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Abstract
This resource paper provides a presentation of tomographic
methods and a guide to the literature concerned with tomography
both in classical and quantum physics. In this work, the aims and
methods of tomography are clearly identified and presented. Also
comments on the variety of applications that these methods have
nowadays are given. (Applications include Material Sciences,
Medicine and Neutrino Tomography of Vesuvius.) A historical
account is given to explain the origins of the approach in its classical
setting ,starting with Radon Transform up to the modern setting
within quantum physics. It is known that tomography has evolved
into an alternate picture of quantum mechanics, therefore it may be
applied in all fields of physics (most notably quantum optics,
quantum computation and quantum information and also quantum
cosmology). The probabilistic contents of the quantum tomography
makes it specially useful for statistical methods and for the
comparison and the transition from quantum mechanics to classical
mechanics. The tomographic picture of quantum mechanics is
compared with the standard picture in terms of Hilbert spaces and
with the algebraic approach arised from Heisenberg picture.



There exist different formulations of both classical mechanics and
quantum mechanics.
In classical mechanics, the Newton equations play an important role
as well as Hamiltonian and Lagrangian formalism. An alternative
geometrical formalism in classical mechanics is the other important
aspect of presentation of classical mechanics.
In quantum mechanics, there exist also different formulations like
the standard Schrödinger representation with the wave function
evolution equation, the Heisenberg picture, the Feynmann path
integral formulation, as well as the Moyal formulation of quantum
mechanics in a classical-like form.



In the second part of the last century, the attempts appeared to
find formulations of both classical and quantum mechanics which
are similar and provide the possibility to see in clear form the
classical–quantum relation. The mathematical basis of such
attempts called the tomographic picture of quantum (also classical)
mechanics is the application of integral Radon transform. This
transform is used in any tomographic procedure, e.g., in medical
tomography. The last decades, tomography of large scale objects
like the Vesuvio vulcan, the Globo itself, oil geophysical lakes, etc.
are under discussion. This tomography, instead of electromagnetic
beams of tomography used in medicine, plan to employ the
neutrino beams. The generalization of the Radon transform
appropriate for tomography of media were suggested recently.



The tomographic approach was also applied to cosmological
problems. In fact, in quantum cosmology the notion of the Universe
state can be given in terms of the tomographic probability
distribution which is an alternative to the wave function of the
Universe. Within the probability framework, the classical picture of
the cosmological processes and quantum picture of the cosmological
processes can be treated in view of a unified formalism.
We point out that the tomographic-probability representation of
quantum mechanics makes more clear the phase-space
representation of quantum states. In fact, since the measurable
tomographic-probability distribution is considered as a primary
notion of quantum states containing the complete information on
the state, the experiment to measure the photon states do not need
the procedure of quasidistribution reconstruction since all physical
characteristics are extracted from the optical tomograms.



The aim of this lecture is to present a review and literature sources
on new formalism of classical and mainly quantum mechanics where
the probability distributions play a primary role in the description of
both classical and quantum states.



Historical review of the tomographic probability
representation of quantum states
The notion of state for a classical physical system has been
developed during centuries of observations and experiments. It is
commonly accepted as a quite natural and clear notion due to
every-day experience with all surrounding events. First of all, for a
system, say for a particle, it is assumed that position q in space and
velocity q̇ at the given position are enough to fully characterize a
state. If the particle possesses a mass m, the velocity of the
massive particle provides the particle with a momentum p = mq̇.
Of course, intuitively we do not even question that the position in
space can change with time t, an this gives rise to the velocity q̇.
So, the concept of space and position q in it, the notion of time t
,providing the evolution of the particle’s positions, i.e., the velocity
q̇, and the notion of momentum p are standard and intuitively
accepted characteristics which we understand as characteristics of
the particle state in a classical description.



The Kepler and Newton laws of the particle motion after some
accurate discussion provide us with the understanding that the
classical particle state can be identified with two numerical
characteristics – position q and momentum p – identifying a point
in the phase space, and the evolution of the state in time is simply
a trajectory in the phase space, i.e., q(t) and p(t) as functions of
time. These functions, called the motion of the particle, can be
obtained by solving Newton laws. The situation changes if one
considers the notion of state for a particle not moving in empty
space (say a vacuum) but in a medium where the constituents of
the medium collide with the particle chaotically, changing its
position and velocity many times. In view of this, the particle can
be found, in fact, in an interval (∆q,∆p) around the point (q, p) in
the phase space, and different points (q, p) in the phase space, in
principle, do not behave in the same manner for the particle.
Intervals around different points carry different densities,encoded in
a function f(q, p). This function is the probability density function,
which is nonnegative and normalized, i.e., its integral taken all over
phase space is one.



Thus, to introduce an intuitively clear concept of state in the
presence of position and velocity (momentum) fluctuations, we
consider the notion of probability density f(q, p) in phase space.
This is a basic concept of the state in classical statistical
mechanics. So in the classical picture, to identify the state of
particle, we use either two numbers q and p when we disregard
fluctuations in position and momentum, this corresponds to
classical mechanics, or we use a probability distribution in the phase
space,say f(q, p) ,when we want to take into account fluctuations,
this corresponds to classical statistical mechanics.



The notion of state changes drastically in quantum mechanics.
Instead of the discussed nonnegative probability distributions used
in the classical domain, a complex wave function ψ defined on the
configuration space and time, is used to describe a quantum state.
Thus, the state of quantum particle in the standard formulation of
quantum mechanics is associated with a complex wave function
|ψ(x)|eiφ(x) where the modulus squared of the function has an
accepted physical interpretation inherited from experiments.



Namely, |ψ(x)|2 is interpreted as a probability density, which
determines the probability to find the particle in an interval ∆x
around the point x, but the phase factor eiφ(x) in the wave function
has not an intuitively clear physical meaning, even though it is
considered relevant for the description of interference phenomena.
In any case, this factor is needed to properly describe a quantum
state. There exist quite different states with the same modulus of
the wave function and different phase factors which can be
distinguished experimentally. Also it is worth noting that the wave
function ψ(x) cannot be as a whole associated with some physical
property. It is used as a formal mathematical tool to calculate
physical observable values, which can be measured in the
experiments, like the particle energy or the particle momentum.



In quantum statistical mechanics, the notion of state was again
generalized. The notion of density operator ρ̂ or density matrix
ρ(x, x′) has been introduced by Landau and von Neumann. The
density matrix is, in general, a function of two variables, and only
the diagonal ρ(x, x) of the density matrix has an intuitively clear
interpretation as a probability density of the quantum-particle
position. Off-diagonal elements do not have an intuitively clear
interpretation inherited from the laboratory experience.



From the very beginning of quantum mechanics, there were
attempts to find alternative formulations for describing the particle
quantum state with a probability distribution similar to the classical
situation. For a pure quantum state described by the wave function
ψ(x), the density matrix ρψ(x, x′) = ψ(x)ψ∗(x′) contains the
relevant information on the state as contained in the wave function.
Only a position-independent phase factor can be added to the wave
function, that does not change the expectation values of physical
observables. In fact, the correspondence ψ(x)→ ρψ(x, x′) may be
considered as a "change of variables,"and it is invertible only
modulo the mentioned phase factor.The quadratic dependence of
ρψ on ψ(x) requires now additional care to be able to deal with the
description of interference phenomena.



