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1. Introduction  

1.1. Anderson Localization 
As known, the transport via any 1D disordered structure obeys the Anderson localization. Its principal 
concept is single-parameter scaling: all transport characteristics depend only on the ratio                between 
the system length      and the single scaling parameter          , which is called localization length (LL). Such a 
universal dependence manifests itself, for example, in the self-averaging logarithm of the transmittance,  

 

Thus, the localization length is the key quantity that controls the transport in 1D geometry. That is why the 
knowledge of             is crucial in the study  of 1D disordered systems. 

1.2. Localization Length in Optics  
The LL is determined by specific properties of a structure and by nature of a disorder. For continuous optical 
media with any kind of  weak disorder, its inverse value, or the Lyapunov exponent (LE), reads 

 

The limit law : the LE obeys the quadratic frequency dependence at the bottom of the spectrum 

 

This law remains valid for wide class of discrete, periodic-on-average, arrays composed of bilayer (RH-
RH, LH-LH, or RH-LH) unit cells with weak positional or compositional uncorrelated disorder.  
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1.3. Suppression of Localization in Disordered Metamaterials 
To great surprise, recently in the articles   

A.A. Asatryan, L.C. Botten, M.A. Byrne, V.D. Freilikher, S.A. Gredeskul, I.V. Shadrivov,  
R.C. McPhedran, Y.S. Kivshar, Phys. Rev. Lett. 99, 193902 (2007); 

Phys. Rev. B 81, 075124 (2010). 
it was numerically shown that in array of matched combination of two alternating RH and LH layers, the 
LL changes dramatically, displaying enormously fast divergence  as the wave frequency vanishes.  

The mysterious limit law:  

The power increases with total number of layers        , the latter reaches for                    . 

The model under consideration was a kind of invisible system:  
(1) The unperturbed unit cell consists of two matched slabs (free space and ideal metamaterial), 

 

(2) The layers have the same thicknesses – balanced structure,                   .  
(3) The dielectric permittivity is perturbed by uncorrelated disorder – white-noise compositional disorder. 

In this report we explain the origin and give the analytical description of such abnormal  localization.  
Two systems are compared: the homogeneous stack when both slabs composing the unit cell, are made of 
RH optic materials, and mixed stack with alternating RH and LH layers. 
We show that the predicted effect emerges in a very specific structures (not only due to LH inclusions). It 
originates from non-uniform distribution of wave-phase, and cannot be found in the standard second-order 
perturbation theory. 
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2. Bilayer Array 
We consider a 1D dielectric array of two alternating (RH-RH or RH-LH) layers,   

  

Every          and          layer is specified by its thickness             , the dielectric permittivity             , magnetic 
permeability             , refractive index             , impedance               and wave number              , 

 

Without disorder, or on average, the stack of bilayers is periodic with the period                     .  

Inside the two basic slabs of every unit (a,b) cell, the electric field obeys the Helmholtz equation with two 
boundary conditions at the interfaces between slabs, 

 

Its solution gives rise to the recurrent relations for normalized electric          and magnetic         fields at the 
left-hand edges of successive nth and (n+1)th unit (a,b) cells, 

  

Remarkably: these relations can be treated as the Hamiltonian map of trajectories in the phase space 
(Q,P) with discrete time n for a linear oscillator with time-dependent parametric force.  
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3. Hamiltonian Map Approach  

It is conventional to pass  from coordinate            and momentum           to polar coordinates                 , 

 

The Hamiltonian map in the radius-angle presentation gets the form 

  

                                                                                                                      

The localization length           (LL) is derived according to its definition via the Lyapunov exponent        (LE), 

  

  

Remarkably:  the             map is the unique necessary equation to be treated.  
The random factors 

  

 

depend, in general, on the cell index n due to randomized phase shifts                                and impedances. 

.sin,cos nnnnnn RPRQ θθ ==









+
+−

==







+

+
−

+

nnn

nnn
n

n

n

n

n
BA
DC

d
d

R
R

θ
θθ

θ
θ

tan
tanarctan, 1

1
2

1

−θ

.ln
2
1ln

2
1 1

2
1 〉〈−=〉







〈≡≡ ++

n

n

n

n

loc d
d

R
R

L
d

θ
θλ

nnR θ,

locL λ

bababan ZZA ϕϕϕϕ ~sin~sin~cos~cos 1−−= babbaan ZZB ϕϕϕϕ ~sin~cos~cos~sin +=

babbaan ZZC ϕϕϕϕ ~sin~cos~cos~sin 11 −− += bababan ZZD ϕϕϕϕ ~sin~sin~cos~cos 1−−=

bababa dk ,,,
~ =ϕ

nQ nP



4. Unperturbed Structure: Quarter Stack with Matched Slabs 

 

Without  disorder, the factors  A, B, C, D  do not depend on the cell index n. As a result, the  trajectory  in 
phase space (Q,P) obeys  the relations 

 

Here     is the wave-phase shift over a unit (a,b) cell (Bloch phase).  

