√

k. The exact form

of the one-dimensional basis functions qr(k) is not important, except that they should be

bounded and well-behaved on the bispectrum domain VB. Some qr(k) examples which

are orthogonal on VB were given explicitly in ref. [14], analogues of Legendre polynomials

Pn(k).

The product functions Qn are independent but not necessarily orthogonal, so it is con-

venient from these to generate an orthonormal set of mode functions Rn, such that,

�Rn, Rm� = δnm (achieved using Gram-Schmidt orthogonalisation with the inner prod-

uct (7.8)). We distinguish the expansion coefficients αQn and αRn by the superscripts for the

separable ‘Q’ and orthonormal ‘R’ modes respectively; these are related to each other by

a rotation involving the matrices �Qm, Qn� and �Qm, Rn�(see ref. [14]). The orthonormal

modes Rn are convenient for finding the expansion coefficients of an arbitrary bispectrum

B(k1, k2, k3) from the inner product (7.8) through αRn = �B, Rn� which are then rotated

to the more explicitly separable form αQn . Of course, there is some computational effort

O(nmax × l3max) to achieve this orthogonalisation and decomposition, but it is a modest

initial computation which creates a framework for the subsequent data and error analysis.

Now consider the effect of substituting the expansion (7.11) into the bispectrum estimator

(7.4). It collapses to the simple summation

E =

�

n

αQn βQn , (7.12)
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where the observed βQn coefficients are defined by

βQn =

�
d3x Mr(x) Ms(x) Mt(x) , (7.13)

with Mr(x) the observed density perturbation convolved in Fourier space with the mode

functions qr(k), that is,

Mp(x) =

�
d3k

δobs
k qr(k) eik·x
�

kP (k)
. (7.14)

Including the linear term in (7.4) to account for systematic inhomogeneous effects we have

βQn =

�
d3x ( Mr(x) Ms(x) Mt(x)− [�Mr(x) Ms(x)�Mt(x) + 2 perms]) . (7.15)

Furthermore, rotating to the orthonormal frame with Rn, it is straightforward to demon-

strate that the averaged observed coefficient will be αRn = �βRn �, given a set of realizations

with the bispectrum B(k1, k2, k3) in (7.11). Thus we can directly reconstruct the bispec-

trum from a single realization (with sufficient single-to-noise) using

B(k1, k2, k3) =

�
P (k1)P (k2)P (k3)√

k1k2k3

�

n

βRn Rn(k1, k2, k3) . (7.16)

This reconstruction yields the full bispectrum shape in a model independent manner.

One can also consider a model independent measure of the total integrated non-Gaussian

signal, using Parseval’s theorem in the orthonormal frame (see ref. [13] for a discussion

of the quantity ¯FNL
2

=
�

n βRn
2). However, the bispectrum estimator (7.12) provides an

immediate means to determine the significance of an observation of a particular type of

nonGaussianity with specific coefficients αQn , e.g. by comparison with the βRn extracted

from Gaussian simulations. We note that an initial implementation of the bispectrum

reconstruction method (7.16) indicates its efficacy in recovering local nonGaussianity.

We emphasise that the bispectrum reconstruction (7.16) provides an extremely efficient

method for calculating the bispectrum from any given density field δk with optimum noise

weighting. Moreover, these separable mode expansion methods have been thoroughly

tested in a CMB context [13]. In essence, the l6max operations required with the origi-

nal estimator (or for a direct bispectrum calculation such as that described in ref. [162])

have been reduced to a series of l3max integrations given by (7.14). Of course, the number

of mode coefficients depends on the rate of convergence of the expansion (7.11) which

is usually remarkably rapid. For the CMB, a comprehensive survey of most theoretical

bispectra in the literature required only 30 eigenmodes for an accurate description at

WMAP resolution [13]. Even for a separable bispectrum in the linear regime (i.e. a ter-

minating sum), we shall explain the advantages of using the well-behaved mode expansion

where
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where we define the shape function

S(k1, k2, k3) =
(k1k2k3)2

∆2
Φ

BΦ(k1, k2, k3). (2.129)

The shape function is the dimensionless form of the bispectrum. Substituting the primor-

dial local bispectrum into this formula, (2.63), we find

blocal
l1l2l3 = 2f local

NL

�
x2dx (αl1(x)βl2(x)βl3(x) + 2 permutations) , (2.130)

where

αl(x) =
2

π

�
dkk2∆l(k)jl(kx), (2.131)

βl(x) =
2

π

�
dkk2PΦ(k)∆l(k)jl(kx), (2.132)

We may approximate this in the Sachs Wolfe limit for which ∆l(k) ≈ jl(kxdec)/3 to find

blocal SW
l1l2l3 =

2f local
NL ∆2

Φ

27π2

�
1

l1(l1 + 1)l2(l2 + 1)
+

1

l1(l1 + 1)l3(l3 + 1)
+

1

l2(l2 + 1)l3(l3 + 1)

�
.

(2.133)

Similarly for the constant model for which S(k1, k2, k3) = 1 we find

bconstant SW
l1l2l3 =

∆2
Φ

27

1

(2l1 + 1)(2l2 + 1)(2l3 + 1)

�
1

l1 + l2 + l3 + 3
+

1

l1 + l2 + l3

�
.

(2.134)

This solution is used commonly as a benchmark with which to compare the reduced CMB

bispectra of other models. Many other models have been studied in the literature such as

the equilateral model [33], the warm model [34], etc. (for a review see [35]).

As is clear from equation (2.128), analysis of the CMB bispectrum becomes much sim-

pler given a separable shape function, i.e. a shape function of the form S(k1, k2, k3) =

X(k1)Y (k2)Z(k3). In a similar fashion to the above formulae for the local model, such

shapes reduce the dimension of integration from four dimensions to two dimensions, thus

greatly reducing the computational time required. In [14] a general method for decompos-

ing a shape function into a sum of a products of separable functions has been established.

In particular, a (scale-invariant) shape function may be decomposed in the form

S(k1, k2, k3) =
�

prs

αprsqp(k1)qr(k2)qs(k3), (2.135)

where the qp are basis mode functions spanning the space of all functions on the bispectrum
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TODO

INTRODUCTION

TODO: citations: non-Gaussianity constraints from
angular power spectra in LSS data in [? ], cite references
to this paper from ADS.

PRIMORDIAL NON-GAUSSIANITY

The primordial potential Φ = −3R/5 during matter
domination has a primordial power spectrum PΦ and bis-
pectrum BΦ,

〈Φ(k1)Φ(k2)〉 = (2π)3δD(k1 + k2)PΦ(k1),

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δD(
∑

ki)fNLBΦ(k1, k2, k3),

(1)

where PΦ(k) = (9/25) (2π2/k3)∆2
R(k0)(k/k0)ns−1 and

the non-linearity parameter fNL describes the amplitude
of the bispectrum. Statistical homogeneity leads to the
Dirac delta functions and statistical isotropy implies that
the power spectrum and bispectrum only depend on the
magnitudes of the wavevectors. The Dirac delta function
in the second line imposes a triangle constraint on the
bispectrum arguments k1, k2, k3. The space of triangle
configurations is sometimes called a tetrapyd [1] and is
shown in Fig. 1. Additionally to the triangle constraint
we impose a cut off at kmax, corresponding to the smallest
scale under consideration.
While the simple model of single field slow roll infla-

tion gives only a small bispectrum, fNL ∼ O(10−2), other
models can yield large non-Gaussianities with fNL > 1
(see e.g. [2] for a review). Such models can be distin-
guished if they induce different bispectrum shapes, i.e.
different dependencies of the bispectra on the momenta
k1, k2, k3. For example multifield models can lead to the
local shape

Bloc
Φ (k1, k2, k3) = 2 [PΦ(k1)PΦ(k2) + 2 perms] , (2)

which peaks at squeezed triangle configurations, where
one side is much smaller than the other two. The shape
is called local because it arises from squaring a Gaussian
field ΦG in real space,

Φ(x) = ΦG(x) + fNL[Φ
2
G(x)−

〈
Φ2

G

〉
], (3)

where
〈
Φ2

G

〉
denotes an average over x space and ensures

that the average perturbation is zero. If a bispectrum

Figure 1: Space of triangles with sides k1, k2, k3, i.e. each
point inside the tetrapyd volume corresponds to a triangle
configuration. Squeezed, folded and equilateral configurations
are highlighted.

signal in the squeezed limit will be detected, this will
rule out all single field models of inflation [3–5].

Theories with higher derivatives in the action, e.g. DBI
inflation [6], produce a shape that can be approximated
by the separable equilateral template [2, 7, 8]

Beq
Φ = 6

[
− (PΦ(k1)PΦ(k2) + 2 perms)

− 2(PΦ(k1)PΦ(k2)PΦ(k3))
2/3

+ (P 1/3
Φ (k1)P

2/3
Φ (k2)PΦ(k3) + 5 perms)

]
, (4)

which peaks at equilateral triangles with k1 = k2 = k3.
If we measure Φ(k1) and Φ(k2) at k1 %= k2 with k1 = k2,
then the sign of the bispectrum B tells us the likely sign
of the mode Φ(k3), where k3 %= k1,k2 with k3 = k1 = k2.
If B > 0 and if we get Φ(k1) > 0 and Φ(k2) > 0 then
Φ(k3) will likely be positive too. The sum of these three
plane waves

∑
j Φ(kj)eikjx gives filamentary overdensi-

ties (overdense cylinders in the direction perpendicular
to the plane of the triangle of (k1,k2,k3)) surrounded
by underdensities [9]. Therefore it is expected that the
equilateral shape does not only come from higher deriva-
tives in the action of inflation, but will also be produced
at late times by non-linear gravitational collapse (see e.g.
[9–11]) We will confirm this explicitly by measuring the
bispectrum in N-body simulations.

Another shape that can arise from single field inflation
is the orthogonal shape [? ], which is roughly orthogonal
to the equilateral and the local shape and peaks (with op-
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• What does the Gravity Bispectrum look like?

3

FIG. 1: Equilateral bispectrum: a field can be decomposed into plane-wave modes, and the three components with wavevectors
that form an equilateral triangle may have different relative signs. The sign of the bispectrum tells you which combination
of signs is more likely (on average gives a positive or negative product of the three modes). A positive reduced bispectrum
corresponds to being likely to have waves combining to have strong overdensities surrounded by larger areas of milder under-
density. A negative equilateral bispectrum corresponds to being likely to have concentrated underdensities surrounded by areas
of milder overdensity. Note that in 3D the figures extend into the page, and hence the positive bispectrum corresponds to
concentrated overdense filaments surrounded by larger areas of milder underdensity.

FIG. 2: A snapshot of non-linear large-scale structure from the millennium simulations [12]. Dynamical non-linear collapse
of very dense filaments (surrounded by milder underdensities, voids) generates a large positive roughly equilateral density
bispectrum.

overdensities can form by gravitational collapse, and thus equilateral non-Gaussianity is likely to be present in any

field undergoing local non-linear dynamical processes.

A bispectrum is determined by three wavevectors which always lie in a plane. In 3D, the modes we are considering

correspond to plane waves, and the concentrated overdensities correspond to filaments. These are precisely what form

during the growth of large-scale structure, as shown in the famous simulation of Fig. 2. Since it is the overdensities that

are concentrated, not the underdensities, the non-linear large-scale structure density field will have a large positive

equilateral component to its bispectrum (for a perturbation theory calculation see Ref. [13]).

Of course exactly equilateral triangles are a very special case, but there are many shapes that are close to equilateral
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Figure 6: Signal to noise weighted bispectrum
√

k1k2k3/(Pδ(k1)Pδ(k2)Pδ(k3))Bδ measured in G512
400 simulations with L =

400Mpc/h at z = 2, 1, 0. Axes show k1, k2, k3 ≤ 2h/Mpc.

Wednesday, 22 August 2012



• What does the Gravity Bispectrum look like?