In 1932, Wigner suggested another change of variables where the
wave function ψ(x) is associated with the so-called Wigner function
W (q, p). This change of variables has the form of Fourier transform
of the density matrix ρ(x, x′) and reads

W (q, p) =

∫
ρ (q + u/2, q − u/2) e−ipudu. (1)

We set here the Planck’s constant ~ = 1 in (1).
The Fourier transform is invertible, i.e.,

ρ(x, x′) =
1

2π

∫
W

(
x+ x′

2
, p

)
eip(x−x

′)dp. (2)



Thus,the information in the quantum state encoded by the density
matrix is the same as the information contained in the Wigner
function. The aim for the introduction of the Wigner function
W (q, p) was exactly to bring the notion of quantum state closer to
the classical notion. This was only partially realized since the
Wigner function has some properties very similar to the properties
of the classical probability distribution f(q, p), but not all of them.
In fact, this function is real (not complex!). The marginals obtained
from the Wigner function provide the probability distributions of
the positions and momenta, respectively, exactly as the marginals
obtained from the classical probability densities. Also calculations of
all the highest moments of the particle’s position or all the highest
moments of the particle’ momentum are calculated using the
Wigner function exactly as in the corresponding statistical
characteristics of the classical particle obtained by means of the
probability distribution on the phase space.



The Wigner function is normalized, and the normalization condition
looks exactly as the normalization condition for the classical
probability distribution (modulo factor 2π). The behavior of the
Wigner function mimicks the behavior of the classical probability
distribution, but there is one important difference. While the
classical probability distribution cannot take negative values, the
Wigner function can take also negative values and must take them
in generic situation due to the indetermination relations. In view of
this, the Wigner function is not a probability distribution and it is
called quasiprobability distribution or simply quasidistribution. Later
on, other quasidistributions were introduced for quantum states like
Husimi–Kano Q-function and Sudarshan ϕ(z), z = q + ip) or
Glauber P -function. All these functions are functions of q and p.
They are related one to the other by integral transform with
different Gaussian kernels. They are not probability distributions of
the position and momentum. The existence of such joint probability
distributions is forbidden by the uncertainty relations which follow
from the impossibility to measure position and momentum
simultaneously.



The impossibility to introduce a joint probability distribution on the
phase space of a quantum particle has created the belief that it is
impossible to find a fair probability description of the quantum
state, description that would replace the wave function and the
density matrix in the conventional quantum mechanics. In relatively
recent times this situation has been improved by introducing the
tomographic approach to quantum mechanics. In this approach it is
possible to describe quantum states by means of fair probability
distributions. In fact, the problem of measuring quantum states, for
example, to obtain the Wigner function as an outcome of
experiments was under discussion due to the relation between the
Wigner function and the optical tomogram found in which is the
Radon integral transform of the quasidistribution.



The important property of the Radon transform of the Wigner
function is the fact that this transform provides the
probability-distribution function w(X, θ) of real variable X called
the homodyne quadrature. In addition, this function called the
optical tomogram depends on an extra parameter θ which is called
the local oscillator phase. The names were motivated from the
measuring problem of the photon quantum states, where the notion
of quadrature components is used instead of the position operator q̂
and the momentum operator p̂, which are real and imaginary parts
of the photon annihilation operator â = 1√

2
(q̂ + ip̂). The two

photon quadrature operators q̂ and p̂ do not have the physical
meaning of position and momentum as for the mechanical
oscillator, but the mathematical formalism used to describe these
observables for photons is the same.



The optical tomogram w(X, θ) can be measured by homodyne
detector, and it was considered as a technical tool to find the
quantum state which is associated with the Wigner function. In all
experiments on measuring photon quantum states by homodyne
detector, the direct outputs of the experiment (optical tomograms)
were not interpreted as providing the quantum state but were
transformed by means of the inverse Radon integral into the Wigner
function (procedure called the reconstruction of Wigner function)
which was interpreted as quantum state. Experience with measuring
the photon quantum state and the reconstruction of the Wigner
function paved the way for the development of other tomographic
approaches like symplectic tomography. Also it was realized that
tomograms (optical and symplectic) can be considered as primary
objects in quantum mechanics, and these objects contain complete
information of quantum states. In fact, the optical tomogram is a
measurable probability distribution, and one can get all physical
characteristics if the tomogram is given exactly in the same sense
that one can get all physical characteristics of a system if its wave
function (or density matrix) is given. In this sense, tomograms are
conceptual alternatives to the wave function (or density operator).



What is quite important with tomograms as primary objects
defining the quantum states is the fact that the tomogram can be
introduced also for classical systems as the Radon transform of the
probability distribution on the phase space. In this sense, the optical
tomogram describes the states in both classical and quantum
mechanics. This property permits to consider the
quantum-to-classical transition using the same carrier space of
states, both classical and quantum. The difference between the
classical notion, which is the probability distribution f(q, p) on the
phase space, and the quantum notion, which is the complex wave
function ψ(x), is tremendous and provides with a lot of difficulties
in studying the quantum-to-classical transition limit. Of course, the
difficulties within the tomographic framework to study this limit
also exist, but at least one deals with the same space of functions
for both systems,classical and quantum.



Then the question arises – what is the difference between the
classical and quantum states if they are described by one (and the
same) tomographic-probability distribution (optical or symplectic
tomogram)? The answer is contained in the fact that the set of
tomograms corresponding to classical states and the set of
tomograms corresponding to quantum states are different ,even
though they are defined on the same space. The tomograms turn
out to obey some integral constraints which are different for the
quantum and classical domains. Also the calculation of physical
quantities using the tomograms in the classical and quantum
domains is different and this difference appears explicitly within the
rules for the star-product for the observables and also for the
Wigner functions and the Weyl symbols associated with the
quantum observables. The appearance of the same carrier space for
classical and quantum systems suggests to consider also the
classical setting in terms of Hilbert spaces and operators following
very closely the old proposal by Koopman adapted to the
tomographic representation.



Thus, in the tomographic approach, one can formulate quantum
mechanics using only classical-like ingredients, such as probability
distributions and functions defining the physical observables.
Viceversa by changing the view point one can formulate classical
mechanics using purely quantum-like ingredients as Hilbert-space
vectors and operators (observables) acting in the Hilbert space.
The other important advantage of tomographic approach is the
possibility to use all known concepts of probability theory like
Shannon entropy and Shannon information, Rényi entropy and
adopt known results for these entropies in the form of entropic
inequalities and use these results for the tomographic entropies.



We may summarize and formalize our discussion, we may say that
minimal features that any physical system should possess are
identified by a space of states Σ and a space of observables Θ
along with a pairing µ taking values in the space of probability
measures on the real line R.We have µ : Σ×Θ→ {probability
measures on the real line R}, i.e., with a state ρ and an observable
A, we have µA,ρ represents the probability distribution for the
values we obtain when we measure A in the state ρ. When
E ⊂ R, µA,ρ(E) ∈ R is the probability that we will obtain a value
of A contained in E if the system is known to be in the state ρ.
We outline here some mathematical aspects of these minimal
features when we deal with classical and quantum systems
,subsequently we shall take up these aspects in a language that is
much more familiar to the average reader.



A classical mechanical system is usually described by a
finite-dimensional smooth manifold M called the phase space, a
symplectic structure ω on M , that is a closed two-form (dω = 0)
which is not degenerate. A Hamiltonian function defines the
evolution by means of the flow,a one-parameter group of canonical
transformations associated with the Hamilton equations. From ω,
one can construct the Liouville measure associated with the
symplectic volume form Ω = ω ∧ ω ∧ · · ·ω∧. Considerations from
statistical mechanics lead to the following:
a) states are probability measures on M , say ν;
b) observables are measurable real valued functions on M ;
c) the pairing map µ is given by µν,A(E) = ν

(
A−1(E)

)
, where

E ⊂ R, A : M → R, and ν a measure on M .



