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Outline 

•  Motivation 
•  The Strong Disorder Renormalization Group 

•  Universal infinite effective disorder  
•  Non-universal finite effective disorder (Griffiths phases) 

•  The Large Spin phase and its sisters 
•  Universal finite effective disorder 

•  A general scheme of universal finite effective disorder 



Randomness in classical systems 
l  Strong effect on phase transitions 
l  Harris criterion:  

l  νd >2: critical behavior is unchanged, disorder is 
irrelevant (classical Heisenberg model) 

l  νd <2: disorder is relevant; usually, new critical 
behavior, new exponents (classical Ising model) 

l  smeared phase transitions 
(Ising model with planar defects) 
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Figure 3. Schematic behaviour of the magnetization in the tail of a smeared phase transition for
bounded and unbounded disorder distributions. For details see the text.

Let us now consider rare regions in this system which consist of ‘thick slabs’ containing
only strong bonds in the uncorrelated direction. As in the case of point or linear defects,
for temperatures below the clean critical temperature T 0

c , these rare regions are locally in the
ordered phase even if the bulk system is still in the disordered (paramagnetic) phase. However,
the behaviour of locally ordered planar rare regions differs qualitatively of that of localized
or linear rare regions. Each planar rare region is infinite in the two correlated dimensions but
finite in the uncorrelated direction. Thus, it is equivalent to a two-dimensional Ising model
that can undergo a real phase transition independently of the rest of the system. Thus, each
rare region can independently develop true static order with a non-zero static value of the local
magnetization. (Griffiths theorem [102] ensures that the interaction of the rare region with
the paramagnetic bulk system can only increase its magnetization over that of a completely
isolated ‘slab’.) Once static order has developed, the magnetizations of different rare regions
can be aligned by an infinitesimally small interaction or external field. The resulting phase
transition will thus be markedly different from a conventional continuous phase transition.
At a conventional transition, a non-zero order parameter develops as a collective effect of
the entire system which is signified by a diverging correlation length of the order parameter
fluctuations at the critical point. In contrast, in a system with planar defects, different parts of
the system (in the uncorrelated direction) will order independently, at different temperatures.
Therefore the global order will develop inhomogeneously and the correlation length in the
uncorrelated direction will remain finite at all temperatures. This defines a smeared or rounded
phase transition.

Note that similar to the Griffiths effects discussed in the proceeding sections, the properties
of the smeared transition depend on whether or not the disorder distribution is bounded (see
figure 3). If the disorder distribution is bounded like the binary distribution (43), there is a true
paramagnetic phase with zero total order parameter at high temperatures. At some temperature
TRR (identical to the clean critical temperature T 0

c for the distribution (43)), a non-zero order
parameter starts to develop on the rare regions, accompanied by an essential singularity in the
free energy density (which stems from the probability for finding a rare region). In contrast, for
distributions that are unbounded in the sense that they permit rare regions with a local Tc = ∞
(e.g., a Gaussian distribution), the total order parameter is non-zero for all temperatures, and
the free energy density is analytic.

4.7. Optimal fluctuation theory for smeared phase transition

The leading thermodynamic behaviour in the tail of the smeared transition can be determined
using optimal fluctuation theory similar to section 4.2. Following [63], we develop this theory
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Effects much stronger in quantum systems 
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Random transverse field Ising model:  
RG procedure D. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995) 
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SDRG flow: decimating bonds 
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Random transverse field Ising model 
D. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995) 
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Random transverse field Ising model 
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Random transverse field Ising model 
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Numerical confirmation (Young, Rieger, Iglói); true also for 2D and 3D 
(Motrunich, Mau, Huse & Fisher; Pich, Young, Rieger, Kawashima). 



