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Outline

Outline
I High temperature regime of QHE : phenomenology

I Large-scale inhomogeneities : microscopic theory for classical
transport critical exponents

I Dominant local dissipation mechanisms

I Longitudinal conductance : scaling law vs experiments
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The High Temperature Regime of the Quantum Hall Effect
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The High Temperature Regime of the Quantum Hall Effect

Classical motion in high perpendicular magnetic field
Two “degrees of freedom” with different timescales :

I Fast cyclotron motion : dθ
dt = ωc = eB

m?

I Slow drift velocity : vd = E
B × ẑ

=⇒ drift frequency ωd = vd/ξ

I Decoupling (ωc > ωd) for B
(GaAs)
c ' 1 T

B E

Picture : guiding center motion becomes regular

I Disordered bulk : localization on closed equipotential lines
I Sharp edges or percolating bulk states are delocalized
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The High Temperature Regime of the Quantum Hall Effect

Experimental evidence for (classical) decoupling ?

I High-T regime not well studied curiously

[Renard & al. PRB(2004), B. Piot (unpublished)]

T = 47K
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Data: T = 47 K

Fit: Drude

Fit: σL ∝ B−κ

I Classical law RH ∝ B for all B field values

I Drude’s law RL = Cst and σL = ne2τ/m?

1+(ωcτ)2
OK for B < 1T

I New regime for B > 1T with σL ∝ B−κ

I Anomalous exponent κ ' 0.6 → 0.9
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The High Temperature Regime of the Quantum Hall Effect

Disgression : onset of Quantum Hall Effect

I The decoupling works also in the quantum world :
robust Landau levels with drifting wavefunctions

I Evidence from STM [Hashimoto et al., PRL (2008)]
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I Breakdown of Drude’s law (high T) correlated to
onset of QHE (low T) [Fogler, Dobin, Perel, Shklovski, PRB (1997)]
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The High Temperature Regime of the Quantum Hall Effect

Transport from guiding center alone ?

I Trajectories following closed
level lines do not contribute
to transport

I Percolating trajectories
must go through saddle
points ⇒drift velocity
vd ∝ ∇V × ẑ vanishes !
(if disorder analytic)

I Conductance is exactly zero

⇒ Extra scattering processes (phonons, “LL-mixing”) are
required for longitudinal transport

⇒ Introduce small dissipative local conductivity σ0
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The High Temperature Regime of the Quantum Hall Effect

Percolating transport at small σ0

I Classical motion=drift+diffusion
I σ0 plays the role of cutoff for percolating state

⇒ scaling law for conductance σL ∝ σ1−κ
0 � σ0

I Conjecture [Isichenko RMP (1992), Simon&Halperin PRL (1994)] :

ξ

• κ = 1− 1
2+νD with ν critical

exponent of the correlation
length and D fractal dimension
of the percolating path.

• κ = 10/13 ' 0.7692

Goal :

I Compute κ microscopically in a direct calculation of σL

I Obtain scaling form of σL(T ,B) in order to extract critical
exponent from experimental data
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The classical percolation transport problem

The classical percolation transport
problem
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The classical percolation transport problem

Local Conductivity Model

I Classical Ohm’s law is obeyed locally in space

j(r) = σ̂(r)E(r) =

(
σ0 −σH(r)

σH(r) σ0

)
E(r)

valid for conductors with short coherence length (high-T ok)

I Disorder leads to density fluctuations =⇒ random σH(r)

I Solve continuity equation ∇.j(r) = 0

Drift conductivity from semiclassics :

σxy (r) =
e2

h

∑
m

nF (Em + V (r))

as current density : j(R) = −en(R)vdrift = e2

h 2πl2Bn(R)E× ẑ
with n(R)=density of filled states
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The classical percolation transport problem

Problem : strong fluctuation regime

Modelling conductivity fluctuations :

σ
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Potential of disorder

Local conductivity, high T

Local conductivity, low T

r

r

r I Gaussian σxy (r) at high T

I Binary σxy (r) at lower T

I Strong conductivity fluctuations :√
〈δσ2

H〉 ' 2
e2

h
σ0 � σL . e2

h

=⇒ Non-perturbative problem
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The classical percolation transport problem

How to compute transport at small σ0 ?

