Typical-medium theories of Mott-Anderson transitions

Vladimir Dobrosavljevic Florida State University

http://badmetals.magnet.fsu.edu

Benasque, 8th International Workshop on Disordered Systems Aug 26 - Sep 01, 2012

Typical-medium theories of Mott-Anderson transitions

Vladimir Dobrosavljevic Florida State University

http://badmetals.magnet.fsu.edu

Benasque, 8th International Workshop on Disordered Systems Aug 26 - Sep 01, 2012

Sir Neville Mott

++++++++

Order parameters??

Mechanisms for Localization?

P. W. Anderson

Bethe lattice simulation

Can local spectrum recognize Anderson localization?

Typical DOS as order parameter for Anderson localization 2.0 Anderson Insulator Bethe lattice simulation 1.5 $\rho_{typ}=0$ ≥ 1.0 _ Average DOS $\rho_{typ} > 0$ Typical DOS Metal 0.5 Gap Gap Disorder W W_c 0.0 $P(\rho)$ -0.50.0 0.5 1.0 -1.0ω $\rho_{av} = \langle \rho_i \rangle \sim 1/W^2$ (remains finite) $\rho_{tvp} = \exp\{\langle \ln \rho_i \rangle\} \sim (W_c - W)^{\beta}$ LOCAL order parameter ρ 5 $\rho_{typ} \ll \rho_{av}$

Typical Medium Theory for Anderson localization

V. Dobrosavljević, A. Pastor, and B. K. Nikolić, Europhys. Lett. 62, 76–82, (2003)

Localization: cavity function $\Delta_i(\omega)$ fluctuates Idea: DMFT (CPA) replaces it by average value (wrong) TMT-DMFT: replace it by typical value (order parameter) $G(\omega, \varepsilon_i) = [\omega - \varepsilon_i - \Delta(\omega)]^{-1} \qquad \Delta(\omega) = \Delta_o(\omega - \Sigma(\omega))$ $\Delta_o(\omega) = \omega - 1/G_o(\omega), \qquad G_o(\omega) = \int_{-\infty}^{+\infty} d\omega' \, \frac{\rho_0(\omega')}{\omega - \omega'}$ $\rho_{\text{typ}}(\omega) = \exp\left\{\int d\varepsilon_i \ P(\varepsilon_i) \ \ln \rho(\omega, \varepsilon_i)\right\} \qquad G_{\text{typ}}(\omega) = \int_{-\infty}^{+\infty} d\omega' \ \frac{\rho_{\text{typ}}(\omega')}{\omega - \omega'}$

Self-consistency: $G_o(\omega - \Sigma(\omega)) = G_{typ}(\omega)$

Excellent quantitative agreement with exact diagonalization in 3D

Mott-Anderson Transitions: order parameters

- Clean case (*W*=0): Mott metal-insulator transition at $U=U_c$, where $Z \rightarrow 0$ (Brinkman and Rice, 1970).
- Fermi liquid approach in which each fermion acquires a quasi-particle renormalization and each site-energy is renormalized:

$$\Sigma_{i}(\omega) = \left(1 - Z_{i}^{-1}\right)\omega - \varepsilon_{i} + \bar{\varepsilon}_{i}/Z_{i}$$

Local moment formation: $Z_i \rightarrow 0$ Orbitally (site) selective Mott transition? "deconfinement", "fractionalization" "Kondo" THEOREM: in any metal $Z_i \neq 0$ $\rho_i \neq 0$ (continuum spectrum)

(exceptions on Friday)

Mott transition+weak disorder: results in D = ∞ (D. Tanasković et al., PRL 2003; M. C. O. Aguiar et al., PRB 2005)

- For $U \rightarrow U_c(W)$, all $Z_i \rightarrow 0$ vanish (disordered Mott transition)
- If we re-scale all Z_i by $Z_o \sim U_c(W)-U$, we can look at $P(Z_i/Z_o)$
- For $D = \infty$ (*DMFT*), $P(Z/Z_0)$ **universal form** at U_c .

Spectroscopic signatures: disorder screening

• The effective disorder at the Fermi level is given by the distribution of: $v_i = \varepsilon_i + \Sigma_i (\omega = 0) = \overline{\varepsilon_i}/Z_i$

Width of the v_i distribution

This quantity is strongly renormalized close to the Mott MIT

v_i is pinned to Fermi level (Kondo resonance)

Energy-resolved inhomogeneity!

 However, the effect is lost even slightly away from the Fermi energy:

Energy-resolved inhomogeneity!

 However, the effect is lost even slightly away from the Fermi energy:

Energy-resolved inhomogeneity!

 However, the effect is lost even slightly away from the Fermi energy:

Generic feature of all Mott systems, not only high Tc cuprates?!

TMT-DMFT of Mott-Anderson transition

PRL 102, 156402 (2009)

week ending 17 APRIL 2009

Critical Behavior at the Mott-Anderson Transition: A Typical-Medium Theory Perspective

Only fraction of Z_i vanish - two fluid behavior!

Challenges: Spatial Fluctuations, Rare Events... (missing from DMFT and even TMT-DMFT)

PRL 102, 206403 (2009)

PHYSICAL REVIEW LETTERS

week ending 22 MAY 2009

Electronic Griffiths Phase of the d = 2 Mott Transition

E. C. Andrade,^{1,2} E. Miranda,² and V. Dobrosavljević¹

•In D=2, the environment of each site ("bath") has strong spatial fluctuations

•New physics: rare evens due to fluctuations and spatial correlations

Results: Thermodynamics

• Remembering that the local Kondo temperature and $T_{Ki} \propto Z_i$

$$\chi_{i}\left(T\right) \sim \frac{1}{T + T_{Ki}} \Rightarrow \left\langle \chi\left(T\right) \right\rangle \sim \int dT_{k} \frac{T_{K}^{\alpha - 1}}{T + T_{K}} \sim T^{\alpha - 1}$$

Singular thermodynamic response

The exponent α is a function of disorder and interaction strength. α =1 marks the onset of singular thermodynamics.

Z_{typ} = exp{ < In Z> }

"Size" of the rare events?

Nonlocal effects and inter-site correlations (DCA!!)

C. E. Ekuma, Z. Y. Meng, H. Terletska, J. Moreno, M. Jarrell, and V. Dobrosavljević

Cluster of size L embedded in a "typical" medium: systematic corrections, nonlocal correlations

Current/Future Work: Challenges and Opportunities

Nonlocal effects and inter-site correlations (DCA!!)

Finite-temperature coherence-incoherence crossovers

Metastability and glassy ordering (bosonic EDMFT)

Charge ordering (Wigner-Mott) and pseudogap phases

Realistic modeling of impurities and disorder

To learn more:

QUANTUM PHASE TRANSITIONS

VLADIMIR DOBROSAVLJEVIC, NANDINI TRIVEDI AND JAMES M. VALLES JR

http://badmetals.magnet.fsu.edu

(just Google "Bad Metals")

Book:

Oxford University Press, June 2012

Already listed on Amazon.com

ISBN 9780199592593