Statistical considerations suggest to consider states as represented
by measures rather than points of M ; in this way, we take into
account that we may have only a statistical knowledge of the true
state (fluctuations). The space of states is a convex set, therefore,
we may identify its extreme states as pure states.
Thus, pure states are point measures and therefore in one-to-one
correspondence with points of M . Every observable A is sharp in a
pure state, i.e., the corresponding measure µν,A on R is a point
measure. This means that there is no dispersion when we measure
an observable in a pure state. As noted by Koopman, previous
picture can be translated into the Hilbert-space language. We
denote by H the Hilbert space of square integrable complex valued
functions on M with respect to the Liouville measure. Each ψ ∈ H
is associated with a probability measure νψ = |ψ|2Ω when
‖ψ‖ = 1. If A is an observable, its expectation value will be

eA(ψ) =

∫
M
A|ψ|2dΩ = 〈ψ|Aψ〉,

where A is considered to be a multiplication operator on H.



The map ψ → νψ from H to ρ is many-to-one because νψ = νψ′ if
ψ′ = ψeiα and α ∈ F (M) is any real valued function on M . If the
operators are required to commute with the multiplication by a
phase,i.e.,they are depending only on states, they must be
multiplication operators. The Hamiltonian dynamics associated with
the Hamiltonian function H will preserve the Liouville measure and
therefore will be unitary. Dynamics will preserve the statistical
interpretation because the probability is preserved.
In quantum mechanics, there are no dispersion-free states (we recall
that a dispersion-free state implies that µA,φ is a point measure for
any observable A). In quantum mechanics, states are given by rays
of a complex Hilbert space H. One arrives at this identification by
taking into account interference phenomena and probabilistic and
statistical aspects. Mixed states will be convex combinations of
these pure states. The identification of states out of normalized
vectors in H is now given by ψ′ ' ψeiα with α ∈ R ,not a function
any more. We assume that expressions like |〈ψ|φ〉|2 represent
transition probabilities and may be measured in the laboratory.



Consider now an observable A. For each E ∈ R, we have µA,ψ(E)
which represents the probability of obtaining a value in E when
measuring A in the state ψ. One arrives at the identification of a
projection operator PAE on H such that

µA,ψ(E) = 〈ψ|PAE ψ〉.

Various theorems are available to associate with any self-adjoint
operator a spectral decomposition and a spectral measure.
Expectation value functions will be given by

eA(ψ) =
〈ψ|Aψ〉
〈ψ|ψ〉

.

In view of Dirac’s notation, pure states will be ρ = |ψ〉〈ψ〉
〈ψ|ψ〉 , and

mixed states are all possible convex combinations. In this picture,
observables are self-adjoint operators on H, states are normalized
positive linear functionals on observables and µAρ(E) = ρ

(
PAE
)
,

PAE being the spectral projections of A. Pure states are identified
with rank-one projectors obtained from normalized vectors of H.



This view point may be further generalized by considering the
observables as a primary object and identified as the real elements
of a C∗-algebra.
In the classical situation, the algebra is the algebra of functions on
the phase space, an associative and commutative algebra with the
property that the support of the product of two functions is
contained in the intersection of the support of the factors. Again,
states are identified as normalized positive linear functionals on this
algebra.



The quantum situation is distinguished by having a
non-commutative algebra. We recall that any C∗-algebra which is
commutative, by Gel’fand–Naimark theorem, must be isomorphic to
an algebra of functions on a space identified by the spectrum of the
algebra itself. In the quantum case, we start with a C∗-algebra A
(for instance, all bounded operators on some Hilbert space H).
Observables are real elements of A. The states are the normalized
positive linear functionals on A. If ρ is the state, ρ(A) is the
expectation of A in the state ρ. The Gel’fand–Naimark–Segal
(GNS) construction plays a fundamental role. This construction
shows that there is a representation of A by means of bounded
operators on a Hilbert space H, say Πρ : A → L(H,H) such that

ρ(A) = 〈ψ|Πρ(A)|ψ〉

for all A ∈ A and ψ a unit cyclic vector in H. The triple (H,Πρ, φ)
is unique up to unitary equivalence.



In this way, we may construct our probability measures µA,ρ. Again
we have associated with a physical system a space of states, a space
of observables and a pairing with values probability measures on R,
this association holds true for both classical and quantum systems.
The GNS construction essentially enables one to recover the Hilbert
space formalism from the abstract C∗-algebra formalism.
In the general formalism, one may characterize pure states as those
for which Πρ is irreducible. In this formalism, the uncertainty
relations acquire the form

σρ(A)σρ(B) ≥ 1

2
ρ(C),

where C = i(AB −BA) and σρ(A) is the variance of the
probability distribution µA,ρ,
σρ(A)2 = ρ(A2)− (ρ(A))2 = ρ

(
(A− ρ(A)I)2

)
.



In the following sections, we shall take up explicitly the
construction of the tomographic picture by using as carrier space a
phase space which is a vector space. This phase space is also an
Abelian vector group. This group property will play a relevant role
for it makes available all tools coming from Fourier analysis. Also
on a group there exist always two products on functions defined on
it, the point-wise product and the convolution product. This latter
defines a C∗-algebra structure on functions which may be used for
the GNS construction.
In the coming sections we shall develop more closely the
tomographic point of view which makes much more clear the
probabilistic and statistical aspect of our picture.



Classical mechanics within the tomographic framework
Before introducing the probability representation in quantum
mechanics, first we show how the tomographic representation can
be introduced in classical statistical mechanics.
Let us consider the Radon transform of the probability-distribution
function f(q, p) on the phase space of a classical particle. We
denote the transform as w(X,µ, ν) where the arguments are
X,µ, ν and take real values. By definition,we have the association
between these functions called symplectic tomogram

w(X,µ, ν) =

∫
f(q, p)δ (X − µq − νp) dq dp. (3)



Since the Dirac delta-function is understood as a high peaked
"function it is positive and the normalized distribution is also
positive, the result of integration is the positive function,
w(X,µ, ν) ≥ 0. In view of the property of the delta-function∫

δ (X − a) dX = 1, (4)

the tomogram is normalized∫
w(X,µ, ν) dX = 1. (5)



The tomogram can be rewritten in the form

w(X,µ, ν) =
1

2π

∫
f(q, p)eik(X−µq−νp)dk dq dp, (6)

where Fourier decomposition of the Dirac delta-function was used

δ(y) =
1

2π

∫
eikydk. (7)

Also the delta-function is homogeneous δ(λy) = |λ|−1δ(y), and
this property provides the homogeneity property of the symplectic
tomogram, w(λX, λµ, λν) = |λ|−1w(X,µ, ν).



Being the probability distribution of random variable X, the
tomogram determines the probability distribution f(q, p) in view of
the inverse Radon transform

f(q, p) =
1

4π2

∫
w(X,µ, ν)ei(X−µq−νp)dX dµdν, (8)

which is a particular Fourier transform of the tomogram.
Formulae (3) and (8) provide bijective map of the probability
density f(q, p) and the tomographic probability w(X,µ, ν). Thus,
all physical observables F = F (q, p) can be evaluated using the
probability density f(q, p), for example, its mean value

〈F 〉 = 〈F (q, p)〉 =

∫
f(q, p)F (q, p) dq dp. (9)



In the tomographic-probability representation of the classical state,
this formula for mean value 〈F 〉 can be written as follows:

〈F 〉 = 〈wdF (X,µ, ν)〉 =

∫
wdF (X,µ, ν)w(X,µ, ν) dX dµdν, (10)

where

wdF (X,µ, ν) =
1

4π2

∫
F (q, p)ei(X−µq−νp)dq dp. (11)



All the highest moments of the observable can be expressed in
terms of the tomographic-probability distribution, using the
characteristic function

ξ(k) = 〈eikF 〉 =

∫
eikF (q,p)f(q, p) dq dp, (12)

which can be given in the tomographic representation as follows:

ξ(k)=〈eikF 〉= 1
4π2

∫
w(X,µ, ν)

[∫
eikF (q,p)+i(X−µq−νp)dq dp

]
dX dµdν.