3

FIG. 1: Equilateral bispectrum: a field can be decomposed into plane-wave modes, and the three components with wavevectors
that form an equilateral triangle may have different relative signs. The sign of the bispectrum tells you which combination
of signs is more likely (on average gives a positive or negative product of the three modes). A positive reduced bispectrum
corresponds to being likely to have waves combining to have strong overdensities surrounded by larger areas of milder under-
density. A negative equilateral bispectrum corresponds to being likely to have concentrated underdensities surrounded by areas
of milder overdensity. Note that in 3D the figures extend into the page, and hence the positive bispectrum corresponds to
concentrated overdense filaments surrounded by larger areas of milder underdensity.

FIG. 2: A snapshot of non-linear large-scale structure from the millennium simulations [12]. Dynamical non-linear collapse
of very dense filaments (surrounded by milder underdensities, voids) generates a large positive roughly equilateral density
bispectrum.

overdensities can form by gravitational collapse, and thus equilateral non-Gaussianity is likely to be present in any

field undergoing local non-linear dynamical processes.

A bispectrum is determined by three wavevectors which always lie in a plane. In 3D, the modes we are considering

correspond to plane waves, and the concentrated overdensities correspond to filaments. These are precisely what form

during the growth of large-scale structure, as shown in the famous simulation of Fig. 2. Since it is the overdensities that

are concentrated, not the underdensities, the non-linear large-scale structure density field will have a large positive

equilateral component to its bispectrum (for a perturbation theory calculation see Ref. [13]).

Of course exactly equilateral triangles are a very special case, but there are many shapes that are close to equilateral

3

FIG. 1: Equilateral bispectrum: a field can be decomposed into plane-wave modes, and the three components with wavevectors
that form an equilateral triangle may have different relative signs. The sign of the bispectrum tells you which combination
of signs is more likely (on average gives a positive or negative product of the three modes). A positive reduced bispectrum
corresponds to being likely to have waves combining to have strong overdensities surrounded by larger areas of milder under-
density. A negative equilateral bispectrum corresponds to being likely to have concentrated underdensities surrounded by areas
of milder overdensity. Note that in 3D the figures extend into the page, and hence the positive bispectrum corresponds to
concentrated overdense filaments surrounded by larger areas of milder underdensity.

FIG. 2: A snapshot of non-linear large-scale structure from the millennium simulations [12]. Dynamical non-linear collapse
of very dense filaments (surrounded by milder underdensities, voids) generates a large positive roughly equilateral density
bispectrum.

overdensities can form by gravitational collapse, and thus equilateral non-Gaussianity is likely to be present in any

field undergoing local non-linear dynamical processes.

A bispectrum is determined by three wavevectors which always lie in a plane. In 3D, the modes we are considering

correspond to plane waves, and the concentrated overdensities correspond to filaments. These are precisely what form

during the growth of large-scale structure, as shown in the famous simulation of Fig. 2. Since it is the overdensities that

are concentrated, not the underdensities, the non-linear large-scale structure density field will have a large positive

equilateral component to its bispectrum (for a perturbation theory calculation see Ref. [13]).

Of course exactly equilateral triangles are a very special case, but there are many shapes that are close to equilateral

arXiv:1107.5431 Lewis

10

Figure 6: Signal to noise weighted bispectrum
√

k1k2k3/(Pδ(k1)Pδ(k2)Pδ(k3))Bδ measured in G512
400 simulations with L =

400Mpc/h at z = 2, 1, 0. Axes show k1, k2, k3 ≤ 2h/Mpc.

Wednesday, 22 August 2012



14

(61) and (52), respectively. In presence of inhomogeneous
noise we can in principle include off-diagonal covariance
elements �δkδk�� in a straightforward way. Finally our ap-
proach allows us to estimate the trispectrum efficiently
[28], which has been shown for a class of trispectrum
shapes in [29] (see also [6, 11]), but we leave the applica-
tion to N -body simulations for future work.

Bispectrum visualisation

Figure 4. Bispectrum weights [Pδ(k1)Pδ(k2) + 2 perms]−1

(top) and
�

k1k2k3/[Pδ(k1)Pδ(k2)Pδ(k3)] (bottom) evaluated with
CAMB [30] at redshift z = 30 on slices with k1+k2+k3 = 1h/Mpc.

Often in the literature the bispectrum is visualised
by plotting one- or two-dimensional slices through the
tetrapyd shown in Fig. 1. E.g. the plots in [59] corre-
spond to two-dimensional slices through the tetrapyd ob-
tained by varying k2 and k3 at fixed k1 and removing the
k3 > k2 part of the slice by symmetry. Some plots in [9]
and in this paper show two-dimensional tetrapyd slices
with k1+k2+k3 = const. While such slices are sufficient
for scale-invariant primordial bispectra, late time bispec-
tra typically have different triangle dependences at dif-
ferent overall scales k1+k2+k3. This motivates plotting

late time bispectra on the full three-dimensional tetrapyd
instead of plotting particular slices through the tetrapyd.
Instead of the unweighted bispectrum the so-called re-

duced bispectrum Q ≡ Bδ/(Pδ(k1)Pδ(k2) + 2perms) is
often shown, because it reduces the dynamical range of
the bispectrum and for the tree level gravitational contri-
bution it is independent of time, overall scale and power
spectrum normalisation and almost independent of cos-
mology [33]. Instead we will plot the signal to noise
weighted bispectrum

�
k1k2k3/(Pδ(k1)Pδ(k2)Pδ(k3))Bδ

because then the product of the shown functions gives
the scalar product defined in (38) [59], visual similarity
indicates a high shape correlation (39) and the dynam-
ical range of the unweighted bispectrum is also greatly
reduced, which is of advantage for plotting purposes. For
linearly evolved primordial bispectra (24), the signal to
noise weighted bispectrum is time-independent in the lin-
ear regime.
Qualitatively the two weights are quite similar in the

regime relevant for most plots of this paper, see Fig. 4.
However they differ in the squeezed limit, because for
decreasing k1, Pδ(k1)Pδ(k2) turns over at k1 = keq,
whereas

�
Pδ(k1)Pδ(k2)Pδ(k3)/(k1k2k3) turns constant

where P (k1)/k1 turns constant, which is on somewhat
larger scales than keq. While it is not straightforward to
deduce the squeezed limit of an unweighted bispectrum
from a plot of its weighted form, one can compare plots of
different bispectra if they are weighted in the same way
to deduce the relative behavior in the squeezed limit.

V. SIMULATION SETUP, INITIAL CONDITIONS

AND VALIDATION

N-body simulations setup

We use the separable mode expansion method de-
scribed in [28, 29] to generate realisations of the initial
primordial potential Φ = −3R/5 during matter domi-
nation with the desired primordial power spectrum and
bispectrum. For 5123 particles this takes about 10 min-
utes per seed on one core and works for separable as well
as non-separable bispectra, therefore being more general
than other proposed methods [25, 27]. From Φ we calcu-
late the linear density perturbation δ at the initial red-
shift of the simulation with the Poisson equation (2). We
then use this initial density perturbation to displace the
initial particles from an unperturbed distribution with
the 2LPT method [61, 62], which also determines the ini-
tial particle velocities. Then the N -body code Gadget-3
[63, 64] simulates the time evolution until today and we
use a cloud in cell scheme to calculate the density pertur-
bation δ of the particle distribution on a grid at different
redshifts. After deconvolving δ with the cloud in cell
kernel we compute the power spectrum Pδ and the coef-
ficients βR

n from (53) using nmax = 50 modes. Finally we
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 Lots of results - the evolving bispectrum

Getting the N-body initial conditions
(A) Poisson equation to convert to density perturbations

2.11. Background I : Primordial Cosmology and the CMB – Signatures of infla-

tion - Large Scale Structure 42

equation via the expression

δk(a) = M(k; a)Φk, (2.174)

where a is the scale factor and M(k; a) is given by

M(k; a) = −3

5

k
2
T (k)

ΩmH
2
0

D+(a), (2.175)

where T (k) is the matter transfer function, D+(a) is the growth factor in linear pertur-

bation theory, Ωm is the present value of the dark matter density and H0 is the present

value of the Hubble constant. The transfer function is defined as

T (k) =
δk(a0)

δk(a)D+(a)
. (2.176)

Thus, the n-point correlator of the correlation function of matter density perturbations

at a given value of the scale factor is given by

�δk1(a)δk2(a) . . . δkn(a)�c = (Πn
i=1M(ki; a)) �Φk1Φk2 . . .Φkn�c. (2.177)

The matter power spectrum, bispectrum and trispectrum arising due to the primordial

bispectrum are therefore given by

PI(k; a) = M(k; a)
2
PΦ(k), (2.178)

BI(k1, k2, k3; a) = M(k1; a)M(k2; a)M(k3; a)BΦ(k1, k2, k3), (2.179)

TI(k1,k2,k3,k4; a) = M(k1; a)M(k2; a)M(k3; a)M(k4; a)TΦ(k1,k2,k3,k4). (2.180)

The contribution to the matter power spectrum and bispectrum due to gravitational

collapse are given - at second order with respect to perturbations in δ - respectively by

[41, 42],

PNG(k; a) =2

�
d
3y

(2π)3
BI(k,y,k− y; a)F2(y,k− y), (2.181)

BNG(k1, k2, k3; a) = [2F2(k1,k2)PI(k1; a)PI(k2; a) + cyclic]

+

�
d
3y

(2π)3
[TI(y,k− y,k1,k2; a)F2(y,k3 − y) + cyclic] ,

(2.182)

where the gravitational kernel F2 is given by

F2(y,k2) =
17

21
+ P1(µ)

�
y

k2
+

k2

y

�
+

4

21
P2(µ), (2.183)
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(B) 2nd order Lagrangian perturbation theory to get the 
positions and velocities of the particles... must decide 

whether to use a glass or a grid configuration. 

(C) Other things to choose: Boxsize
Number of particles
Initial redshift
plus the ‘gas softening length’
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MCMC analyses or for obtaining fitting formulae. Once
βR
n is measured from the data, we can not only obtain the

full bispectrum with (28), but we can also calculate the

non-linearity parameter f
Bth

δ
NL associated to any theoreti-

cal bispectrum Bth
δ using (25). Finally our approach al-

lows us to estimate the trispectrum efficiently [? ], which
has been shown in [? ], but we leave the application to
N-body simulations for future work.

SIMULATION SETUP

We use the separable mode expansion method de-
scribed in CITE1008,1108 to generate realisations of the
initial primordial potential Φ = −3R/5 during matter
domination with the desired primordial power spectrum
and bispectrum. TODO:verde claims in 1102 that this
gives wrong scaling in the squeezed limit, discuss this
(probably squeezed limit is really wrong, but not al-
ways k−2 scaling. may be improve by adding other ba-
sis functions or changing separable weight) To calculate
the linear density perturbation δ at the initial redshift
of the simulations we use the Poisson equation (9). We
then use this initial density perturbation to displace the
initial particles from an unperturbed distribution with
the 2LPT method CITE:scoccimethod,scoccicode, which
also determines the initial particle velocities. Then the
N-body code Gadget-3 [? ] simulates the time evolution
until today and we use a cloud in cell scheme to calculate
the density perturbation δ of the particle distribution on
a grid at different redshifts. After deconvolving δ with
the cloud in cell kernel we compute the power spectrum
Pδ and the coefficients βR

n from (26) using nmax = 50
modes. Finally we reconstruct the full bispectrum with

(28) and calculate its norm ˆ̄FNL (32) as well as its shape
correlation Cβ,α′ (30) with theoretical bispectra and its
non-linear amplitude (25).

For the unperturbed particle distribution, from which
initial particles are displaced using the 2LPT method, we
either use a regular grid or a glass configuration obtained
by placing particles randomly in the box and then evolv-
ing them with the sign of gravity flipped in Gadget-3
CITE:White,springel. TODO: details about glass

Table I lists the N-body simulations that were per-
formed in this work.