Effective conductivity : σ̂e defined after averaging
Vxx

Vxy

I I

j(r) = σ̂(r)E(r)

spatial average 〈...〉
〈j〉 = 〈σ̂(r)E(r)〉 = σ̂e〈E〉

Problem : a small σ0 expansion for σ̂e is not possible

Strategy :

• Expand the conductivity perturbatively in powers of 1/σ0.
• Extrapolate series to small σ0.
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The classical percolation transport problem

Systematic Calculation of the Effective Conductivity

I Solve continuity equation ∇ · j = 0 with j(r) = σ̂(r) · ∇Φ.
I This leads to boundary value problem [Dreizin & Dykhne JETP

(1972), Stroud PRB (1975)] if σ̂(r) ≡ σ̂0 + δσ̂(r)
∇ · [σ̂0∇Φ(r)] = −∇ · [δσ̂(r)∇Φ(r)] in V
Φ(r) ≡ Φ0(r) = −E0 · r on S

for a sample of volume V bounded by a surface S .
I Introducing the Green’s function
∇ · [σ̂0∇G (r, r′)] = −δ(r − r′) in V

G (r, r′) = 0 for r on S.
I After some algebra we find σ̂e = σ̂0 + 〈χ̂〉

with χ̂(r) = δσ̂(r) + δσ̂(r)

∫
V

d2r ′ Ĝ0(r, r
′)χ̂(r′)

where
[
Ĝ0

]
ij

= ∂
∂ri

∂
∂rj

G (r, r′). Note : Ĝ0 ∝ 1/σ0
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The classical percolation transport problem

Diagrammatic Expansion

χ̂(r) = δσ̂(r) + δσ̂(r)

∫
V

d2r ′ Ĝ0(r, r
′)χ̂(r′)

Convention :

Ĝ0(r− r1) =
r r1

δσ̂(r) =
r

Systematic expansion of χ̂ :

χ̂(r) =
r

+
r r1

+
r r1 r2

+
r r1 r2 r3

+ ...

At high-T , Gaussian fluctuations of δσ̂(r) are averaged with the
correlation function 〈δσ̂(r)δσ̂(r′)〉 (curly lines)

〈χ̂(r)〉 = 0 +
r r1

+ 0 +
r r1 r2 r3

+
r r1 r2 r3

+
r r1 r2 r3

+ ...
.
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The classical percolation transport problem

Result at Six-Loop Order

I 〈χ̂(r)〉 is purely diagonal : • classical Hall law for σH

• non-trivial behavior of σL

σe
L = σ0 +

〈
χ
〉

= σ0 +
∞∑

n=1

an
〈δσ2

H〉n

σ2n−1
0

I We have calculated the diagrams up to six-loop order :

Loop order Method Coefficient an

1 Analytical 1
2

2 Analytical 1
8 −

1
2 log(2)

3 Analytical 0.2034560502
4 Numerical −0.265± 0.001
5 Numerical 0.405± 0.001
6 Numerical −0.694± 0.001

I Knowing that σe
L ∝ σL ∝ σ1−κ

0 extrapolate to σ0 → 0.
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The classical percolation transport problem

From Strongly Dissipative to Percolating Regime
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Perturbation at order n = 1
Resummation of order n = 2
Resummation of order n = 4

I The longitudinal
conductance
converges well from
large to small σ0.

I Microscopically
calculated value for κ
is in good agreement
with the conjecture.

Loop order Method Exponent κ

2 Padé 0.72± 0.09
4 Padé 0.779± 0.006
4 n-Fit 0.767± 0.002
∞ Conjecture 10/13 ' 0.769
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Relevant dissipation mechanisms

Relevant dissipation mechanisms
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Relevant dissipation mechanisms

Remanent impurity scattering at high magnetic field ?