Homogeneous RH-RH array : 

The Bloch phase is non-zero,                . 
The unperturbed map is the circle with uniform phase shift –  
the trajectory conserves its radius, while its phase        changes  
by the Bloch phase in one  step of “time” n.                         

Mixed  RH-LH stack :  

The phase shift gained in any RH a-layer is canceled by the subsequent negative shift in the next LH b-layer. 
The Bloch phase vanishes after passing every unit (a,b) cell,                   -- a kind of invisible system !!!     
The unperturbed trajectory degenerates into a single point !!! 

Remarkably: Even in zero order in disorder the topology of the problem drastically depends on the type 
of structure (conventional or metamaterial) . This defines the specific properties of the LL. 
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5. White-Noise Compositional Disorder   
Consider a case of weak disorder incorporated into the refractive indices of both basic slabs,  

 

Hamiltonian map within quadratic approximation 

 

Via reducing this map to the stochastic Ito equation, we come to the stationary Fokker-Plank equation, 

 

It should be complemented by the normalization condition and the condition of periodicity. 

Homogeneous RH-RH array (                 ). – The term containing                 prevails over the others under 
the weak-disorder conditions: we arrive at the uniform phase distribution and the standard result for the LL, 

 

Mixed  RH-LH stack (              ). – The solution of the Fokker-Plank equation is highly non-uniform, 

 

Bad Luck: The LL diverges – the standard second-order perturbation theory fails !!!  
One has to develop the approach in the next, fourth-order, approximation. 
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5.1. Fourth-order Approximation 
                                                                Left Figs show that for weak disorder the type of exact Hamiltonian 
                                                                map is univocally associated with the kind of phase distribution:  

                                                         The circle (                 ) results in the uniform distribution. 

                                                     The nonuniform distribution (              )  corresponds to the ellipse. 

                                                                If the random ellipse is transformed into the circle,  the phase 
                                                                distribution for new          map should be expected as uniform.  
                                                                The exact expressions for the Hamiltonian map is invariant with 
                                                                 respect to such a canonical rotation-rescaling transformation. 
                                                                 Only the random factors A, B, C, D  are changed. 
 
We have managed to realize this idea.   
Right Figs confirm the excellent applicability of the method. 
The corresponding LE reads 

 

 
Good Luck: The LL provides quite surprising octal frequency dependence !!!  

 

It is in contradiction with numerically found                   that should be regarded as the intermediate one.  
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Left Fig displays a perfect agreement between the LL obtained numerically and that from analytical results. 

5.2. From Octal to Quadratic Frequency Dependence 
The crossover  is governed by the ratio between relative thickness detuning and disorder variance: 

 

Right Fig clearly displays how the frequency dependence of the LL changes when the thicknesses of two 
basic layers differ from each other. The curves correspond:    
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6. Summary   

 We have resolved the problem of Anderson localization in a 1D array of two alternating a and b layers 
with equal unperturbed impedances and optical widths. Two possible kinds of the system are realized: the 
homogeneous stack (both basic slabs are made from RH materials), and the mixed stack (alternating RH and 
LH layers). The uncorrelated weak disorder is incorporated into refractive indices (compositional disorder).  

 We have shown that the inverse LL of  homogeneous matched quarter stack is given by the simple 
expression and obeys the conventional quadratic frequency dependence at the bottom of its spectrum. 

 However, the mixed matched quarter stack (invisible structure!!!) exhibits highly non-trivial properties 
originated from the nonuniform distribution of wave phase. In particular, the LL diverges in the standard 
second-order perturbation theory. 

 We have developed a new method allowing us to construct the perturbation theory within the fourth order 
in disorder. 

 We have derived the exact analytical expression for the LL in fourth-order approximation. For vanishing 
frequency it gives quite unexpected octal frequency dependence.  

 The crossover from octal to quadratic frequency dependence is governed by the ratio between the detuning 
of optical widths and the disorder variance. Therefore, for weakly disordered thicknesses of slabs the 
standard quadratic dependence recovers. 

 Our numerical data manifest excellent agreement with the analytical results.  
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