(13)



The classical observables form an associative and commutative
algebra, i.e., the rule of multiplication of the observables is the
standard point-wise product

C(q, p) = A(q, p)B(q, p). (14)

In the tomographic-probability representation, the functions
wdA(X,µ, ν) and wdB(X,µ, ν) which provide the mean value 〈C〉,
using

wdC(X,µ, ν) =
1

4π2

∫
A(q, p)B(q, p)ei(X−µq−νp)dq dp, (15)

are multiplied according to the formulae

A(q, p) =

∫
wdA(X1, µ1, ν1)δ (X1 − µ1q − ν1p) dX1 dµ1 dν1,

(16)

B(q, p) =

∫
wdB(X2, µ2, ν2)δ (X2 − µ2q − ν2p) dX2 dµ2 dν2.



These formulae provide the following relationship:

wdC(X,µ, ν) =

∫
wdA(X1, µ1, ν1)wdB(X2, µ2, ν2)

×K (X1, µ1, ν1, X2, µ2, ν2, X, µ, ν) dX1 dµ1 dν1 dX2 dµ2 dν2,

(17)

where the kernel of this nonlocal commutative and associative
product reads

K (X1, µ1, ν1, X2, µ2, ν2, X, µ, ν)

=
1

4π2

∫
δ (X1 − µ1q − ν1p) δ (X2 − µ2q − ν2p) e

i(X−µq−νp)dq dp

=
1

4π2

1

|ν2µ1−ν1µ2|
exp

[
i

(
X−µ ν1X2−ν2X1

µ2ν1−µ1ν2
+ ν

µ1X2−µ2X1

µ2ν1−µ1ν2

)]
.

(18)



Thus in the tomographic picture of classical statistical mechanics,
the states are associated with tomographic-probability distributions
w(X,µ, ν) and the observables F – functions F (q, p) in the
standard phase-space picture – are associated with the functions
wdF (X,µ, ν). The product of the observables is the commutative
star-product of these functions with the kernel given by (18).



The evolution equation of the classical probability distribution
f(q, p, t) is given by the Liouville equation

∂f(q, p, t)

∂t
+ p

∂f(q, p, t)

∂q
− ∂U(q)

∂q

∂f(q, p, t)

∂p
= 0, (19)

where we use the Hamiltonian

H =
p2

2
+ U(q), (20)

with the particle’s mass m = 1 and the potential energy U(q) can
be transformed into the tomographic form

∂w(X,µ, ν, t)

∂t
− µ∂w(X,µ, ν, t)

∂ν

−∂U
∂q

(
q → −

(
∂

∂X

)−1 ∂

∂µ

)
ν
∂w(X,µ, ν, t)

∂X
= 0. (21)



Like in the Heisenberg picture of quantum mechanics, one can
consider the evolution equation for the observables by considering
the state-probability distributions, either f(q, p) or w(X,µ, ν) as
being independent on time but ascribing the time dependence to
the phase-space observables F (q, p, t) or the tomographic
observables wdF (X,µ, ν, t). The resulting equation for the
phase-space observables reads

∂F (q, p, t)

∂t
− p∂F (q, p, t)

∂q
+
∂U

∂q

∂F (q, p, t)

∂p
= 0. (22)

For the tomographic observables, the evolution equation is

∂wdF (X,µ, ν, t)

∂t
+ µ

∂wdF (X,µ, ν, t)

∂ν

+
∂U

∂q

(
q → −

(
∂

∂X

)−1 ∂

∂µ

)
ν
∂wdF (X,µ, ν, t)

∂X
= 0. (23)



We conclude that in classical statistical mechanics the state can be
associated either with the probability distribution on the phase
space or with tomographic-probability distribution w(X,µ, ν). In
classical statistical mechanics, the observables can be associated
either with functions F (q, p) on the phase space and point-wise
product multiplication rule or with the functions wdF (X,µ, ν) which
are related to the functions F (q, p) by inverse Radon transform and
the star-product of these functions is commutative but not
point-wise with the kernel given by (18). Also the evolution
equation of the states and observables in the both formulations of
classical statistical mechanics can be given in the form of evolution
equation either for the f(q, p, t) distribution or for the tomogram
w(X,µ, ν, t) which is the Radon transform of the phase-space
distribution density. Alternatively, the evolution of a classical system
can be associated with the evolution of observables F (q, p, t) and
wdF (X,µ, ν, t). The observables are connected by the Radon
transform too with its inverse (dual kernel).
The tomographic description of classical statistical mechanics
described is appropriate for introducing the tomographic-probability
representation of quantum mechanics.



States in quantum mechanics
As we already pointed out, the states in quantum mechanics are
associated with the wave function ψ(x) or density matrix ρ(x, x′).
These notions can be also replaced in a more geometrical picture by
vectors |ψ〉 and density operators ρ̂ – we call them density states ρ̂
– in a Hilbert space. Then the wave function is the scalar product
ψ(x) = 〈x|ψ〉 and the density matrix is the matrix element of the
density operator ρ(x, x′) = 〈x|ρ̂|x′〉. Here we understand the vector
|x〉 as improper eigenvector of the position operator q̂ which acts
on the wave function q̂ψ(x) = xψ(x). As we see, the quantum
notion of state and observables like the position are very different in
comparison with the ones discussed in classical statistical
mechanics. As we show below, one can transform these notions to
make them very close to the ones used in classical statistical
mechanics.



We start now not from the standard definition of the states by
means of the density operator but use the axiom that the quantum
state is identified with the probability distribution function
w(X,µ, ν) which has the properties of nonnegativity and
normalization, as well as homogeneity, which exactly coincide with
the properties of the classical tomographic-probability distribution.
Then the question arises – where is the density operator ρ̂ in this
picture? To answer this question, we must go back to the classical
picture. Also we will show that the density operators ρ̂ and the
vectors in the Hilbert space |ψ〉 can be easily introduced in classical
statistical mechanics following the spirit of the old Koopman paper
but from the tomographic point of view. The idea is simply to use
the standard formulae of Weyl symbols in the phase-space
representation. The first one provides the operator ρ̂ from the
probability density f(q, p) as follows:

ρ̂ =

∫
f(q, p) |q − u/2〉〈q + u/2| e−ipudu. (24)



For normalized nonnegative probability density, this operator is
Hermitian and satisfies the normalization condition Tr ρ̂ = 1. The
state |q + u/2〉 in (24) is improper eigenvector of the operator q̂
acting in the Hilbert space as the position operator. Thus, in
classical mechanics the distribution function f(q, p) is mapped onto
the density operator ρ̂. It is easy to see that this formula can be
inverted and, as a result, the state distribution function f(q, p) is
written in terms of the density operator ρ̂ as follows:

f(q, p) =
1

2π

∫
Tr
(
ρ̂ |q − u/2〉〈q + u/2| e−ipudu

)
. (25)



Also for the observable F , i.e., the function F (q, p) in classical
statistical mechanics, one can introduce the corresponding operator