RESULTS

In this section we apply the separable bispectrum es-
timator to N-body simulations and compare the mea-
surements with analytical predictions. First we test the
setup of the initial conditions and the N-body simula-
tion by comparing the measured power spectrum with

Name NG
shape

fNL L[Mpc
h ] Np zi Ls[

kpc
h ] Nr glass

G512 – – 1600 512 49 156 3 no

G512g – – 1600 512 49 156 3 yes

G768 – – 2400 768 19 90 3 no

G1024 – – 1875 1024 19 40 2 no

Loc10 local 10 1600 512 49 156 3 no

Loc10g local 10 1600 512 49 156 3 yes

Eq100 equil 100 1600 512 49 156 3 no

Eq100g equil 100 1600 512 49 156 3 yes

Orth100 orth 100 1600 512 49 156 3 no

Orth100g orth 100 1600 512 49 156 3 yes

Orth100− orth −100 1600 512 49 156 3 no

Flat10 flat 10 1600 512 49 156 3 no

Table I: Parameters for N-body simulations. Nr denotes the
number of seeds, Ls is the softening length and ’glass’ indi-
cates if the initial particles were displaced from a regular grid
or from a glass configuration. Initial conditions for non-local
non-Gaussian simulations were generated with the separable
method described in [? ? ]. All simulations use the 2LPT
method [? ] to get the initial particle distribution.

the matter power spectrum predicted by linear theory
and by CAMB [? ? ] in Fig. 1. Next we perform a
simple test of the bispectrum estimator by distributing
particles randomly in a box and comparing the measured
bispectrum with the shot noise bispectrum Bδ = 1/n̄2,
where n̄ is the mean number density. TODO: shot noise
figure.

k [h/Mpc]
10−2 10−1

Figure 1: TODO: Measured power spectra (blue) of 3 N-
body simulations with 5123 particles in a L = 1600 Mpc/h
box with Gaussian initial conditions compared to the linear
(green, dashed) and non-linear prediction (green, line) from
CAMB [? ]. Curves from bottom to top correspond to red-
shifts z = 49, 10, 7, 5, 4, 3, 2, 1, 0.
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reconstructed 
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Evolving ‘Gaussian’ Bispectrum
13

(a) Dark matter, z = 4 (b) Bispectrum signal, z = 4

(c) Dark matter, z = 2 (d) Bispectrum signal, z = 2

(e) Dark matter, z = 0 (f) Bispectrum signal, z = 0

Figure 7. Left: Dark matter distribution in a (40Mpc/h)3 subbox of one of the G512
400 simulations at redshifts z = 4, 2 and 0, from top to

bottom. Right: Measured (signal to noise weighted) bispectrum in the range 0.016h/Mpc ≤ k ≤ 2h/Mpc, averaged over the simulation
on the left and two additional seeds.

Early blob-like 
structure

Flattened bispectrum
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(a) Dark matter, z = 4 (b) Bispectrum signal, z = 4

(c) Dark matter, z = 2 (d) Bispectrum signal, z = 2

(e) Dark matter, z = 0 (f) Bispectrum signal, z = 0

Figure 7. Left: Dark matter distribution in a (40Mpc/h)3 subbox of one of the G512
400 simulations at redshifts z = 4, 2 and 0, from top to

bottom. Right: Measured (signal to noise weighted) bispectrum in the range 0.016h/Mpc ≤ k ≤ 2h/Mpc, averaged over the simulation
on the left and two additional seeds.

Looking more and 
more equilateral

Filaments and 
clusters appearing
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Figure 12. Like Fig. 11 but for simulations Loc10, Eq100 and Orth100 with local, equilateral and orthogonal non-Gaussian initial

conditions, respectively. The non-Gaussian bispectrum is computed with (55) and then compared to the tree level prediction (22) (dashed

lines). The lowest panel shows the shape correlation of the measured non-Gaussian bispectrum with the measured bispectrum for Gaussian

initial conditions. TODO: red z = 0 point missing for FNL orthogonal, change limits

Comparing to the tree level result

Wednesday, 22 August 2012



COMPARISON AGAINST LOOP 
LEVEL RESULTS & 

PHENOMENOLOGICAL MODELS

3

use the same cutoff as in [2, 7] setting B = 0 for
k̃i < 0.03(k1 + k2 + k3) and then smoothing the discon-
tinuity on k1 + k2 + k3 = const. slices with a Gaussian
filter with FWHM of 0.03/(k1 + k2 + k3).

TODO: maybe discuss that templates are not exactly
the inflationary shapes but agree well where signal is
peaked. however e.g. halo bias need correct squeuzed
limit which can be wrong if the templates are used! our
method can do correct squeezed limit if extended to log
tetrapyd or if modes are used which get large scales right.
say why we use templates instead of physical shapes.
maybe because our expansion just gets signal to noise
right and therefore we would probably not see difference
between phys. shapes and templates (and deviations in
e.g. squeezed limit are uncontrolled anyway at the mo-
ment).

III. DARK MATTER BISPECTRUM

The dark matter bispectrum consists of the gravita-
tional bispectrum B

grav
δ , which is generated by non-linear

gravitational evolution from Gaussian primordial initial
conditions, and a possible primordial contribution B

prim
δ .

Both contributions can be calculated using a perturba-
tive expansion of the density perturbation. At leading
order the gravitational bispectrum is CITE

B
grav
δ (k1, k2, k3) = 2PL

δ (k1)P
L
δ (k2)F

(s)
2 (k1,k2) + 2 perms,

(7)

where P
L
δ is the linear power spectrum, and F

(s)
2 is de-

termined by the equations of motion,

F
(s)
2 (k1,k2) =

5

7
+
1

2

k1 · k2

k1k2

�
k1

k2
+

k2

k1

�
+
2

7

�
k1 · k2

k1k2

�2

.

(8)
This kernel has its maximum for folded triangles, k1 =
k2, and vanishes for exactly squeezed triangles, k1 =
−k2, implying that the tree level gravitational bispec-
trum is suppressed in the squeezed limit.

The tree level expression (7) is only a good approxi-
mation on large scales. To predict the gravitational bis-
pectrum on small scales one can go to higher order in
perturbation theory and take loop corrections into ac-
count [12, 13]. On sufficiently small scales the perturba-
tive treatment breaks down. In this regime it is possi-
ble to fit phenomenological formulae to simulations (e.g.
[14, 15]).

To calculate how a primordial bispectrum BΦ con-
tributes to the matter bispectrum, we relate Φ to δ with
the linear Poisson equation TODO: check if there are
more D(z) factors for normalisation, cf code

δ(k, z) =
2

3

k
2
T (k)D(z)

ΩmH
2
0

Φ(k) ≡ M(k, z)Φ(k), (9)

where T (k) is the linear transfer function at low redshift
normalised to T (k) = 1 on large scales and calculable
with CAMB [48], and D(z) is the linear growth function
for Ωrad = 0 [49] normalised to D(z) = 1/(1 + z) during
matter domination. This gives

B
prim
δ (k1,k2, k3; z) =

M(k1, z)M(k2, z)M(k3, z)BΦ(k1, k2, k3), (10)

which is valid on large scales. In general loop corrections
become important on small scales [12, 13]. At sufficiently
small scales the perturbative treatment breaks down and
simulations must be used.

While the time dependence of the tree level gravita-
tional contribution (7) to the dark matter bispectrum is
given by B

grav
δ ∝ D

4(z), the primordial contribution only

grows like B
prim
δ ∝ D

3(z), implying that it is easier to
extract the primordial contribution at early times.

Loop Corrections

Expressions for the 1-loop corrections to the matter
bispectrum were derived for Gaussian initial conditions
in [50] and extended to include non-Gaussian initial con-
ditions in [12]. However, in [15] a phenomenological fit
(based on [14]) to the corrections in the Gaussian case
was found. Here we will review for the sake of complete-
ness this phenomenological fit and the non-Gaussian loop
corrections. These higher order corrections will be tested
in this paper and their range of validity explored.

The phenomenological fit is given by replacing the lin-
ear power spectrum in (7) by the nonlinear one Pδ, and

by replacing the symmetrised kernel F (s)
2 by

F
(s) eff
2 (k1,k2) =

5

7
a(n1, k1)a(n2, k2)

+
1

2

k1 · k2

k1k2

�
k1

k2
+

k2

k1

�
b(n1, k1)b(n2, k2)

+
2

7

�
k1 · k2

k1k2

�2

c(n1, k1)c(n2, k2) , (11)

where

a(n, k) =
1 + σa6

8 (z)
�

0.7Q3(n)(a1q)a2+n

1 + (a1q)a2+n
, (12)

b(n, k) =
1 + 0.2a3(n+ 3)(qa7)n+3+a8

1 + (qa7)3.5+n+a8
, (13)

c(n, k) =
1 + 4.5a4/[1.5 + (n+ 3)4](qa5)n+3+a9

1 + (qa5)3.5+n+a9
. (14)

In these formulae, n represents to slope of the linear
power spectrum at k, i.e. n = d lnPL

δ (k)/d ln k, q =
k/knl with knl defined by k

3
nlP

L
δ (knl)/(2π2) = 1, and the

function Q3(n) is given by

Q3(n) =
4− 2n

1 + 2n+1
. (15)

3

use the same cutoff as in [2, 7] setting B = 0 for
k̃i < 0.03(k1 + k2 + k3) and then smoothing the discon-
tinuity on k1 + k2 + k3 = const. slices with a Gaussian
filter with FWHM of 0.03/(k1 + k2 + k3).

TODO: maybe discuss that templates are not exactly
the inflationary shapes but agree well where signal is
peaked. however e.g. halo bias need correct squeuzed
limit which can be wrong if the templates are used! our
method can do correct squeezed limit if extended to log
tetrapyd or if modes are used which get large scales right.
say why we use templates instead of physical shapes.
maybe because our expansion just gets signal to noise
right and therefore we would probably not see difference
between phys. shapes and templates (and deviations in
e.g. squeezed limit are uncontrolled anyway at the mo-
ment).

III. DARK MATTER BISPECTRUM

The dark matter bispectrum consists of the gravita-
tional bispectrum B

grav
δ , which is generated by non-linear

gravitational evolution from Gaussian primordial initial
conditions, and a possible primordial contribution B

prim
δ .

Both contributions can be calculated using a perturba-
tive expansion of the density perturbation. At leading
order the gravitational bispectrum is CITE

B
grav
δ (k1, k2, k3) = 2PL

δ (k1)P
L
δ (k2)F

(s)
2 (k1,k2) + 2 perms,

(7)

where P
L
δ is the linear power spectrum, and F

(s)
2 is de-

termined by the equations of motion,

F
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(8)
This kernel has its maximum for folded triangles, k1 =
k2, and vanishes for exactly squeezed triangles, k1 =
−k2, implying that the tree level gravitational bispec-
trum is suppressed in the squeezed limit.

The tree level expression (7) is only a good approxi-
mation on large scales. To predict the gravitational bis-
pectrum on small scales one can go to higher order in
perturbation theory and take loop corrections into ac-
count [12, 13]. On sufficiently small scales the perturba-
tive treatment breaks down. In this regime it is possi-
ble to fit phenomenological formulae to simulations (e.g.
[14, 15]).

To calculate how a primordial bispectrum BΦ con-
tributes to the matter bispectrum, we relate Φ to δ with
the linear Poisson equation TODO: check if there are
more D(z) factors for normalisation, cf code

δ(k, z) =
2

3

k
2
T (k)D(z)

ΩmH
2
0

Φ(k) ≡ M(k, z)Φ(k), (9)

where T (k) is the linear transfer function at low redshift
normalised to T (k) = 1 on large scales and calculable
with CAMB [48], and D(z) is the linear growth function
for Ωrad = 0 [49] normalised to D(z) = 1/(1 + z) during
matter domination. This gives

B
prim
δ (k1,k2, k3; z) =

M(k1, z)M(k2, z)M(k3, z)BΦ(k1, k2, k3), (10)

which is valid on large scales. In general loop corrections
become important on small scales [12, 13]. At sufficiently
small scales the perturbative treatment breaks down and
simulations must be used.

While the time dependence of the tree level gravita-
tional contribution (7) to the dark matter bispectrum is
given by B

grav
δ ∝ D

4(z), the primordial contribution only

grows like B
prim
δ ∝ D

3(z), implying that it is easier to
extract the primordial contribution at early times.

