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Randomness In classical systems
« Strong effect on phase transitions

« Harris criterion:
« vd >2: critical behavior 1s unchanged, disorder is
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behavior, new exponents (classical Ising model)
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(Ising model with planar defects)




Randomness In classical systems
« Strong effect on phase transitions

« Harris criterion:
« vd >2: critical behavior 1s unchanged, disorder is
(classical Heisenberg model)

m

e Vvd <2:disorder 1s ; usually, new critical
behavior, new exponents (classical Ising model)

. phase transitions

(Ising model with planar defects)

Effects much stronger in quantum systems
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SDRG flow: decimating bonds
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Random transverse field Ising model

D. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995)
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Random transverse field Ising model

D. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995)
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Numerical confirmation (Young, Rieger, Igléi); true also for 2D and 3D
(Motrunich, Mau, Huse & Fisher; Pich, Young, Rieger, Kawashima).

RG flow




Energy vs. length scales
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D. Fisher, PRL 69, 534 (1992); PRB 51, 6411 (1995)

Excitations of size L (clusters of spins) have energy €2 such that:

Along the line of finite disorder fixed points O~ L7

Conventional scaling (similar to clean systems) (W ~ Kk~

e » . _ 1
At the infinite disorder critical point: | ) ~ ¢ L : w =

2

Activated dynamical scaling (dynamical exponent is formally = 0o)
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This structure, lines of non-universal finite-disorder fixed points ending

at universal infinite-disorder fixed points, 1s seen in many models:

1. Other discrete models: Potts, clock, Ashkin-Teller (Senthil & Majumdar;
Carlon, Lajko, Chatelain, Berche, Juhasz, 1gloi)

2. Heisenberg AFM models with higher spins (Hyman & Yang, Monthus,
Golinelli, Jolicoeur; Saguia, Boechat, Continentino; Refael, Kehrein, Fisher, Igloi)

3. Heisenberg AFM models with explicit dimerization (Hyman, Yang,
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4. Systems with continuous symmetries (Heisenberg, XY) in the
presence of dissipation (Hoyos & T. Vojta)
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This structure, lines of non-universal finite-disorder fixed points ending
at universal infinite-disorder fixed points, 1s seen in many models:
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Other discrete models: Potts, clock, Ashkin-Teller (Senthil & Majumdar;
Carlon, Lajko, Chatelain, Berche, Juhasz, 1gloi)

Heisenberg AFM models with higher spins (Hyman & Yang, Monthus,
Golinelli, Jolicoeur; Saguia, Boechat, Continentino; Refael, Kehrein, Fisher, Igloi)

Heisenberg AFM models with explicit dimerization (Hyman, Yang,

Bhatt, Girvin; Igloi, Juhész, Rieger, Lajko)

Systems with continuous symmetries (Heisenberg, XY) in the

presence of dissipation (Hoyos & T. Vojta)

In all cases: | A — o] A1QA2

« 21 order pert. theory
* multiplicative structure
* activated dynamics
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1% order in perturbation theory — NO multiplicative structure
Generates higher spins
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Other possibilities: chains with AFM + FM

Westerberg ef al., Phys. Rev. B 55, 12578 (1997); Hikihara et al., Phys. Rev. B 60, 12116 (1990)

* Large spin phase: Spins form large clusters with large total spins

< S > ~ \/Z (random walk in spin space)

* Conventional scaling: () ~ [~
e Thermodynamics: X (T) ~1/T

 For weak disorder, z is universal ~ 2.27
* For stronger disorder, z > 2.27 1s non-universal and varies

continuously with the disorder strength (like in more conventional
Griffiths phases).

As the cluster spins grow, the probability of occurrence of 2nd order

processes becomes negligible: only 1st order decimations survive
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1. zigzag ladders with AFM interactions: 2. ~ 4.1 (Hoyos & Miranda, PRB 69,
214411 (2004))

2. SU(N) Heisenberg chain as N — ®: z_. =~ 5.8 (Hoyos & Miranda, unpublished)
3. Random transverse ficld Ising model with correlations between
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(2011))



Other systems with similar behavior

Non-universal tunable

finite disorder: z>z_ .. Infinite disorder:
Z =00

Universal
minimum finite
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Similar behavior is seen 1in:

1. zigzag ladders with AFM interactions: 2. ~ 4.1 (Hoyos & Miranda, PRB 69,
214411 (2004))

2. SU(N) Heisenberg chain as N — ®: z_. =~ 5.8 (Hoyos & Miranda, unpublished)
3. Random transverse ficld Ising model with correlations between

couplings and fields: z_.. ~ 1 (Hoyos, Laflorencie, Vieira, T. Vojta, EPL 93, 30004
(2011))

Why 1s this often observed?