F̂ =

∫
F (q, p) |q − u/2〉〈q + u/2| e−ipudu. (26)

The formula for the mean value of the observable in classical
statistical mechanics takes the form

〈F 〉 =

∫
F (q, p)f(q, p) dq dp = Tr ρ̂F̂ . (27)

Analogously, we could start from the classical
tomographic-probability distribution w(X,µ, ν) and introduce the
density operator in classical statistical mechanics as

ρ̂ =
1

2π

∫
w(X,µ, ν)ei(X−µq̂−νp̂)dX dµdν. (28)



In order to introduce the observable F̂ , which provides the formula
for the classical mean value 〈F 〉 (27), one needs to introduce the
operator F̂ using dual expression, i.e.,

F̂ =

∫
wdF (X,µ, ν)δ(X − µq̂ − νp̂) dX dµdν. (29)

In this case,

Tr ρ̂F̂ =

∫
wdF (X,µ, ν)w(X,µ, ν) dX dµdν. (30)

In classical statistical mechanics, the state operators and the
observable operators are introduced in different ways in the phase
space and in the tomographic picture, and this is related to the fact
that the star-product schemes in the both pictures are different.
The star-product in the phase-space picture is based on formulae in
terms of Weyl symbols and is self-dual, but the tomographic
star-product formula is not self-dual (we explain the details in the
following section). The operators obtained in view of this procedure
do not contain all the operators but only the ones which have
symmetrized form in the position and momentum.



Now we are starting to introduce state and observables in quantum
mechanics using the same procedure.
We take the quantum tomogram of a state, i.e., the probability
distribution w(X,µ, ν) which is nonnegative, normalized and
homogeneous. We define the state density operator ρ̂ as follows:

ρ̂ =
1

2π

∫
w(X,µ, ν)ei(X−µq̂−νp̂)dX dµdν. (31)

We impose an extra condition which was not used for the state
density operator in classical statistical mechanic, namely, the
nonnegativity condition, i.e., we consider as a state only such
tomographic-probability distribution for which

〈ψ
∣∣∣∣∫ w(X,µ, ν)ei(X−µq̂−νp̂)dX dµdν

∣∣∣∣ψ〉 ≥ 0 (32)

for any vector in the Hilbert space. This is a difference between the
quantum and classical state expressed in terms of tomogram
w(X,µ, ν).



Let us point out that in classical statistical mechanics the
tomograms are such that for some of them one has inequality

〈ψ
∣∣∣∣∫ w(X,µ, ν)ei(X−µq̂−νp̂)dX dµdν

∣∣∣∣ψ〉 < 0, (33)

i.e., we have inequality (33) for some vectors |ψ〉 in the Hilbert
space.
On the other hand, classical tomograms must satisfy the condition
of nonnegativity of Fourier integral∫

w(X,µ, ν)ei(X−µq̂−νp̂)dX dµdν ≥ 0. (34)

The quantum-state tomograms satisfying (32) can relax the
condition (34). Thus, introducing the classical and quantum states
starting from the tomographic-probability distributions w(X,µ, ν),
we can introduce the density operator for the classical state and the
density operator for the quantum state using the same formula.
Nevertheless, we impose different constraints onto these operators.



In the classical case, the density operator being Hermitian can be
either positive or negative.
In the quantum case, the density operator being Hermitian is
mandatory nonnegative.
These conditions provide different constraints on the classical and
quantum tomograms.
If the quantum state is determined by a nonnegative density
operator ρ̂, its tomogram w(X,µ, ν) reads

w(X,µ, ν) = Tr ρ̂δ(X − µq̂ − νp̂). (35)



In the Hilbert space, other Hermitian operators may act which are
not given in the form of series of symmetrized polynomials in
position and momentum. For these nonclassical observables F̂ , one
has the dual tomographic symbols

wdF (X,µ, ν) =
1

2π
Tr F̂ ei(X−µq̂−νp̂). (36)

The product of the observables is not commutative and that
reflects the noncommutativity of Weyl symbols of quantum
observables given by twisted classical kernel (Grönewold kernel)

K(q1, p1, q2, p2, q3, p3)

=
1

4π2
exp [2i(q1p2 − q2p1 + q2p3 − q3p2 + q3p1 − q1p3)] ,(37)

where under the exponent one has the expression in terms of
symplectic area of the triangle associated with the three points in
the phase space.



Star-product of functions and operators
In order to explain rules of multiplications of operators which
provide the operator form of classical mechanics, in this section we
discuss the star-product of functions or the rules of multiplications
of the functions satisfying the associativity condition.
Given function F ( ~X) where ~X = (X1, X2, . . . , XN ) contains
components which may be either continuous variables Xj or
discrete variables. Also one can consider the case where a part of
the variables is continuous and the other part contains discrete
variables. By definition, thhe associative product (F1 ? F2)( ~X) of
two functions F1( ~X) and F2( ~X) is associative if it satisfies the
condition

(F1 ? (F2 ? F3))( ~X) = ((F1 ? F2) ? F3)( ~X). (38)

This condition written in the form of constraints for the kernel,
giving the product of two functions

(F1 ?F2)( ~X) =

∫
K
(
~X1, ~X2, ~X)F1( ~X1)F2( ~X2)

)
d ~X1 d ~X2, (39)

provides one with the nonlinear equation for the kernel.



We point out that the integral over ~X1,2 in (39) means the
integration over continuous components and the summation over
discrete components of argument ~X1,2.
The product of the functions is commutative if the kernel is a
symmetric function with respect to the permutation ~X1 ↔ ~X2. The
standard point-wise product has the kernel

Kpw( ~X1, ~X2, ~X) = δ( ~X1 − ~X)δ( ~X2 − ~X). (40)



We make two comments.
Any vector can be considered as a function of one variable. Also
any matrix element can be considered as as a function of two
variables, and the matrix itself can be considered as a column
vector. From these observations follows the understanding that the
star-product can also be introduced for vectors and operators
which, in a chosen basis, are mapped onto the matrices. The matrix
elements are functions of column and row indices, and one can
introduce any kind of star-product for these functions which
induces the star-product for the operators.



The star-product for the operators can differ from the standard
operator product which corresponds to the standard product of
matrices given by rule raw by column product. We employ this
freedom for choosing and constructing different products of
operators, in particular, to construct the product of operators –
classical observables.



We use the following notation for two operators:
The first operator which we call dequantizer reads

Û( ~X) ≡ Û(q, p) = 2D̂(2α)P̂, ~X = (q, p) ∈ R, (41)

where
D̂ = exp

(
γâ† − γ∗â

)
, â = (q̂ + ip̂)/

√
2, (42)

and P̂ is the parity operator. In another form, operator Û(q, p)
used in equations (25) and (26) is

Û(q, p) =

∫
|q + u/2〉〈q − u/2| e−ipudu. (43)

The second operator called quantizer reads

D̂( ~X) = D̂(q, p) =
1

2π
Û(q, p). (44)



One can check that

Tr D̂( ~X)Û( ~X ′) = δ(X −X ′), (45)

i.e.,
Tr D̂(q, p)Û(q′, p′) = δ(q − q′)δ(p− p′). (46)

These properties provide the following relationships for any given
function F (q, p), namely,

F̂ =

∫
F (q, p)D̂(q, p) dq dp =

∫
F ( ~X)D̂( ~X) d ~X (47)

and
F (q, p) = Tr Û(q, p)F̂ . (48)



Thus, given any two functions F1(q, p) and F2(q, p), one has two
operators, given in view of Eq. (47), as follows:

F̂1 =

∫
F1(q, p)D̂(q, p) dq dp, F̂2 =

∫
F2(q, p)D̂(q, p) dq dp.