Loop Corrections

Expressions for the 1-loop corrections to the matter
bispectrum were derived for Gaussian initial conditions
in [50] and extended to include non-Gaussian initial con-
ditions in [12]. However, in [15] a phenomenological fit
(based on [14]) to the corrections in the Gaussian case
was found. Here we will review for the sake of complete-
ness this phenomenological fit and the non-Gaussian loop
corrections. These higher order corrections will be tested
in this paper and their range of validity explored.

The phenomenological fit is given by replacing the lin-
ear power spectrum in (7) by the nonlinear one Pδ, and

by replacing the symmetrised kernel F (s)
2 by

F
(s) eff
2 (k1,k2) =

5

7
a(n1, k1)a(n2, k2)

+
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+
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c(n1, k1)c(n2, k2) , (11)

where

a(n, k) =
1 + σa6

8 (z)
�

0.7Q3(n)(a1q)a2+n

1 + (a1q)a2+n
, (12)

b(n, k) =
1 + 0.2a3(n+ 3)(qa7)n+3+a8

1 + (qa7)3.5+n+a8
, (13)

c(n, k) =
1 + 4.5a4/[1.5 + (n+ 3)4](qa5)n+3+a9

1 + (qa5)3.5+n+a9
. (14)

In these formulae, n represents to slope of the linear
power spectrum at k, i.e. n = d lnPL

δ (k)/d ln k, q =
k/knl with knl defined by k

3
nlP

L
δ (knl)/(2π2) = 1, and the

function Q3(n) is given by

Q3(n) =
4− 2n

1 + 2n+1
. (15)

where

Tree level

Phenomenological fit (Gil-Marin et al arXiv:11114477)

3

use the same cutoff as in [2, 7] setting B = 0 for
k̃i < 0.03(k1 + k2 + k3) and then smoothing the discon-
tinuity on k1 + k2 + k3 = const. slices with a Gaussian
filter with FWHM of 0.03/(k1 + k2 + k3).

TODO: maybe discuss that templates are not exactly
the inflationary shapes but agree well where signal is
peaked. however e.g. halo bias need correct squeuzed
limit which can be wrong if the templates are used! our
method can do correct squeezed limit if extended to log
tetrapyd or if modes are used which get large scales right.
say why we use templates instead of physical shapes.
maybe because our expansion just gets signal to noise
right and therefore we would probably not see difference
between phys. shapes and templates (and deviations in
e.g. squeezed limit are uncontrolled anyway at the mo-
ment).

III. DARK MATTER BISPECTRUM

The dark matter bispectrum consists of the gravita-
tional bispectrum B

grav
δ , which is generated by non-linear

gravitational evolution from Gaussian primordial initial
conditions, and a possible primordial contribution B

prim
δ .

Both contributions can be calculated using a perturba-
tive expansion of the density perturbation. At leading
order the gravitational bispectrum is CITE

B
grav
δ (k1, k2, k3) = 2PL

δ (k1)P
L
δ (k2)F

(s)
2 (k1,k2) + 2 perms,

(7)

where P
L
δ is the linear power spectrum, and F

(s)
2 is de-

termined by the equations of motion,
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(8)
This kernel has its maximum for folded triangles, k1 =
k2, and vanishes for exactly squeezed triangles, k1 =
−k2, implying that the tree level gravitational bispec-
trum is suppressed in the squeezed limit.

The tree level expression (7) is only a good approxi-
mation on large scales. To predict the gravitational bis-
pectrum on small scales one can go to higher order in
perturbation theory and take loop corrections into ac-
count [12, 13]. On sufficiently small scales the perturba-
tive treatment breaks down. In this regime it is possi-
ble to fit phenomenological formulae to simulations (e.g.
[14, 15]).

To calculate how a primordial bispectrum BΦ con-
tributes to the matter bispectrum, we relate Φ to δ with
the linear Poisson equation TODO: check if there are
more D(z) factors for normalisation, cf code

δ(k, z) =
2

3

k
2
T (k)D(z)

ΩmH
2
0

Φ(k) ≡ M(k, z)Φ(k), (9)

where T (k) is the linear transfer function at low redshift
normalised to T (k) = 1 on large scales and calculable
with CAMB [48], and D(z) is the linear growth function
for Ωrad = 0 [49] normalised to D(z) = 1/(1 + z) during
matter domination. This gives

B
prim
δ (k1,k2, k3; z) =

M(k1, z)M(k2, z)M(k3, z)BΦ(k1, k2, k3), (10)

which is valid on large scales. In general loop corrections
become important on small scales [12, 13]. At sufficiently
small scales the perturbative treatment breaks down and
simulations must be used.

While the time dependence of the tree level gravita-
tional contribution (7) to the dark matter bispectrum is
given by B

grav
δ ∝ D

4(z), the primordial contribution only

grows like B
prim
δ ∝ D

3(z), implying that it is easier to
extract the primordial contribution at early times.

Loop Corrections

Expressions for the 1-loop corrections to the matter
bispectrum were derived for Gaussian initial conditions
in [50] and extended to include non-Gaussian initial con-
ditions in [12]. However, in [15] a phenomenological fit
(based on [14]) to the corrections in the Gaussian case
was found. Here we will review for the sake of complete-
ness this phenomenological fit and the non-Gaussian loop
corrections. These higher order corrections will be tested
in this paper and their range of validity explored.

The phenomenological fit is given by replacing the lin-
ear power spectrum in (7) by the nonlinear one Pδ, and

by replacing the symmetrised kernel F (s)
2 by

F
(s) eff
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where
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, (12)
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1 + (qa7)3.5+n+a8
, (13)

c(n, k) =
1 + 4.5a4/[1.5 + (n+ 3)4](qa5)n+3+a9

1 + (qa5)3.5+n+a9
. (14)

In these formulae, n represents to slope of the linear
power spectrum at k, i.e. n = d lnPL

δ (k)/d ln k, q =
k/knl with knl defined by k

3
nlP

L
δ (knl)/(2π2) = 1, and the

function Q3(n) is given by

Q3(n) =
4− 2n

1 + 2n+1
. (15)

99% correlation to N-body result

Gaussian case
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Tree level

Loop Level Result (Sefusatti et al arXiv:1111.6966)

Non-Gaussian case

3

use the same cutoff as in [2, 7] setting B = 0 for
k̃i < 0.03(k1 + k2 + k3) and then smoothing the discon-
tinuity on k1 + k2 + k3 = const. slices with a Gaussian
filter with FWHM of 0.03/(k1 + k2 + k3).

TODO: maybe discuss that templates are not exactly
the inflationary shapes but agree well where signal is
peaked. however e.g. halo bias need correct squeuzed
limit which can be wrong if the templates are used! our
method can do correct squeezed limit if extended to log
tetrapyd or if modes are used which get large scales right.
say why we use templates instead of physical shapes.
maybe because our expansion just gets signal to noise
right and therefore we would probably not see difference
between phys. shapes and templates (and deviations in
e.g. squeezed limit are uncontrolled anyway at the mo-
ment).

III. DARK MATTER BISPECTRUM

The dark matter bispectrum consists of the gravita-
tional bispectrum B

grav
δ , which is generated by non-linear

gravitational evolution from Gaussian primordial initial
conditions, and a possible primordial contribution B

prim
δ .

Both contributions can be calculated using a perturba-
tive expansion of the density perturbation. At leading
order the gravitational bispectrum is CITE

B
grav
δ (k1, k2, k3) = 2PL

δ (k1)P
L
δ (k2)F

(s)
2 (k1,k2) + 2 perms,

(7)

where P
L
δ is the linear power spectrum, and F

(s)
2 is de-

termined by the equations of motion,

F
(s)
2 (k1,k2) =

5

7
+
1

2

k1 · k2

k1k2

�
k1

k2
+

k2

k1

�
+
2

7

�
k1 · k2

k1k2

�2

.

(8)
This kernel has its maximum for folded triangles, k1 =
k2, and vanishes for exactly squeezed triangles, k1 =
−k2, implying that the tree level gravitational bispec-
trum is suppressed in the squeezed limit.

The tree level expression (7) is only a good approxi-
mation on large scales. To predict the gravitational bis-
pectrum on small scales one can go to higher order in
perturbation theory and take loop corrections into ac-
count [12, 13]. On sufficiently small scales the perturba-
tive treatment breaks down. In this regime it is possi-
ble to fit phenomenological formulae to simulations (e.g.
[14, 15]).

To calculate how a primordial bispectrum BΦ con-
tributes to the matter bispectrum, we relate Φ to δ with
the linear Poisson equation TODO: check if there are
more D(z) factors for normalisation, cf code

δ(k, z) =
2

3

k
2
T (k)D(z)

ΩmH
2
0

Φ(k) ≡ M(k, z)Φ(k), (9)

where T (k) is the linear transfer function at low redshift
normalised to T (k) = 1 on large scales and calculable
with CAMB [48], and D(z) is the linear growth function
for Ωrad = 0 [49] normalised to D(z) = 1/(1 + z) during
matter domination. This gives

B
prim
δ (k1,k2, k3; z) =

M(k1, z)M(k2, z)M(k3, z)BΦ(k1, k2, k3), (10)

which is valid on large scales. In general loop corrections
become important on small scales [12, 13]. At sufficiently
small scales the perturbative treatment breaks down and
simulations must be used.

While the time dependence of the tree level gravita-
tional contribution (7) to the dark matter bispectrum is
given by B

grav
δ ∝ D

4(z), the primordial contribution only

grows like B
prim
δ ∝ D

3(z), implying that it is easier to
extract the primordial contribution at early times.

Loop Corrections

Expressions for the 1-loop corrections to the matter
bispectrum were derived for Gaussian initial conditions
in [50] and extended to include non-Gaussian initial con-
ditions in [12]. However, in [15] a phenomenological fit
(based on [14]) to the corrections in the Gaussian case
was found. Here we will review for the sake of complete-
ness this phenomenological fit and the non-Gaussian loop
corrections. These higher order corrections will be tested
in this paper and their range of validity explored.

The phenomenological fit is given by replacing the lin-
ear power spectrum in (7) by the nonlinear one Pδ, and

by replacing the symmetrised kernel F (s)
2 by

F
(s) eff
2 (k1,k2) =

5

7
a(n1, k1)a(n2, k2)

+
1

2

k1 · k2

k1k2

�
k1

k2
+

k2

k1

�
b(n1, k1)b(n2, k2)

+
2

7

�
k1 · k2

k1k2

�2

c(n1, k1)c(n2, k2) , (11)

where

a(n, k) =
1 + σa6

8 (z)
�

0.7Q3(n)(a1q)a2+n

1 + (a1q)a2+n
, (12)

b(n, k) =
1 + 0.2a3(n+ 3)(qa7)n+3+a8

1 + (qa7)3.5+n+a8
, (13)

c(n, k) =
1 + 4.5a4/[1.5 + (n+ 3)4](qa5)n+3+a9

1 + (qa5)3.5+n+a9
. (14)

In these formulae, n represents to slope of the linear
power spectrum at k, i.e. n = d lnPL

δ (k)/d ln k, q =
k/knl with knl defined by k

3
nlP

L
δ (knl)/(2π2) = 1, and the

function Q3(n) is given by

Q3(n) =
4− 2n

1 + 2n+1
. (15)

... < 60% correlation for k>0.1 h/Mpc

4

The free parameters a1 − a9 were found by simulations
to have best-fit parameters [15]

a1 = 0.484, a2 = 3.749, a3 = −0.849,

a4 = 0.392, a5 = 1.013, a6 = −0.575,

a7 = 0.128, a8 = −0.722, a9 = −0.926 . (16)

The additional contributions to the 1-loop corrections
to the matter bispectrum for non-Gaussian initial condi-
tions are given by B = BII

112 +BI
122 +BII

122 +BI
113 +BII

113

BII
112 =

�
d3q

(2π)3
F2(q,k3 − q)TL

δ (k1,k2,q,k3 − q) ,

(17)

BI
112 =F (s)

2 (k1,k2)[P
L
δ (k1)P12(k2) + k1 ↔ k2]

+ 2 perms, (18)

BII
122 =4

�
d3q

(2π)3
F (s)
2 (q,k2 − q)F (s)

2 (k1 + q,k2 − q)×

BL
δ (k1, q, |k1 + q|)PL

δ (|k2 − q|) + 2 perms , (19)

BI
113 =3BL

δ (k1, k2, k3)

�
d3q

(2π)3
F (s)
3 (k3,q,−q)PL

δ (q)

+ 2 perms, (20)

BII
113 =3PL

δ (k1)

�
d3q

(2π)3
F (s)
3 (k1,q,k2 − q)×

BL
δ (k2, q, |k2 − q|) + (k1 ↔ k2) + 2 perms, (21)

where

P12(k) = 2

�
d3q

(2π)3
F (s)
2 (q,k− q)BL

δ (k, q, |k− q|) .