Is there a general scheme?




What do they all have in common?

They are all dominated by 1st order processes!

Simplification

Universal (?) fixed-point
distribution
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What do they all have in common?

They are all dominated by 1st order processes!

Simplification

Y

A = a; A

Generic flow equation:

AP (A)
50

_ P(Q)P(A) - 2P (Q) / A doP (A') A ()6 (A — aA)

where 4 (@) 1s the distribution function of the multiplicative prefactors.
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General solution of the flow equation

Switch to appropriate log-variables: ¢ = In (Q/A) p(¢)d¢ = P (A)dA
o
Solve by Laplace transform at the fixed point: p () = / e %5 (€)d¢
0

. 1
plz) = 2B (z) — 1+ z2x

1
where, B (z) = / o’ A (a) da
0

Here, z 1s the dynamical exponent, which can be shown to be given by:

1 1
Y e

QP () p(0)
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Low energy behavior is set by the largest negative real pole of P (az)
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Low energy behavior is set by the largest negative real pole of P (az)

1 1
N N ~J _wmc ~Y
(o) = Q) ~ e > P(A) ~ o

5 1 1
Solving for the poles of p () = 2B (z) — 1 + 2z B (x) :/ a” A (a) da
0




Minimum 2z in our solution

Low energy behavior is set by the largest negative real pole of P (w)

1 1
0 (x) ~ = ~e%me = P(A) ~
@)~ —— = p(Q) ~ e (8) ~ o

. - 1 1
Solving for the poles of p () = 2B (@) — 1L oz B (z) :/ a” A (a) da

(:/
2B () is monotonically decreasing

2B (x =0) = 2




Minimum z in our solution

Low energy behavior is set by the largest negative real pole of P (ZC)

1 1
P ~ ~ —Zm PA o
p(e) % = p() ~ e > PA) ~

_ 1 1
Solving for the poles of p () = 5B (z) — 1 + 2z B (x) :/ a’ A (a) da

‘Z/
2B () is monotonically decreasing

2B(x =0) =2




Minimum z in our solution

Low energy behavior is set by the largest negative real pole of P (ZL’)

) 1 e 1
p () = > hQ) e “= P(A) ~

1 1
2B (z) — 1+ 2z © () = /O‘/O‘LCA(OO da
2B () is monotonically decreasing

2B(x =0) =2

For sufficiently small z, there 1s no
solution.

Q

Solving for the poles of p () =

There 1s a minimum

dynamical exponent 2
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In the clean limit, there are extended excitations with $i mo JL, Felean

Z ‘;/
D

If Zmin >2clean = weak disorder is relevant ~min
Z clean
Clean FP Finite-disorder FP - - D
% R FSVIVAVEVIVEVIVER
0 D¢ Line of disordered FP D
2 | /
ZC ean ——.
If Zmin <Zclean = weak disorder 1s irrelevant 1_
min D
— - D
X L e
0 / D, D

RTFIM with correlated disorder (4; =J)), ¢>4 clock model,...(?)



Posssible
RG flows

 AFM+FM chain, zigzag
ladder, SU(o0)

AVECNTIAY B

« RTFIM with correlated
disorder, >4 clock
model, ....

//

Disorder

/1 |

Disorder




Check with other methods

Compare with exact diagonalization of Hrrrrv = — Z J; (U ; o §+1U ;U)

Hoyos, Laflorencie, Vieira & Vojta, EPL 93, 30004 (2011) J
Hoyos & Miranda, in preparation
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Conclusions

1. Generic analytical treatment for a class of disordered systems
Existence of a minimum 2
Relevance of disorder
Line of finite-disorder fixed points

2. 2" order vs 1% order decimation processes
Multiplicative vs Simple structure
Exponential activated vs Conventional power-law dynamics

A = # A1QA2 vs A = ;A\

Non-degenerate vs Degenerate “local” ground states