I σxx ' e−B/Bc at large B

I Exponential decoupling of guiding center and cyclotron motion
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Relevant dissipation mechanisms

Phonon Scattering ?

I Huge reduction of Debye temperature TD at high field
due to weaker phase space constraints
[Zhao & Feng, PRL(1993), Gantmakher & Levinson, Elsevier (1987)]

I TD reduced from 10K at B = 0 down to 1K (or less) at 1T

• Fermi’s Golden Rule calculation
for the scattering rate :
1

τ
∝ TB2
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Relevant dissipation mechanisms

Estimation of σ0 from Phonon Scattering

Coarse-grained approach :

I Drude’s formula with electron-phonon scattering time τ
applies on short length scales :

σ0 =
ne2τ/m∗

1 + ω2
cτ

2
∝ 1

ω2
cτ

with
1

τ
∝ TB2.

I Independent of the magnetic field σ0(B) ∝ const.

I Linear temperature dependence σ0(T ) ∝ T
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Scaling law vs experiments

Scaling law vs experiments
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Scaling law vs experiments

Scaling of longitudinal conductivity

Percolation scaling law : σxx ∝ σ1−κ
0

〈
δσ2

xy

〉κ/2

Fluctuation of Hall component : at high-T linearize

σxy (r) ' e2

h

∑
m[nF (Em) + V (r)n′F (Em)]

At plateau transition : δσxy (r) ' e2

h

[
1

4T + 1
~ωc

]
V (r)

Scaling function : σxx ∝ [σ0(T )]1−κ
[

e2

h

√〈
V 2

〉]κ [
1

4T + 1
~ωc

]κ

I σxx ∝ T 1−2κ ' T−0.5 at T < ~ωc/4

I σxx ∝ T 1−κ ' T 0.2 at T > ~ωc/4

σxx should go through a minimum at T ' ~ωc/4

I σxx ∝ B−κ at T > ~ωc/4 slower than Drude
[Polyakov & Shklovskii, PRB(1994)]
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Scaling law vs experiments

Magnetoconductance σL at T = 47K
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Data: T = 47 K

Fit: Drude

Fit: σL ∝ B−κ

[B. Piot (unpublished)]

I Clear crossover from low
field Drude behavior

σL ∝
σ(B = 0)

1 + (ωcτ)2
∝ B−2

to high field regime

σL ∝ B−κ

I Fit gives κ = 0.62 (smaller than theoretical expected value
κ = 0.77).

I But exponent extraction difficult as only small B-field range
(onset of oscillations at B & 8T).
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Scaling law vs experiments

Peak conductivity vs temperature

IQH transition:
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for three IQHE
transitions :
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I Two power-laws : T 1−2κ = T−0.5 (low T )
T 1−κ = T 0.2 (high T )

⇒ crossover from classical to quantized cyclotron motion

I The minimum appears as predicted (~ωc is not fitted)

I Quantitative agreement with the scaling function for σxx(T )
We extract : κ = 0.73± 0.03
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Scaling law vs experiments

Low Temperature Behavior kBT �
√
〈V 2(r)〉

Binary model : neglects quantum tunneling, interference...

σ
H

(r
)

σ
H

(r
)

V
(r

)

Potential of disorder

Local conductivity, high T

Local conductivity, low T

r

r

r

I σH =
e2

h

∑
m

nF (Em + V (r)− µ)

−−−→
T→0

e2

h
[ν + Θ(−V (r) + µ)]

I [Dykhne & Ruzin, PRB (1994)] :

σpeak
L =

√(
e2

2h

)2

+ σ2
0

exact from duality mapping

Note : σpeak
L finite at σ0 → 0 [possible as non-analytic σH(r)]

We recover precisely this formula from resummed perturbation
theory in 1/σ0 (from two loops and on)

=⇒ Computation of full crossover for σxx(T ) possible
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Scaling law vs experiments

Summary

+ + + ...