(22)

In these formulae we have, for clarity, denoted the linear
power spectrum (PL

δ ), bispectrum (BL
δ ) and trispectrum

(TL
δ ) with a superscript L to distinguish them from their

non-linear counterparts which include loop corrections.

A formula for the symmetrised kernel F (s)
3 may be found

in [42]. It has been shown in [12, 13] that the contribution
due to the trispectrum, BII

112, may be neglected. The
neglect of O(f2

NL) corrections will also be tested in the
results section of the paper.

IV. BISPECTRUM ESTIMATION

fNL estimator

If our theoretical model is that the density perturba-
tion δ has power spectrum Pδ(k) and bispectrum f th

NLB
th
δ ,

then the maximum likelihood estimator for the amplitude
of this bispectrum in the limit of weak non-Gaussianity

is given by [27, 29, 51]2

f̂ th
NL =

(2π)3

Nth

�
Π3

i=1d
3ki

(2π)9
(2π)3δD(k1 + k2 + k3)

× Bth
δ (k1, k2, k3)[δk1δk2δk3 − 3�δk1δk2�δk3 ]

Pδ(k1)Pδ(k2)Pδ(k3)
(23)

where δ is the observed density perturbation. If this has
a bispectrum Bobs

δ , i.e.

�δk1δk2δk3� = (2π)3δD(
�

ki)B
obs
δ (k1, k2, k3), (24)

then the expectation value of (23) is given by3

�f̂ th
NL� =

1

Nth

V

π

�

VB

dk1dk2dk3k1k2k3

× Bobs
δ (k1, k2, k3)Bth

δ (k1, k2, k3)

Pδ(k1)Pδ(k2)Pδ(k3)
, (26)

where VB is the tetrahedral domain allowed by the tri-
angle condition on the wavenumbers ki, and V is a vol-
ume factor given by V = (2π)3δD(0) = L3. Demanding
�f̂ th

NL� = 1 for Bth
δ = Bobs

δ fixes the normalisation such
that

Nth =
V

π

�

VB

dk1dk2dk3
k1k2k3[Bth

δ (k1, k2, k3)]2

Pδ(k1)Pδ(k2)Pδ(k3)
. (27)

Shape and size comparisons

Eq. (26) motivates the definition of a scalar product
between two bispectrum shapes [27, 53],

�Bi, Bj� ≡
V

π

�

VB

k1k2k3Bi(k1, k2, k3)Bj(k1, k2, k3)

Pδ(k1)Pδ(k2)Pδ(k3)
,

(28)
which can be normalised to a number between −1 and 1
by defining the cosine or shape correlation

C(Bi, Bj) ≡
�Bi, Bj��

�Bi, Bi� �Bj , Bj�
. (29)

If two theoretical bispectra B1 and B2 have a small shape
correlation, |C(B1, B2)| � 1, the optimal estimator for

2 Note that we have assumed here that �δδ� is diagonal. This
assumption is expected to break down in the non-linear regime
(see for example [52]).

3 Performing the angular integrals implies
�

Π3
i=1d

3ki

(2π)9
(2π)6δ2D(k1 + k2 + k3)F (k1, k2, k3)

=
V

8π4

�

VB

dk1dk2dk3 k1k2k3F (k1, k2, k3), (25)

which corrects for a factor of (2π)3 missing in [27].
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The matter bispectrum and PNG: small scales 

Squeezed configurations B(Δk, k, k) 
as a function of k with Δk = 0.01 h/Mpc

ES (2009)
ES, Crocce & Desjacques (2010) 
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Squeezed configurations B(∆k, k, k) vs. k, Gaussian initial conditions (fNL = 0):
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Squeezed configurations B(∆k, k, k) vs. k, non-Gaussian initial conditions (fNL = 100):
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FIG. 5: Same as Fig. 3, but for squeezed configurations, B(∆k, k, k), with ∆k = 3kf � 0.012 h Mpc−1 as a function of k.
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Squeezed configurations B(∆k, k, k) vs. k, Gaussian initial conditions (fNL = 0):
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Squeezed configurations B(∆k, k, k) vs. k, non-Gaussian initial conditions (fNL = 100):
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FIG. 5: Same as Fig. 3, but for squeezed configurations, B(∆k, k, k), with ∆k = 3kf � 0.012 h Mpc−1 as a function of k.

B = B0 +Btree
G [P0] +Bloop

G [P0] +Bloop
NG [P0, B0]

Primordial 
component

Gravity-induced 
contributions

Additional gravity-induced contributions 
present for NG initial conditions (B0)

ES (2009)
ES, Crocce & Desjacques (2010) 

Previous analysis only 
particular slices=>
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Model z Tree kmax = 0.5 Tree+Loop (0.5) Tree kmax = 0.25 Tree+Loop (0.25) Tree kmax = 0.125 Tree+Loop (0.125)

Local 0 58%, 66.6 79%, 12.3 84% 84% 94%, 11 98%, 10.2

1 87%, 29.2 87%, 8.5 95% 98% 96%, 10.6 97%, 10.5

2 89%, 25.9 92%, 13.8 98% 99% 96%, 10.5 97%, 10.4

3 96%, 20.8 96%, 13.8 99% 100% 96%, 10.3 97%, 10.3

Equil 0 78% 84% 91% 95% 96% 96%

1 87% 91% 96% 97% 95% 97%

2 92% 96% 98% 98% 95% 95%

3 96% 98% 98% 99% 95% 95%

Flat 0 48%, 47.45 88%, 11.1 76% 98% 90%, 10.3 95%, 9.8

1 66%, 30.3 94%, 11.8 90% 98% 92%, 10.2 93%, 10.1

2 83%, 22.9 98%, 12.1 94% 97% 94%, 10.3 94%, 10.1

3 92%, 19.1 99%, 12.2 95% 97% 92%, 10.2 93%, 10.1

Orthog 0 47% 70% 87% 87%

1 74% 85% 95% 96%

2 90% 95% 96% 97%

3 96% 98% 96% 96%

Table III: (TODO:update!) Parameters for N-body simulations. Nr denotes the number of seeds, Ls is the softening length

and ’glass’ indicates if the initial particles were displaced from a regular grid or from a glass configuration. Initial conditions

for non-local non-Gaussian simulations were generated with the separable method described in [? ? ]. All simulations use the

2LPT method [? ] to get the initial particle distribution.
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• Beyond perturbation theory... The Halo Model

Ingredients: (1) Halo mass function
                  (2) Halo density profile
                 (3) Halo bias functions

Assumes all dark matter resides in halos

halos to be tracers of the underlying matter distribution, we can assume a linear bias relation between the

halo and the matter density constrasts, so that δh ≈ b1δ. Thus, at large scales, the halo power spectrum

can be approximated as

Ph(k,m1,m2) = b1(m1) b1(m2)PL(k) , (12)

where b1(m) represents the linear bias function for halos of mass m. Note that for Gaussian initial

conditions, b1 only depends on the mass m, as implicitely assumed in Eq. (12). However, if primordial

non-Gaussianity is considered, b1 will also depend in general on the scale k. Either way, the 2-halo term

can be rewritten as

P2h(k, z) =
1

ρ̄2

�
2�

i=1

�
dmi n(mi, z) ρ̂(k,m, z) b1(m, z)

�
PL(k) , (13)

with an additional dependence on k in the b1 function for non-Gaussian initial conditions.

This description can be easily extended to the matter bispectrum. In the case of a three-point

function, we should account for the possibility that the three points belong to just one, two or three dark

matter halos. This means that there are now three distinct contributions to the Halo Model expression

for the matter bispectrum, that is

B(k1, k2, k3) = B3h(k1, k2, k3) +B2h(k1, k2, k3) +B1h(k1, k2, k3) , (14)

where

B3h(k1, k2, k3, z) =
1

ρ̄3

�
3�

i=1

�
dmi n(mi, z) ρ̂(mi, z, ki)

�
Bh(k1,m1; k2,m2; k3,m3; z) , (15)

B2h(k1, k2, k3, z) =
1

ρ̄3

�
dmn(m, z) ρ̂(m, z, k1)

�
dm� n(m�, z) ρ̂(m�, z, k2) ρ̂(m

�, z, k3)

×Ph(k1,m,m�, z) + cyc. , (16)

B1h(k1, k2, k3, z) =
1

ρ̄3

�
dmn(m, z) ρ̂(k1,m, z) ρ̂(k2,m, z) ρ̂(k3,m, z) . (17)

In this case, while the 2-halo term depends on the halo power spectrum as in the previous case, the 3-halo

term involves the halo bispectrum, Bh(k1,m1; k2,m2; k3,m3; z). Assuming a local bias relation between

halos and matter, δh(m) = f(δ), expanded perturbatively as δh(m) = b1(m)δ+ [b2(m)/2]δ2 +O(δ3), it is
possible to derive the tree-level expression for the halo bispectrum, valid only in the large-scale limit, in

terms of the matter power spectrum P (k) and bispectrum B(k1, k2, k3). This reads (Fry & Gaztañaga,

1993)

Bh(k1,m1; k2,m2; k3,m3; z) = b1(m1) b1(m2) b1(m3)B(k1, k2, k3)

+ [b1(m1) b1(m2) b2(m3)P (k1)P (k2) + cyc.] , (18)

where b2(m) is the quadratic bias function. For Gaussian initial conditions b1 and b2 are scale independent.
Moreover, since this equation is valid on large scales, we can replace the matter power spectrum P by its

linear prediction PL and the matter bispectrum B by its gravitational contribution BG, Eq. (6), assuming

a vanishing initial bispectrum B0 = 0. If the initial conditions are not Gaussian the matter bispectrum
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1993)

Bh(k1,m1; k2,m2; k3,m3; z) = b1(m1) b1(m2) b1(m3)B(k1, k2, k3)

+ [b1(m1) b1(m2) b2(m3)P (k1)P (k2) + cyc.] , (18)

where b2(m) is the quadratic bias function. For Gaussian initial conditions b1 and b2 are scale independent.
Moreover, since this equation is valid on large scales, we can replace the matter power spectrum P by its

linear prediction PL and the matter bispectrum B by its gravitational contribution BG, Eq. (6), assuming

a vanishing initial bispectrum B0 = 0. If the initial conditions are not Gaussian the matter bispectrum

7

halos to be tracers of the underlying matter distribution, we can assume a linear bias relation between the

halo and the matter density constrasts, so that δh ≈ b1δ. Thus, at large scales, the halo power spectrum

can be approximated as

Ph(k,m1,m2) = b1(m1) b1(m2)PL(k) , (12)

where b1(m) represents the linear bias function for halos of mass m. Note that for Gaussian initial

conditions, b1 only depends on the mass m, as implicitely assumed in Eq. (12). However, if primordial

non-Gaussianity is considered, b1 will also depend in general on the scale k. Either way, the 2-halo term

can be rewritten as

P2h(k, z) =
1

ρ̄2

�
2�

i=1

�
dmi n(mi, z) ρ̂(k,m, z) b1(m, z)

�
PL(k) , (13)

with an additional dependence on k in the b1 function for non-Gaussian initial conditions.