(49)
The question arises.
If the product of functions F1( ~X) and F2( ~X) is defined as a
point-wise product, which corresponds to multiplication rule of
classical observables, what kind of product is induced by this
multiplication rule of functions F1(q, p) and F2(q, p) for the
constructed operators?



Replying to this question, we arrive at the result which we first
formulate within the general framework, namely, given a pair of
operators – quantizer D̂( ~X) and diquantizer Û( ~X) satisfying (45).
Given two functions F1( ~X) and F2( ~X) and their star-product with
the kernel providing (39). Let us construct two operators

F̂j =

∫
Fj( ~X)D̂( ~X) d ~X, j = 1, 2, (50)

what is the product rule for operators F̂j (we call star-product)
such that

F̂1 ? F̂2 ↔ (F1 ? F2)( ~X)? (51)

In fact, we must construct the kernel for multiplication of matrix
elements of the operators F̂1 and F̂2, if the kernel for multiplication
of the functions F1( ~X) and F2( ~X) is given.



Let us have a basis |n〉 in the Hilbert space where D̂( ~X) and Û( ~X)
act. In this basis, which we consider as complete and orthonormal
set of vectors in the Hilbert space, our operators have the matrix
elements

D̂( ~X)nm = 〈n|D̂( ~X)|m〉 = Tr D̂( ~X)|m〉〈n|,
(52)

Û( ~X)nm = 〈n|Û( ~X)|m〉 = Tr Û( ~X)|m〉〈n|,

i.e.,

D̂( ~X) =
∑
nm

D̂( ~X)nm|m〉〈n|, Û( ~X) =
∑
nm

Û( ~X)nm|m〉〈n|.

(53)



The star-product of operators F̂1 and F̂2 reads

F̂1 ? F̂2 =

∫
d ~X1 d ~X2 d ~X

∑
abcdnm

K( ~X1, ~X2, ~X)〈b|Û( ~X1)|a〉

×〈d|Û( ~X2)|c〉〈m|D̂( ~X2)|n〉〈a|F̂1|b〉〈c|F̂2|d〉|n〉〈m|. (54)

This formula means that the kernel of star-product of functions
F1( ~X) and F2( ~X) induces the star-product of matrix elements of
the corresponding operators (F̂1)ab and (F̂2)cd, providing the
star-product of the operators. It is given by the kernel

k(a, b, c, d,m, n)

=

∫
d ~X1 d ~X2 d ~X K( ~X1, ~X2, ~X)Û(X1)baÛ(X2)dcD̂(X)nm. (55)



Thus, the star-product of the matrix elements of operators F̂1 and
F̂2 reads

(F̂1 × F̂2)nm =
∑
abcd

k(a, b, c, d,m, n)(F̂1)ab(F̂2)cd. (56)

If the product of functions is point-wise and given by the kernel
(40), the kernel of the product of matrix elements reads

kpw(a, b, c, d,m, n) =

∫
d ~X Û( ~X)baÛ( ~X)dcD̂( ~X)mn. (57)



Also in the case where

K( ~X1, ~X2, ~X) = Tr
(
D̂( ~X1)D̂( ~X3)Û( ~X)

)
, (58)

the star-product of the operators is the usual operator product, i.e.,
the kernel of the product of matrices gives a standard row–column
rule of the multiplication of matrices. If the product of functions is
commutative, i.e., the kernel K( ~X1, ~X2, ~X) is symmetric with
respect to permutation 1↔ 2, the star-product of the operators is
also commutative, i.e., F̂1 ? F̂2 = F̂2 ? F̂1, that follows from the
corresponding permutation symmetry of kernel (51).



Thus, the Grönewold kernel of star-product of Weyl symbols just
satisfies the condition which is obtained using dequantizer (43) and
quantizer (44) in view of formula (54). This means that the
product of observables – operators corresponding to the functions
on the phase space which are Weyl symbols of the operators is just
the standard product of the operators, but the commutative kernel
for the product of functions on the phase space induces the kernel
for the star-product of the operators – observables in the formalism
of Hilbert space and operators for classical statistical mechanics.



The evolution equation for quantum tomograms
The Schrödinger equation for the state vector |ψ, t〉 for the system
with the Hamiltonian

Ĥ =
p̂2

2
+ U(q̂) (59)

reads
i
∂

∂t
|ψ, t〉 = Ĥ |ψ, t〉 (~ = 1). (60)



In the coordinate representation, the equation has the form of
differential equation for the wave function ψ(x, t), i.e.,

i
∂ψ(x, t)

∂t
= −1

2

∂2ψ(x, t)

∂x2
+ U(x)ψ(x, t). (61)

The von Neumann equation for the density matrix of pure state
ρ(x, x′, t) = ψ(x, t)ψ∗(x′, t) can easily be derived from Eq. (61)
and it has the form

i
∂ρ(x, x′, t)

∂t
= −1

2

(
∂2

∂x2
− ∂2

∂x′2

)
ρ(x, x′, t)+

(
U(x)− U(x′)

)
ψ(x, x′, t).

(62)
This equation is also valid for any convex sum of the density
matrices of pure states, i.e., for mixed states.



The evolution equation can be transformed into the Moyal equation
for the Wigner function W (q, p, t) using the change of variables
induced by Fourier transform of the density matrix providing the
Wigner function. The Moyal equation reads

∂W (q, p, t)

∂t
+p

∂W (q, p, t)

∂q
+

1

i

[
U

(
q − i

2

∂

∂p

)
− c.c.

]
W (q, p, t) = 0.

(63)
In operator form, this equation for the quantum state associated
with the density operator ρ̂(t) is

∂ρ̂(t)

∂t
+ i
[
Ĥ, ρ̂(t)

]
= 0. (64)

This means that the density operator is an integral of the motion.



Thus, we have the quantum evolution equation for the system’s
state written in the three different forms (62)–(64). The
tomographic form of the evolution equation can easily be obtained
applying the Radon integral transform to the Moyal equation, and
the result is written in as follows:

∂w(X,µ, ν, t)

∂t
− µ∂w(X,µ, ν, t)

∂ν

−1

i

[
U

(
−
(
∂

∂X

)−1 ∂

∂µ
+
iν

2

∂

∂X

)
−c.c.

]
w(X,µ, ν, t) = 0.(65)

Making change of variables µ = cos θ and ν = sin θ which provides
the optical tomogram w(X,µ, ν, t)→ w(X, θ, t) yields the
evolution equation for the optical tomogram

∂

∂t
w(X, θ, t) =

[
cos2 θ

∂

∂θ
− 1

2
sin 2θ

{
1 +X

∂

∂X

}]
w(X, θ, t)

+2

[
Im U

{
sin θ

∂

∂θ

[
∂

∂X

]−1

+X cos θ + i
sin θ

2

∂

∂X

}]
w(X, θ, t).(66)



Energy level equations for tomograms
For stationary states, the energy level equations are obtained by
solving the Schrödinger equation for the wave function

ĤψE(x) = −1

2

∂2

∂x2
ψE(x) + U(x)ψE(x) = EψE(x). (67)

This equation can also be transformed into the tomographic form
as well as into the Moyal form. The Moyal equation for the energy
levels is

EWE(q, p) = −1

4

[(
1

2

∂

∂q
+ ip

)2

+

(
1

2

∂

∂q
− ip

)2
]
WE(q, p)

+
1

2

[
U

(
q +

i

2

∂

∂p

)
+ U

(
q − i

2

∂

∂p

)]
WE(q, p).