I Diagrammatic method allows microscopic
calculation of the conductivity and the
critical transport exponent κ

IQH transition:
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I Scaling laws compatible with
experiment :

• role of classical percolation
• phonons are dominant dissipation

mechanism

I Prospects :

• Find better sample or system (spin gap problem)
• Compute complete scaling law (with quantum corrections)
• Investigate phonon scattering with disorder at high field
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Extra Slides

Ingredients for the QHE : Landau Levels + Disorder

I H0 =
1

2m∗ (p− eA(r))2

• Landau levels (LL) :

En = ~ωc

(
n +

1

2

)
with ωc =

eB

m∗
• typical length scale :

lB =
√

~
|e|B

I Disorder Potential V (r)
with correlation length ξ
H = H0 + V (r)
• localized states
• if lB � ξ

En(r) ≈ ~ωc(n +
1

2
) + V (r)

ρ
(E

)

E

σ
L
[a

.u
.]

σ
H
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e
2 h

]

delocalized localized
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Extra Slides

STM Images : Density of States Maps Disorder Landscape

(InSb, T = 0.3K, B ≥ 12T), [Hashimoto et al., PRL (2008)]

I Low temperature : Quantum percolation physics plays a key
role at the plateau transitions.

I High temperature : Role of classical percolation ?
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Upper B-field Limit
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Exp. Data

Fit: σe
L ∝ B−κ

I For B > 8T
deviations from the
B−κ law.

I kBT > ~ωc no
longer valide.

I Zeeman splitting Ez = ±1
2gµBB

I Problem : Interaction effects between the spin species leads to
unknown large geff.
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Extra Slides

Sample Characteristics

I Density : 4 · 1011cm−2

I Mobility at 1.2K : 3.3 · 105cm2V−1s−1

I Aspect ration : Lx/Ly = 6

I Spacer : 102Å
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Low Temperature Behavior kBT �
√
〈V 2(r)〉

σ
H

(r
)

V
(r

)

Potential of disorder

Local conductivity, low T

r

r

I But conductance saturation is
not observed experimentally.

I LL wave function spread is
missing [Champel, Florens &
Canet, PRB(2008)] :

σH(r) =
e2

h

∫
d2R

∑
m

|Ψm,R(r)|2 nF (Em + V (r)− µ)

⇒Width of transition between σH = e2

h ν and σH = e2

h (ν + 1) no
longer given by T , but by lB .
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Low Temperature Behavior kBT �
√
〈V 2(r)〉

quantum? ∝ σ1−κ
0 ?

[Wei, Lin, Tsui, Pruisken, PRB (1992)]

I

√
〈δσ2

H(r)〉
dominated by lB
⇒temperature
independent at
low T .

⇒ again σe
L ∝ σ1−κ

0 at
kBT �

√
〈V 2(r)〉.

I Qualitative
explanation of the
drop of σL at
T < 1K .
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Diagram Multi- Analytical Value Decimal
plicity Value

Two loops

1 − 1
4

log(2) -0.173

1 1
8
(1− log(4)) -0.0483

Three loops

1 1
96

`
3− π2 + 3 log[3](−3 + log[9]) + 12Li2

ˆ
2
3

˜´
0.00504

2 1
32

log
ˆ

27
16

˜
0.0164

1 1
16

`
2 log[2]2 − 3 log[3] + log[8] + Li2

ˆ
1
4

˜´
0.000760

2 1
384

(2 + 100 log[2]− 63 log[3]) 0.00547

1 1
8

log
ˆ

32
27

˜
0.0212

1 1
8

log
ˆ

27
16

˜
0.0654

1 − 1
48
− log[2]

6
+ 9 log[3]

64
0.0181

1 3
16

log
ˆ

4
3

˜
0.0539

Multiplicity and analytical values of the diagonal elements of the non-zero second and

three loop order diagrams. Li2 is the dilogarithm defined by Li2(z) =
R 0
z dt log(1−t)

t
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