This description can be easily extended to the matter bispectrum. In the case of a three-point

function, we should account for the possibility that the three points belong to just one, two or three dark

matter halos. This means that there are now three distinct contributions to the Halo Model expression

for the matter bispectrum, that is

B(k1, k2, k3) = B3h(k1, k2, k3) +B2h(k1, k2, k3) +B1h(k1, k2, k3) , (14)

where

B3h(k1, k2, k3, z) =
1

ρ̄3

�
3�

i=1

�
dmi n(mi, z) ρ̂(mi, z, ki)

�
Bh(k1,m1; k2,m2; k3,m3; z) , (15)

B2h(k1, k2, k3, z) =
1

ρ̄3

�
dmn(m, z) ρ̂(m, z, k1)

�
dm� n(m�, z) ρ̂(m�, z, k2) ρ̂(m

�, z, k3)

×Ph(k1,m,m�, z) + cyc. , (16)

B1h(k1, k2, k3, z) =
1

ρ̄3

�
dmn(m, z) ρ̂(k1,m, z) ρ̂(k2,m, z) ρ̂(k3,m, z) . (17)

In this case, while the 2-halo term depends on the halo power spectrum as in the previous case, the 3-halo

term involves the halo bispectrum, Bh(k1,m1; k2,m2; k3,m3; z). Assuming a local bias relation between

halos and matter, δh(m) = f(δ), expanded perturbatively as δh(m) = b1(m)δ+ [b2(m)/2]δ2 +O(δ3), it is
possible to derive the tree-level expression for the halo bispectrum, valid only in the large-scale limit, in

terms of the matter power spectrum P (k) and bispectrum B(k1, k2, k3). This reads (Fry & Gaztañaga,
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where
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Gaussian case: Correlation > 99.2% out to k=2 h/Mpc 
(z=0,1,2)

Local non-Gaussian case:

Correlation > 97.5% out to k=2 h/Mpc 
(z=0,1,2)

but ... overestimates amplitude beyond k=0.5h/Mpc.
Need to divide the 1-halo term by factor of 4.
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Simple phenomenological fitting formulae

22

in Fig. 7 can be parameterised by the combination

Bfit
δ (k1, k2, k3) ≡ Bgrav

δ,NL + c1D̃(z)d1Bconst
δ (57)

where c1 and d1 are fitting parameters and we defined
D̃(z) ≡ D(z)/D(0), whereD(z) is the linear growth func-
tion normalised to 1/(1 + z) during matter domination.
The first shape in (57) is the tree level gravity shape (7)
with non-linear power Pδ, (TODO: have this in theory
section already, just quote here)

Bgrav
δ,NL ≡ 2Pδ(k1)Pδ(k2)F

(s)
2 (k1,k2) + 2 perms. (58)

The second shape, (TODO: mention units, maybe put in
factor for units which is absorbed by prefactor c1)

Bconst
δ (k1, k2, k3) ≡ (k1 + k2 + k3)

−1.7, (59)

(TODO: the text below is already in theory section now.
update text here) is constant on k1 + k2 + k3 = const
slices and its scaling with overall scale is chosen such
that it approximately reflects the scaling for equilateral
triangle configurations in the strongly non-linear regime
kmax = 2h/Mpc and z = 0 as measured in our simu-
lations and approximately predicted by the halo model
for Gaussian initial conditions [37, 38]. The shape cor-
relation between Bconst

δ and the halo model prediction
is 99.3% for kmax = 2h/Mpc at z = 0. Therefore the
combined shape (57) can be regarded as an interpola-
tion between the perturbative gravity bispectrum at early
times and the (approximate) halo model prediction at
late times. We will demonstrate that this combination
can achieve an excellent fit of the matter bispectrum at
all redshifts z ≤ 20, while both the perturbative and the
halo model prediction individually break down at inter-
mediate redshifts, when non-linearities are important but
not all dark matter particles can be treated as residing
in halos.

Table III provides the fitting parameters c1 and d1
which were obtained by optimising the shape correla-
tion with the measured bispectrum, which is 99.8% or
better at redshifts z ≤ 20 for both kmax = 0.5h/Mpc
and kmax = 2h/Mpc as shown in the upper panels of
Fig. 18. The fitting formula (57) can be normalised to
the measured bispectrum size by multiplying it with the
normalisation factor

Nfit ≡
�B̂�
�Bfit

δ �
, (60)

which is shown by the dotted line in the lower panels of
Fig. 18. While it varies with redshift between 0.7 and
1.4 for kmax = 2h/Mpc, it deviates by at most 8% from
unity for kmax = 0.5h/Mpc. The lower panels also show
the measured integrated bispectrum size �B̂� and the
two individual contributions to (57) when the normalisa-
tion factor Nfit is included. These quantities are divided
by �Bgrav

δ,NL� for convenience. At high redshifts the total

bispectrum size is essentially given by the contribution
from Bgrav

δ,NL, which equals the tree level prediction for the
gravitational bispectrum in this regime. The contribu-
tion from Bconst

δ dominates at z ≤ 2 for kmax = 2h/Mpc
when filamentary and spherical non-linear structures are
apparent. A similar transition can be seen at later times
on larger scales in Fig. 18a, indicating self-similar be-
haviour.
It is worth noting that the high integrated correlation

between our fit and measurements does not imply that all
triangle configurations agree perfectly and sub-percent
level differences between shape correlations can in prin-
ciple contain important information, e.g. about the obser-
vationally relevant squeezed limit which only contributes
little to the total tetrapyd integral. However, if we ob-
served the dark matter bispectrum directly, these shapes
would be hard to distinguish because the shape corre-
lation contains the signal to noise weighting. Modified
shape correlation weights and additional basis functions
can be used for better quantitative comparison of the
squeezed limit of dark matter bispectra, which plays an
important role for the halo power and bispectrum, but
this is left for future work.
(TOOD: maybe mention that we used estimated P

and not P from camb?) (TODO: update following text
with updated pics which use alphas with Pest instead of
Pcamb. ) (TODO: text about gaussian halo model and
its correl)
An alternative fitting formula with 9 fitting parame-

ters and calibrated on larger scales was given in [14] and
summarised in this paper in Section III. In the range of
validity given by [14], 0.03h/Mpc ≤ k ≤ 0.4h/Mpc at
0 ≤ z ≤ 1.5, we find good agreement with our N-body
measurements, see green circles in Fig. 11d and Fig. 11e.
Without having to run N-body simulations with higher
resolutions, we extended the bispectrum measurement to
kmax = 0.86h/Mpc with the fast separable estimator, see
red symbols in Fig. 11d and Fig. 11e. In this extended
regime the fitting formula of [14] still has a shape corre-
lation of 99.5% or more with the measured bispectrum
at z ≤ 1.5, but underestimates the cumulative signal to
noise by up to 11%. Our measured βR

n coefficients or our
simple fit (57) can be used as alternative fitting formulae
for the gravitational bispectrum valid to smaller scales,
kmax ≤ 2h/Mpc, and for all redshifts z ≤ 20
(TODO: update this maybe. should actually include

Pest for calculating alphas instead of Pcamb) The halo
model prediction for the Gaussian dark matter bispec-
trum yields a remarkably high shape correlation of more
than 99.7% with the measured bispectrum at z = 0 for
kmax = 2h/Mpc, see Fig. 18b. While the halo model bis-
pectrum has been tested on some one-dimensional slices
in [37] and on larger scales in [38], the result presented
here demonstrates that the halo model shape is a good
representation of the shape measured in N-body simula-
tions over the full tetrapyd allowed by the triangle condi-
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in Fig. 7 can be parameterised by the combination

Bfit
δ (k1, k2, k3) ≡ Bgrav

δ,NL + c1D̃(z)d1Bconst
δ (57)
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D̃(z) ≡ D(z)/D(0), whereD(z) is the linear growth func-
tion normalised to 1/(1 + z) during matter domination.
The first shape in (57) is the tree level gravity shape (7)
with non-linear power Pδ, (TODO: have this in theory
section already, just quote here)

Bgrav
δ,NL ≡ 2Pδ(k1)Pδ(k2)F

(s)
2 (k1,k2) + 2 perms. (58)

The second shape, (TODO: mention units, maybe put in
factor for units which is absorbed by prefactor c1)

Bconst
δ (k1, k2, k3) ≡ (k1 + k2 + k3)

−1.7, (59)

(TODO: the text below is already in theory section now.
update text here) is constant on k1 + k2 + k3 = const
slices and its scaling with overall scale is chosen such
that it approximately reflects the scaling for equilateral
triangle configurations in the strongly non-linear regime
kmax = 2h/Mpc and z = 0 as measured in our simu-
lations and approximately predicted by the halo model
for Gaussian initial conditions [37, 38]. The shape cor-
relation between Bconst

δ and the halo model prediction
is 99.3% for kmax = 2h/Mpc at z = 0. Therefore the
combined shape (57) can be regarded as an interpola-
tion between the perturbative gravity bispectrum at early
times and the (approximate) halo model prediction at
late times. We will demonstrate that this combination
can achieve an excellent fit of the matter bispectrum at
all redshifts z ≤ 20, while both the perturbative and the
halo model prediction individually break down at inter-
mediate redshifts, when non-linearities are important but
not all dark matter particles can be treated as residing
in halos.

Table III provides the fitting parameters c1 and d1
which were obtained by optimising the shape correla-
tion with the measured bispectrum, which is 99.8% or
better at redshifts z ≤ 20 for both kmax = 0.5h/Mpc
and kmax = 2h/Mpc as shown in the upper panels of
Fig. 18. The fitting formula (57) can be normalised to
the measured bispectrum size by multiplying it with the
normalisation factor
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δ �
, (60)

which is shown by the dotted line in the lower panels of
Fig. 18. While it varies with redshift between 0.7 and
1.4 for kmax = 2h/Mpc, it deviates by at most 8% from
unity for kmax = 0.5h/Mpc. The lower panels also show
the measured integrated bispectrum size �B̂� and the
two individual contributions to (57) when the normalisa-
tion factor Nfit is included. These quantities are divided
by �Bgrav

δ,NL� for convenience. At high redshifts the total

bispectrum size is essentially given by the contribution
from Bgrav

δ,NL, which equals the tree level prediction for the
gravitational bispectrum in this regime. The contribu-
tion from Bconst

δ dominates at z ≤ 2 for kmax = 2h/Mpc
when filamentary and spherical non-linear structures are
apparent. A similar transition can be seen at later times
on larger scales in Fig. 18a, indicating self-similar be-
haviour.
It is worth noting that the high integrated correlation

between our fit and measurements does not imply that all
triangle configurations agree perfectly and sub-percent
level differences between shape correlations can in prin-
ciple contain important information, e.g. about the obser-
vationally relevant squeezed limit which only contributes
little to the total tetrapyd integral. However, if we ob-
served the dark matter bispectrum directly, these shapes
would be hard to distinguish because the shape corre-
lation contains the signal to noise weighting. Modified
shape correlation weights and additional basis functions
can be used for better quantitative comparison of the
squeezed limit of dark matter bispectra, which plays an
important role for the halo power and bispectrum, but
this is left for future work.
(TOOD: maybe mention that we used estimated P

and not P from camb?) (TODO: update following text
with updated pics which use alphas with Pest instead of
Pcamb. ) (TODO: text about gaussian halo model and
its correl)
An alternative fitting formula with 9 fitting parame-

ters and calibrated on larger scales was given in [14] and
summarised in this paper in Section III. In the range of
validity given by [14], 0.03h/Mpc ≤ k ≤ 0.4h/Mpc at
0 ≤ z ≤ 1.5, we find good agreement with our N-body
measurements, see green circles in Fig. 11d and Fig. 11e.
Without having to run N-body simulations with higher
resolutions, we extended the bispectrum measurement to
kmax = 0.86h/Mpc with the fast separable estimator, see
red symbols in Fig. 11d and Fig. 11e. In this extended
regime the fitting formula of [14] still has a shape corre-
lation of 99.5% or more with the measured bispectrum
at z ≤ 1.5, but underestimates the cumulative signal to
noise by up to 11%. Our measured βR

n coefficients or our
simple fit (57) can be used as alternative fitting formulae
for the gravitational bispectrum valid to smaller scales,
kmax ≤ 2h/Mpc, and for all redshifts z ≤ 20
(TODO: update this maybe. should actually include