(68)



For the symplectic tomogram the energy-level equation reads

EwE(X,µ, ν)

= −1

4

(1

2
µ
∂

∂X
− i ∂

∂ν

(
∂

∂X

)−1
)2

+ c.c.

wE(X,µ, ν)

+
1

2

[
U

(
− ∂

∂µ

(
∂

∂X

)−1

+
i

2
ν
∂

∂X

)
+ c.c.

]
wE(X,µ, ν).

(69)



For the optical tomogram, the energy-level equation has the form

EwE( X, θ) =

[{
cos2 θ

2

[
∂

∂X

]−2( ∂2

∂θ2
+ 1

)
− X

2

[
∂

∂X

]−1

(
cos2 θ + sin 2θ

∂

∂θ

)
+
X2

2
sin2 θ − cos2 θ

8

∂2

∂X2

}]
wE( ~X, ~θ)

+

[
ReV

{
sin θ

∂

∂θ

[
∂

∂X

]−1

+X cos θ + i
sin θ

2

∂

∂X

}]
wE( ~X, ~θ)

(70)



The solutions of the energy-level equation in the symplectic form
for the harmonic oscillator reads

wn(X,µ, ν) =
e
− X2

µ2+ν2√
π(µ2 + ν2)

1

n!2n
H2
n

(
X√

µ2 + ν2

)
. (71)

The solutions of the energy-level equation in the optical form for
the harmonic oscillator reads

wn(X, θ) =
e−X

2

√
π

1

n!2n
H2
n(X). (72)

One can see that the optical tomogram of the Fock state |n〉 does
not depend on the local oscillator phase θ.



Integrals of motion in the probability representation
In classical mechanics of Hamiltonian systems, the integrals of
motion are functions I(q, p, t) on the phase space satisfying the
condition of conservation on the trajectory

dI(q, p, t)

dt
= 0 (73)

given by solving the Hamiltonian equations

q̇ =
∂H(q, p, t)

∂p
, ṗ = −∂H(q, p, t)

∂q
. (74)



The condition (73) can be rewritten in the form

∂I(q, p, t)

∂t
+ p

∂I(q, p, t)

∂q
− ∂U(q)

∂q

∂I(q, p, t)

∂p
= 0. (75)

Equation (75) can be presented in the tomographic form, e.g., for
symplectic tomographic symbol (dual one) of the integral of
motion. Equation (75) coincides with the Liouville equation for the
probability distribution (19). This means that the probability
distribution f(q, p, t) is the constant of motion.
The equation for the tomographic symbol of the integral of motion
wdI (X,µ, ν, t) is identical to (23).



In quantum domain, the integrals of motion are observables
associated with the operators Î(q̂, p̂, t). The operator satisfies the
equation in the Schrödinger representation

dI(q̂, p̂, t)

dt
= 0, (76)

and this equation is rewritten as

∂I(q̂, p̂, t)

∂p
+ i
[
Ĥ(q̂, p̂, t), Î(q̂, p̂, t)

]
= 0 (~ = 1). (77)

This equation coincides with the von Neumann equation for the
density operator (see equation (62) written in the position
representation). This means that the density operator ρ̂(t) is the
integral of motion containing the time dependence explicitly. The
commutator of the integral of motion is not equal to zero, but this
commutator is compensated by the partial time derivative. The
equation of dual tomographic symbol of the quantum integral of
motion is identical to equation (62) where the term with the time
derivatives must be taken with negative sign.



Quantum inequalities for continuous variables
For continuous variables, the wave function ψ(x) provides the
probability-distribution density

P (x) = |ψ(x)|2. (78)

The corresponding Shannon entropy reads

Sx = −
∫
|ψ(x)|2 ln |ψ(x)|2 dx. (79)



In the momentum representation, one has the wave function

ψ̃(p) =
1√
2π

∫
ψ(x)e−ipx dx (~ = 1). (80)

The corresponding Shannon entropy related to the
momentum-probability density |ψ̃(p)|2 reads

Sp = −
∫
|ψ̃(p)|2 ln |ψ̃(p)|2 dp. (81)



There exists the correlation of entropies Sx and Sp, since the
function ψ(x) determines the Fourier component ψ̃(p). This means
that the entropies Sx and Sp have to obey some constrains. These
constrains are entropic uncertainty relations.
For the one-mode system, the inequality reads

Sx + Sp ≥ ln(πe). (82)



One has the optical-tomogram expression in terms of the wave
function

w(X, θ) =

∣∣∣∣∫ ψ(y) exp

[
i

2

(
cot θ (y2 +X2)− 2X

sin θ
y

)]
dy√

2πi sin θ

∣∣∣∣2 .
(83)

On the other hand, this tomogram formally equals to

w(X, θ) = |ψ(X, θ)|2, (84)

where the wave function reads

ψ(X, θ) =
1√

2πi sin θ

∫
exp

[
i

2

(
cot θ (y2 +X2)− 2X

sin θ
y

)]
ψ(y) dy,

(85)
being the fractional Fourier transform of the wave function ψ(y).
This wave function corresponds to the wave function of a harmonic
oscillator with ~ = m = ω = 1 taken at the time moment θ
provided the wave function at the initial time moment θ = 0 equals
to ψ(y).



In view of expressions of tomogram in terms of the wave function
(84) and (85), one has the entropic uncertainty relation in the form

S(θ) + S(θ + π/2) ≥ lnπe. (86)

Here S(θ) is the tomographic Shannon entropy associated with
optical tomogram (83) which is measured by homodyne detector.
We illustrate the entropic inequality (86) by the example of the
harmonic oscillator’s ground state with the wave function

ψ0(x) = π−1/4e−x
2/2 (87)

written in dimensionless variables. Using (85), we obtain the
tomogram

w(X, θ) = π−1/2e−X
2
. (88)



The ground-state tomogram does not depend on the angle θ. In
view of this, the entropy is S(θ) = S(θ + π/2) = 1

2 lnπe. The sum
of these two entropies saturates inequality (86).
In recent paper, the new uncertainty relation was obtained for
Rényi entropy related to the probability distributions for position
and momentum of quantum state with density operator ρ̂. The
uncertainty relation reads

1

1− α
ln

(∫ ∞
−∞

dp [ρ(p, p)]α
)

+
1

1− β
ln

(∫ ∞
−∞

dx [ρ(x, x)]β
)

≥ − 1

2(1− α)
ln
α

π
− 1

2(1− β)
ln
β

π
, (89)

where positive parameters α and β satisfy the constrain

(1/α) + (1/β) = 2. (90)

Rényi entropies Rα and Rβ related to the momentum and position
distributions, respectively, are just two terms on the left-hand side
of (89). For α, β −→ 1, these entropies become Shannon entropies
Sp and Sx.



We illustrate this inequality by the example of the harmonic
oscillator’s ground state. In this case, one has the Rényi entropies

Rα =
lnπ

2
− 1

2

lnα

1− α
, Rβ =

lnπ

2
− 1

2

lnβ

1− β

which, in the limit α→ 1 and β → 1, go to (lnπ)/2. Also the sum
of the entropies reads

Rα +Rβ = lnπ − 1

2

lnα

1− α
− 1

2

lnβ

1− β
.

In view of (90) this sum equals to the right-hand side of inequality
(89). Thus, the harmonic oscillator’s ground state saturates this
inequality.