Energy vs. length scales 
D. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995) 
Excitations of size L (clusters of spins) have energy Ω such that: 

Ω ∼ L−zAlong the line of finite disorder fixed points 

Conventional scaling (similar to clean systems) ω ∼ kz



Energy vs. length scales 
D. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995) 
Excitations of size L (clusters of spins) have energy Ω such that: 

Activated dynamical scaling (dynamical exponent is formally = 1) 

Ω ∼ e−Lψ

, ψ =
1

2
At the infinite disorder critical point: 

Ω ∼ L−zAlong the line of finite disorder fixed points 

Conventional scaling (similar to clean systems) ω ∼ kz
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Related behavior in other systems 

This structure, lines of non-universal finite-disorder fixed points ending  
at universal infinite-disorder fixed points, is seen in many models: 
1.  Other discrete models: Potts, clock, Ashkin-Teller (Senthil & Majumdar; 

Carlon, Lajkó, Chatelain, Berche, Juhász, Iglói) 
2.  Heisenberg AFM models with higher spins (Hyman & Yang, Monthus, 

Golinelli, Jolicoeur; Saguia, Boechat, Continentino; Refael, Kehrein, Fisher, Iglói) 
3.  Heisenberg AFM models with explicit dimerization (Hyman, Yang, 

Bhatt, Girvin; Iglói, Juhász, Rieger, Lajkó) 
4.  Systems with continuous symmetries (Heisenberg, XY) in the 

presence of dissipation (Hoyos & T. Vojta) 

Finite disorder: z < ∞ 
Infinite disorder: z = ∞ 



Related behavior in other systems 

In all cases: ¢ = # 1 ¢ 2 

­ 

~ ¢ 
•  2nd order pert. theory 
•  multiplicative structure 
•  activated dynamics 

This structure, lines of non-universal finite-disorder fixed points ending  
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Other possibilities: chains with AFM + FM 
Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990) 
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Other possibilities: chains with AFM + FM 
Westerberg et al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990) 

1st order in perturbation theory – NO multiplicative structure 
Generates higher spins 
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•  Large spin phase: Spins form large clusters with large total spins 

                                            (random walk in spin space) 
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Other possibilities: chains with AFM + FM 
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As the cluster spins grow, the probability of occurrence of 2nd order 
processes becomes negligible: only 1st order decimations survive 
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Other systems with similar behavior 

Similar behavior is seen in: 
1.  zigzag ladders with AFM interactions: zmin ¼ 4.1   (Hoyos & Miranda, PRB 69, 

214411 (2004)) 
2.  SU(N) Heisenberg chain as Ν ➝ ∞: zmin ¼ 5.8 (Hoyos & Miranda, unpublished)	


3.  Random transverse field Ising model with correlations between 

couplings and fields: zmin ¼ 1 (Hoyos, Laflorencie, Vieira, T. Vojta, EPL 93, 30004 
(2011)) 
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3.  Random transverse field Ising model with correlations between 

couplings and fields: zmin ¼ 1 (Hoyos, Laflorencie, Vieira, T. Vojta, EPL 93, 30004 
(2011)) 

Why is this often observed? 
Is there a general scheme? 
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What do they all have in common? 
They are all dominated by 1st order processes! 
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Minimum z in our solution 

For sufficiently small z, there is no 
solution. 

There is a minimum  
dynamical exponent z 
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RTFIM with correlated disorder (hj = Jj), q>4 clock model,…(?) 



Posssible 
RG flows 

¢  = ® ¢ 
» 

i i i 

•  AFM+FM chain, zigzag 
ladder, SU(∞) 

•  RTFIM with correlated 
disorder, q>4 clock 
model, …. 



Check with other methods 

Compare with exact diagonalization of 
Hoyos, Laflorencie, Vieira & Vojta, EPL 93, 30004 (2011) 
Hoyos & Miranda, in preparation 

HRTFIM = −
�

j

Jj

�
σ
z
jσ

z
j+1σ

x
j

�



Conclusions 
1. Generic analytical treatment for a class of disordered systems 

 Existence of a minimum z 
 Relevance of disorder 
 Line of finite-disorder fixed points 

 
2. 2nd order vs 1st order decimation processes 

 Multiplicative vs Simple structure 
 Exponential activated vs Conventional power-law dynamics 

¢ = # 1 ¢ 2 

­ 

~ ¢ ¢  = ® ¢ 
» 

i i i vs 

Non-degenerate vs Degenerate “local” ground states 