Pest for calculating alphas instead of Pcamb) The halo
model prediction for the Gaussian dark matter bispec-
trum yields a remarkably high shape correlation of more
than 99.7% with the measured bispectrum at z = 0 for
kmax = 2h/Mpc, see Fig. 18b. While the halo model bis-
pectrum has been tested on some one-dimensional slices
in [37] and on larger scales in [38], the result presented
here demonstrates that the halo model shape is a good
representation of the shape measured in N-body simula-
tions over the full tetrapyd allowed by the triangle condi-

where

99.3% correlation to halo model at 2h/Mpc
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Simulation c1 d1 min
z≤20

(Cβ,α) Cβ,α(z = 0)

G512
400 1.0× 107 8 99.8% 99.8%

G512g 4.1× 106 7 99.8% 99.8%

Loc10 2.4× 103 6 99.7% 99.7%

Eq100 8.6× 102 6 97.9% 99.4%

Flat10 1.1× 104 6 98.8% 98.9%

Orth100 −2.6× 102 6 90.5% 90.5%

Table III. (TODO: two redshift regimes for worst correla-
tion are actually not really useful here, but will be useful
on small scales if these will be included) Fitting parame-
ters for the fit (57) of the matter bispectrum for Gaussian
initial conditions and for the fit (61) of the excess bispec-
trum (55) due to non-Gaussian initial conditions for dif-
ferent simulations. The two columns on the right show
the minimum shape correlation with the measured (excess)
bispectrum in N-body simulations, which was measured at
redshifts z = 49, 30, 20, 10, 9, 8, . . . , 0, and the shape corre-
lation at z = 0. For the equilateral case the minimum
shape correlation can be improved to 99.4% if the term
4.6 × 10−5fNLD̃(z)0.5

�
2Pδ(k1)Pδ(k2)F

(s)
2 (k1,k2) + 2 perms

�

is added to (61). (TODO: maybe make column with correl
at z = 0, 1 additional to min correl? ) (TODO: check if c2
could be predicted somehow. sort by abs(c2): orth, eq, loc,
flat. correls with gaussian at high z: -0.6, 0.62, 0.72, 0.83, so
this could explaind c2, but maybe just luck that ordering is
the same?) (TODO: maybe try on smaller scales)
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Constant ‘halo’ model

As we consider the more strongly nonlinear regime,

k ≥ 1h/Mpc at z = 0, the halo model bispectrum is

dominated by the 1-halo contribution B1H. Neglecting

the overall bispectrum amplitude, we find that in this

regime the 1-halo shape for Gaussian initial conditions

can be approximated by a simple constant bispectrum,

Bgrav

δ,const(k1, k2, k3)|z ≡ c1 D̄
nh(z) (k1 + k2 + k3)

ν . (14)

Here, ‘constant’ refers to constancy on k1 + k2 + k3 =

const. slices (see [7]), noting that this is a bispectrum

typical of isolated point-like sources. The expression

(14) has an overall wavenumber scale-dependence with

exponent ν and a time-dependence on the linear growth

function D̄(z) with halo exponent nh. The wavenum-

ber scaling ν ≈ −1.7 is chosen such that it approxi-

mately reflects the scaling for equilateral triangle con-

figurations in this regime as measured in our simula-

tions (and which is approximately predicted by the halo

model for Gaussian initial conditions [37, 38]). The ex-

ponent nh is similarly defined by the fast growth factor

appropriate for the halo model for the scales under study

0.2h/Mpc � k ≤ 2h/Mpc, typically with nh ≈ 6–8. For

kmax = 2h/Mpc and z = 0, this simple model achieves a

shape correlation of 99.7% with the 1-halo contribution

B1H and 99.3% with the full halo model bispectrum (9).

In later sections, we will note that (14) provides an ex-

cellent approximation to the late-time bispectrum in the

nonlinear regime when we use it in a simple fitting for-

mula together with the modified tree-level gravitational

bispectrum (8). We shall investigate the other halo con-

tributions in more detail elsewhere [35].

As we shall see, on smaller nonlinear scales (large

k > 1h/Mpc) the fast bispectrum growth begins to slow

down by the present day z = 0. In this case, we should

really replace the power law growth Dnh(z) for the con-

stant mode using a more general growth factor T (k̃, z, zi),
where the ‘slice’ or ‘average’ wavenumber

k̃ = (k1 + k2 + k3)/3 . (15)

For future reference, it is convenient to use this growth

rate in a more general integral form of the ‘constant’

model (14), that is,

Bgrav

δ,const(k1, k2, k3)|z = T (k̃, z, zi) B
init

const
(k̃, zi) (16)

≡
� z

zi

G(k̃, z) dz Binit

const
(k̃, zi) ,

where zi is the redshift at which this rapid ‘halo’ growth

takes hold (it has an implicit k̃ dependence). The quan-

tity Binit

const
(k̃, zi) represents the initial condition at z = zi

for the constant part of the bispectrum. Naively, we

might take this to be Binit

const
(k̃, zi) = Bgrav

δ (k̃, k̃, k̃)|z=zi ,

that is, the equilateral or constant part of the tree-level

gravitational bispectrum (7) at z = zi. However, to

date, determining the amplitude of this initial constant

bispectrum has relied on simulations. We will use this

simple model to characterise both the time- and scale-

dependence of the gravitational bispectrum, as well as

primordial non-Gaussianity as we approach the strongly

nonlinear regime.

Alternative phenomenological fit

An alternative description of the gravitational matter

bispectrum in the non-perturbative regime was proposed

in Ref. [13], who constructed a fitting formula which in-

terpolates between the perturbative prediction on large

scales and a local-type bispectrum on small scales, which

was suggested by early simulations. In their terminol-

ogy, the small-scale bispectrum was denoted as a ‘con-

stant reduced’ bispectrum, which implies that it takes the

same form as the local shape Bδ ∼ Pδ(k1)Pδ(k2)+perms,

in contrast to the constant shape above (14). Recently

Ref. [14] extended this fitting formula with updated sim-

ulations into mildly nonlinear scales 0.03h/Mpc ≤ k ≤
0.4h/Mpc at 0 ≤ z ≤ 1.5.

We review for the sake of completeness this phe-

nomenological 9-parameter fit, for which we will test the

regime of validity. The linear power spectrum in (7) is

replaced by the nonlinear one Pδ, and the symmetrised

kernel F (s)
2

is replaced by

F (s) eff
2

(k1,k2) =
5

7
a(n1, k1)a(n2, k2)

+
1

2

k1 · k2

k1k2

�
k1
k2

+
k2
k1

�
b(n1, k1)b(n2, k2)

+
2

7

�
k1 · k2

k1k2

�2

c(n1, k1)c(n2, k2) , (17)

where

a(n, k) =
1 + σa6

8
(z)

�
0.7Q3(n)(a1q)a2+n

1 + (a1q)a2+n
, (18)

b(n, k) =
1 + 0.2a3(n+ 3)(qa7)n+3+a8

1 + (qa7)3.5+n+a8
, (19)

c(n, k) =
1 + 4.5a4/[1.5 + (n+ 3)

4
](qa5)n+3+a9

1 + (qa5)3.5+n+a9
. (20)

In these formulae, n represents the slope of the linear

power spectrum at k, i.e. n = d lnPL
δ (k)/d ln k (with

an additional spline interpolation as described in [14]),

q = k/knl with knl defined by k3
nl
PL
δ (knl)/(2π2

) = 1, and

the function Q3(n) is given by

Q3(n) =
4− 2

n

1 + 2n+1
. (21)

Faster growth of structure than tree-level
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The best-fit values for the free parameters a1 − a9 were
found by simulations [14]

a1 = 0.484, a2 = 3.740, a3 = −0.849,

a4 = 0.392, a5 = 1.013, a6 = −0.575,

a7 = 0.128, a8 = −0.722, a9 = −0.926 . (22)

III. PRIMORDIAL NON-GAUSSIANITY

Additional to the contribution Bgrav
δ from nonlinear

gravity, the matter bispectrum can have primordial con-
tributions Bprim

δ from inflation or some other early uni-
verse model such as cosmic defects. While the simple
model of single field slow roll inflation gives only a small
primordial bispectrum, fNL ∼ O(10−2), other models can
yield large non-Gaussianities with fNL > 1 (see e.g. [39–
43] for reviews). Such models can be distinguished if
they induce different bispectrum shapes, i.e. different de-
pendencies of the bispectra on the momenta k1, k2, k3
as illustrated in Fig. 3. However, before reviewing pri-
mordial bispectrum shapes we describe how primordial
non-Gaussianity changes the dark matter bispectrum.

Primordial contribution to the matter bispectrum

Let us assume that an inflationary model produces a
primordial bispectrum BΦ with nonlinear amplitude fNL,
i.e.

�Φ(k1)Φ(k2)Φ(k3)� = (2π)3δD(Σiki)fNLBΦ(k1, k2, k3).
(23)

From the linear Poisson equation (2) we see that the pri-
mordial contribution to the matter bispectrum is given
at leading order by

Bprim
δ (k1, k2, k3; z) =

M(k1, z)M(k2, z)M(k3, z)fNLBΦ(k1, k2, k3), (24)

which is valid on large scales.
A simple improvement to the tree level shape which

incorporates some loop corrections can be obtained with
the nonlinear power spectrum Pδ:

Bprim
δ,NL(k1, k2, k3) ≡

�
Pδ(k1)Pδ(k2)Pδ(k3)

PΦ(k1)PΦ(k2)PΦ(k3)
BΦ(k1, k2, k3).

(25)

As will be demonstrated later in this paper, this shape
can be used to obtain simple fitting formulae for the pri-
mordial contribution to the matter bispectrum. A more
systematic but also more cumbersome approach is to in-
clude loop corrections, which become important on small

scales [11, 12]. We shall calculate more of these contribu-
tions in a subsequent paper and test their correspondence
to the N -body simulations [35].
We note that, while the time dependence of the tree

level gravitational bispectrum (7) is given by Bgrav
δ ∝

D4(z), the tree level primordial contribution (24) only
grows like Bprim

δ ∝ D3(z), implying that it is easier to
extract the primordial contribution to the dark matter
bispectrum at early times. The simulations and fitting
formulae discussed later will show that the gravitional
bispectrum also grows faster than the primordial contri-
bution in the strongly nonlinear regime (also by a factor
of roughly D(z)).

Non-Gaussianity as a halo model time-shift

At sufficiently small scales the perturbative treatment
breaks down and simulations and phenomenological mod-
els must be used. The phenomenological halo model
prediction for local non-Gaussian initial conditions was
computed in [38] by incorporating modified expressions
for the halo model ingredients in presence of local non-
Gaussianity. While first tests by [38] demonstrate that
this approach works well for some one-dimensional bis-
pectrum slices in the mildly nonlinear regime, k ≤
0.3h/Mpc and z ≤ 1, comparisons to simulations in the
strongly nonlinear regime have not been undertaken to
date.

An alternative phenomenological model we propose
here is to note that the primordial bispectrum can also
contribute to the halo model bispectrum as an initial off-
set or time-shift. As we have seen the 1-halo model is
highly correlated with the simple ‘constant’ bispectrum
we described earlier (14). The key point is that this con-
stant halo contribution grows much more rapidly than
both the tree-level primordial bispectrum (24) or the
tree-level gravitational bispectrum (7). Consequently, if
the primordial bispectrum has a significant positive (or
negative) constant component, then this can act as an
initial condition for the halo bispectrum; the faster halo
amplification growth will start earlier (or later) by a time
or redshift offset ∆z. The constant part of the primor-
dial signal, then, will participate in the halo bispectrum
growth and can be amplified much faster than expected
from the tree-level result (24) or even with loop correc-
tions (25). If this physical picture is correct, then the
primordial constant contribution can be described per-
turbatively around the constant halo bispectrum (14) by
expanding the growth factor (TODO: check constancy
of time shift for z numerically (only checked ∆a so far
but should be okay because shifts are small). use z or a
consistently everywhere below.)

D̄nh(z +∆z) ≈ D̄nh(z) + nhD̄
nh−1(z)

dD̄(z)

dz
∆z. (26)
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We determine ∆z by matching the projection of the total
measured bispectrum B̂δ on the constant shape Bgrav

δ,const
in the Gaussian and non-Gaussian simulations:

(f̂ const
NL )Gauss(z +∆z) = (f̂ const

NL )NG(z). (27)

From simulations, the time shift ∆z and the correspond-

ing shift of the growth function, ∆D̄ = dD̄(z)
dz ∆z, are both

found to vary over time at most by a factor of 2 for red-
shifts 10 � z � 1 for local, equilateral and flattened ini-
tial conditions (to the extent to which this can be tested
by linearly interpolating the limited number of output
redshifts at which the bispectrum was measured). Pro-
vided ∆D̄ is time-independent this perturbation of the
simple ‘constant’ model (14) means we should be able to
model the halo contribution from the primordial pertur-
bation as

Bprim
δ,const(k1, k2, k3) ≡ c2 D̄

nprim
h (z) (k1 + k2 + k3)

ν ,

(28)

where we expect nprim
h = nh − 1 from (26) and again

ν ≈ −1.7. The fitting parameter c2 will be related to
the correlation between the primordial shape2 and the
constant model at the time at which halos form for the
length scale under consideration. Different non-Gaussian
bispectrum models should show consistent behaviour in
the nonlinear regime depending on the relative magni-
tude of their constant component. We shall define these
quantities more precisely after introducing the bispec-
trum shape correlator in the next section, but (28) will
be an important component in our later fitting formulae
for primordial non-Gaussianity.

The simple power law in the linear growth function
D̄(z) used to model the time dependence of the constant
halo bispectrum can of course be extended to more gen-
eral functions of time (16), whose time derivative would
then enter in the expansion (26). The results presented
later show that the overall normalisation of the simple
fits can be improved by a more general modeling of the
time dependence (reducing the overall growth rate in the
strongly nonlinear regime). In this case, we can consider
a time-shift for the more general ‘constant’ model (16)

Bprim
δ,const(k1, k2, k3)|z = Bgrav

δ,const(k1, k2, k3)|z+∆z

−Bgrav
δ,const(k1, k2, k3)|z

=
dT (k̃, z, zi)

dz
Binit

const(k̃, zi)∆z + ... , (29)

2 We refer here to the excess bispectrum compared to Gaussian
initial conditions as measured in N -body simulations at times
when the constant contribution to the bispectrum is not negligi-
ble compared to the partially loop-corrected tree level contribu-
tion (25). Therefore c2 is a fitting parameter to be determined
from N -body simulations.

where we neglect higher order terms assuming them to
be subdominant. We can determine the time-shift ∆z by
determining the magnitude of the constant part of the
primordial bispectrum at z = zi.
While more sophisticated models of the time evolu-

tion are left for future work, we note that the correlation
with the measured bispectrum shape cannot be improved
much, because simulations are so optimally described by
a combination of the ’constant’ shape (28) and the modi-
fied tree-level gravitational shape (25) used in the fitting
formulae presented later.

Primordial bispectrum shapes from inflation

Local shape

The fiducial fNL model of primordial non-Gaussianity
is the local model, which is described in this way because
it can be generated simply by squaring a Gaussian field
ΦG in real space,

Φ(x) = ΦG(x) + fNL[Φ
2
G(x)−

�
Φ2

G

�
], (30)

where
�
Φ2

G

�
denotes an average over x space and ensures

that the average perturbation is zero. The resulting bis-
pectrum takes the form

Bloc
Φ (k1, k2, k3) = 2 [PΦ(k1)PΦ(k2) + 2 perms] , (31)

which is illustrated in Fig. 3 and peaks at squeezed tri-
angle configurations, where one wavenumber is much
smaller than the other two. Multiple field inflation mod-
els are one potential source of this shape [? ? ] (TODO:
Paul, can you add these references?) (for a review see
[39]). If a bispectrum signal in the squeezed limit is de-
tected, then this will rule out all canonical single field
models of inflation [44–46]. The local shape is typically
strongly affected by systematic experimental contribu-
tions, notably any masking/galaxy obscuration of the
data set.

Equilateral shape

Higher derivative operators in the inflationary action,
arising e.g. in DBI inflation [47] and in effective field
theory approaches [46, 48], produce a shape that can
be approximated by the separable equilateral template
[24, 39, 49]

Beq
Φ = 6

�
− (PΦ(k1)PΦ(k2) + 2 perms)

− 2(PΦ(k1)PΦ(k2)PΦ(k3))
2/3 (32)

+ (P 1/3
Φ (k1)P

2/3
Φ (k2)PΦ(k3) + 5 perms)

�
,

which peaks in the equilateral limit, k1 = k2 = k3. For
equilateral triangles with k1 = k2 = k3 summing up the
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Figure 18. Like Fig. 17 but for simulation Flat10 with flat-
tened non-Gaussian initial conditions.

other approximately so that the measured projection

forth

NL
only deviates by less than 1.5% from linearity.

We conclude that at the O(5%) level the bispectra

measured in our large scale simulations can be scaled to

other values fnew

NL
fulfilling |f loc

NL
| ≤ 50, |fEq

NL
| ≤ 100 and

|fOrth

NL
| ≤ 100 using the linear scaling

BNG(f
new

NL ) =
fnew

NL

fNL

B̂NG(fNL). (66)

Fitting formulae for non-Gaussian simulations

Separable polynomial fits

Matter bispectra for non-Gaussian initial conditions

of the local, equilateral, orthogonal and flattened type

are described by the βR
n coefficients in Table II. These

polynomial fitting formulae can serve as a starting point

for future work that relies on non-Gaussian dark matter

bispectra in the nonlinear regime.

Time-shift model fits

Simple fitting formulae for the primordial contribution

to the matter bispectrum can be successfully obtained

from the halo time-shift model described in section III.

Before discussing this fit in detail, we perform a simple

consistency check of the basic idea of the model. The

relatively fast growth of the constant bispectrum implies

that it constitutes the dominant contribution to the non-

Gaussian bispectrum BNG at sufficiently small scales and

late time zlate. The amplitude of this constant bispec-

trum is related to the projection of the non-Gaussian

bispectrum BNG on the constant shape at the time zearly
when halos start to form (and thereafter). Hence we ex-

pect that

�BNG(zlate)� ∝ C(BNG(zearly), B
grav

δ,const(zearly))

× �BNG(zearly)�. (67)

This simple expectation is approximately seen in Fig. 20a

for the local, equilateral and flattened shapes, confirm-

ing the basic idea of the time-shift model. The fact that

the orthogonal shape deviates somewhat could be related

to the change of sign of the orthogonal shape for differ-
ent triangle configurations. Note that relation (67) and

Fig. 20a are interesting results on their own because they

show that the relative growth of the non-Gaussian bis-

pectrum can be predicted from its correlation with the

constant shape at early times. Fig. 20b illustrates the

absolute values of the measured bispectrum sizes which

were used to produce Fig. 20a.

In detail, the simple fitting formulae for the non-

Gaussian bispectra are obtained by combining the par-

tially loop-corrected tree level expression (25) with the

constant shape (28) as

Bfit

NG(k1, k2, k3) ≡ fNL

�
Bprim

δ,NL
+Bprim

δ,const

�
. (68)

The fitting parameters c2 and nprim

h in (28) are listed

in Table III. Similar to the Gaussian case they were

obtained by analytically determining the optimal weight

w(z) for the ‘constant’ (k1 + k2 + k3)ν contribution and

approximating this with c2D̄(z)n
prim
h (see green and black

dashed lines in Fig. 21). As expected from Section III we

find nprim

h = nh − 1 for local, equilateral and flattened

initial conditions.

Table III also shows the shape correlation with the

measured excess bispectrum (57). These shape correla-

tions are remarkably good given the simplicity of (68),

especially for local, equilateral and flattened initial con-

ditions. The impact of the orthogonal shape on the mat-

ter bispectrum seems to be somewhat harder to model,

which is reflected in the fact that our simple model per-

forms worse for this shape. This is expected because

the orthogonal shape contains almost no constant com-

ponent, the dominant evolution of which is the basis
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Figure 20. (a) Relative growth of bispectrum size between z = 10 and z = 0 as a function of the absolute value of the shape

correlation between the measured non-Gaussian bispectrum B̂NG and the shape Bconst
δ defined in (14) at redshift z = 10, testing

relation (67). The plot contains all simulations shown in (b) but data points which only differ in the input fNL are almost

indistinguishable. Regression lines through (0, 1) are shown for kmax = 0.5h/Mpc (continuous) and kmax = 2h/Mpc (dashed).

(b) Bispectrum size at redshift z = 0 as a function of the bispectrum size at high redshift, z = 10, for different primordial shapes

(see legend). Continuous lines correspond to kmax = 0.5h/Mpc while dashed lines correspond to kmax = 2h/Mpc simulations.

Different points on one line show results for different input fNL.

for the simple time-shift model. While the integrated

bispectrum size F̄NL of the fitting formulae is consis-

tent with the measured bispectrum size at high red-

shift and at z = 0, it underestimates the measured

size at the 10 − 20% level at intermediate redshifts for

kmax = 0.5h/Mpc. This could be improved by adding

more shapes or by using a redshift-dependent normalisa-

tion factor in (68) similar to the Nfit factor in the Gaus-

sian case. On smaller scales, kmax = 2h/Mpc, the non-

Gaussian fitting formulae provide a less accurate overall

fit, but we also list them in Table III for completeness

and because the correlations at z = 0 are quite high.

It should be noted that simple fits like the ones pre-

sented here may be somewhat more important in the

mildly nonlinear regime than in the strongly nonlin-

ear regime because the halo model (extended to non-

Gaussian initial conditions) should be able to describe

this regime. We leave more accurate extensions of the

simple fits for non-Gaussian initial conditions and more

quantitative comparisons with loop corrections and halo

model predictions for future work [35].

Redshift at which 1-halo contribution becomes important

We determine the redshift z∗ at which the approxi-

mate 1-halo bispectrum Bconst
δ in the simple fits of the

bispectrum for non-Gaussian initial conditions becomes

Simulation L c1,2 n(prim)
h min

z≤20
Cβ,α Cβ,α(z = 0)

G512g 1600 4.1× 10
6

7 99.8% 99.8%

Loc10 1600 2× 10
3

6 99.7% 99.8%

Eq100 1600 8.6× 10
2

6 97.9% 99.4%

Flat10 1600 1.2× 10
4

6 98.8% 98.9%

Orth100 1600 −3.1× 10
2

5.5 91.0% 91.0%

G
512
400 400 1.0× 10

7
8 99.8% 99.8%

Loc10
512
400 400 2× 10

3dD/da 7 98.2% 99.0%

Eq100
512
400 400 8.6× 10

2dD/da 7 94.4% 97.9%

Flat10
512
400 400 1.2× 10

4dD/da 7 97.7% 99.1%

Orth100
512
400 400 −2.6× 10

2
6.5 97.3% 98.9%

Table III. Fitting parameters c1 and nh for the fit (63) of

the matter bispectrum for Gaussian initial conditions (sim-

ulations G512g and G
512
400) and c2 and nprim

h for the fit (68)

of the primordial bispectrum (57). The two columns on the

right show the minimum shape correlation with the mea-

sured (excess) bispectrum in N -body simulations, which was

measured at redshifts z = 49, 30, 20, 10, 9, 8, . . . , 0, and the

shape correlation at z = 0. For the equilateral case the mini-

mum shape correlation can be improved to 99.4% if the term

4.6 × 10
−5fNLD̄(z)0.5

�
2Pδ(k1)Pδ(k2)F

(s)
2 (k1,k2) + 2 perms

�

is added to (68). The boxsize L is given in Mpc/h.

important by matching

�C(Bprim
δ,NL(z∗), B

prim
δ,const(z∗))B

prim
δ,NL(z∗)� = �Bprim

δ,const(z∗)�.
(69)

Message: To predict the relative growth of the bispectrum 
only need to correlate to constant model at early times
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CONCLUSIONS

• Can efficiently produce reliable general non-Gaussian initial conditions 
for N-body simulations

• Can more accurately analyse the results of N-body simulations

• More complete comparison to tree-level, loop-level and phenomenological 
predictions

• Next step... application to the galaxy bispectrum
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