Using the same argument that we employed to obtain inequality
(86) for Shannon entropies, we arrive at the condition for optical
tomogram

(q − 1) ln

{∫ ∞
−∞

dX [w (X, θ + π/2)]1/(1−q)
}

+(q + 1) ln

{∫ ∞
−∞

dX[w(X, θ)]1/(1+q)

}
≥ (1/2)

{
(q − 1) ln [π(1− q)] + (q + 1) ln [π(1 + q)]

}
,(91)

where the parameter q is defined by α = (1− q)−1. This inequality
can also be checked experimentally.



Checking position–momentum uncertainty relations
In view of the physical meaning of optical tomogram, one can
calculate higher moments of the probability distribution

〈Xn〉 (µ, ν) =

∫
XuM(X,µ, ν) dX, n = 1, 2, . . . (92)

for any value of the parameters µ and ν; in particular, for any given
phase of the local oscillator θ. This provides the possibility to check
the inequalities for the quantum uncertainty relations.



The Heisenberg uncertainty relation connects position and
momentum variances σQQ and σPP by means of an inequality. In
the tomographic-probability representation, the Heisenberg relation
reads:

σPPσQQ =

(∫
X2M(X, 0, 1) dX −

[∫
XM(X, 0, 1) dX

]2
)

×

(∫
X2M(X, 1, 0) dX −

[∫
XM(X, 1, 0) dX

]2
)
≥ 1

4
.(93)



The Schrödinger–Robertson uncertainty relation contains the
contribution of the position–momentum covariance σQP and reads

σQQσPP − σ2
QP ≥

1

4
. (94)

In view of Eq. (92), the variance σXX of the homodyne quadrature
X in terms of the parameters µ, ν, and the quadratures variances
and covariance is

σXX(µ, ν) = µ2σQQ + ν2σPP + 2µνσQP . (95)

The above formula is obtained using the definition of
homodyne-quadrature-component operator

X̂ = µq̂ + νp̂. (96)

Thus, one has

X̂2 = µ2q̂2 + ν2p̂2 + 2µν
q̂p̂+ p̂q̂

2
. (97)



Taking average for any state in (96), one has the equality for the
mean value

〈X̂〉 = µ〈q̂〉+ ν〈p̂〉. (98)

Averaging (97), we obtain

〈X̂2〉 = µ2〈q̂2〉+ ν2〈p̂2〉+ 2µν〈 q̂p̂+ p̂q̂

2
〉. (99)

Thus

σXX(µ, ν) = 〈X̂2〉 − 〈X̂〉2 = µ2
(
〈q̂2〉 − 〈q̂〉2

)
+ ν2

(
〈p̂2〉 − 〈p̂〉2

)
+2µν

(
〈 q̂p̂+ p̂q̂

2
〉 − 〈q̂〉〈p̂〉

)
. (100)



While deriving (100), we used that

〈X̂〉2 = µ2〈q̂〉2 + ν2〈p̂〉2 + 2µν〈q̂〉〈p̂〉.

Since
σQP = 〈 q̂p̂+ p̂q̂

2
〉 − 〈q̂〉〈p̂〉,

one can get the expression of the covariance σQP in terms of the
tomographic characteristics of the state. Taking µ = ν =

√
2/2

corresponding to the local oscillator phase θ = π/4, one has

σQP = σXX

(
θ =

π

4

)
− 1

2
(σQQ + σPP ), (101)

where σPP and σQQ are the factors appearing on the left-hand side
of Eq. (93), respectively. The term σXX(θ = π/4) is given by Eq.
(92) as

σXX

(
θ =

π

4

)
=
〈
X2
〉(√2

2
,

√
2

2

)
−

[
〈X〉

(√
2

2
,

√
2

2

)]2

. (102)



The check of Schrödinger–Robertson uncertainty relations requires
extra elaboration of the available experimentally obtained optical
tomogram of the photon quantum state. We express this procedure
as the following inequality for optical tomogram. Let us calculate
the function F (θ) which we call the tomographic uncertainty
function

F (θ) =

(∫
X2w(X, θ)dX −

[∫
Xw(X, θ) dX

]2
)

×

(∫
X2w

(
X, θ +

π

2

)
dX −

[∫
Xw

(
X, θ +

π

2

)
dX

]2
)

−

{∫
X2w

(
X, θ +

π

4

)
dX −

[∫
Xw

(
X, θ +

π

4

)
dX

]2

−1

2

[∫
X2w(X, θ)dX −

[∫
Xw(X, θ)dX

]2

+

∫
X2w

(
X, θ +

π

2

)
dX −

[∫
Xw

(
X, θ +

π

2

)
dX

]2
]}2

− 1

4
.

(103)



The tomographic uncertainty function must be nonnegative

F (θ) ≥ 0 (104)

for all the values of the local oscillator phase angle 0 ≤ θ ≤ 2π.
The previous equation (103) for θ = 0 yields Eq. (94).



Measuring highest moments of quadratures by homodyne
detector
Let us discuss first how to measure highest moments for
one-mode-light quadrature X̂ (µ, ν) = µQ+ νP , where Q and P
are operators of the one-mode photon quadratures. Mean values,
variances and covariances can be given in terms of the optical
tomogram W (X, θ) . Let us construct cubic moments. Then one
has to find the moments of the operators P 3, P 2Q,PQ2, Q3

because the remaining may be expressed by commutators as

PQP = PPQ+ P [Q,P ] = P 2Q+ iP

⇒ 〈PQP 〉 =
〈
P 2Q

〉
+ i 〈P 〉 , (105)

QPP = PQP + [Q,P ]P = P 2Q+ 2iP

⇒
〈
QP 2

〉
=
〈
P 2Q

〉
+ 2i 〈P 〉 ,

and analogously

〈QPQ〉 =
〈
PQ2

〉
+ i 〈Q〉 , (106)〈

Q2P
〉

=
〈
PQ2

〉
+ 2i 〈Q〉 .



The cubic power X̂3 (µ, ν) reads

X̂3 (µ, ν) = µ3Q3 + ν3P 3 + µ2ν
(
Q2P +QPQ+ PQ2

)
+ µν2

(
P 2Q+ PQP +QP 2

)
(107)

so that〈
X̂3
〉

(µ, ν) = µ3
〈
Q3
〉

+ ν3 〈P 〉3 + 3µ2ν
(〈
PQ2

〉
+ i 〈Q〉

)
+ 3µν2

(〈
P 2Q

〉
+ i 〈P 〉

)
. (108)



The means of the quadratures read〈
X̂
〉

(1, 0) = 〈Q〉 ,
〈
X̂
〉

(0, 1) = 〈P 〉 . (109)

Besides, one has〈
X̂3
〉

(1, 0) =
〈
Q3
〉
,
〈
X̂3
〉

(0, 1) =
〈
P 3
〉
, (110)

and 〈
X̂3
〉

(µ, ν) = µ3
〈
X̂3
〉

(1, 0) + ν3
〈
X̂3
〉

(0, 1)

+3µ2ν
(〈
PQ2

〉
+ i
〈
X̂
〉

(1, 0)
)

+ 3µν2
(〈
P 2Q

〉
+ i
〈
X̂
〉

(0, 1)
)
. (111)



Introducing the function

A (µ, ν) : =
〈
X̂3
〉

(µ, ν)− µ3
〈
X̂3
〉

(1, 0)− ν3
〈
X̂3
〉

(0, 1)

−3µ2νi
〈
X̂
〉

(1, 0)− 3µν2i
〈
X̂
〉

(0, 1) (112)

we obtain two linear equations for the remaining two moments:

A (µα, να) = 3µ2
ανα

〈
PQ2

〉
+ 3µαν

2
α

〈
P 2Q

〉
; (113)

A (µβ, νβ) = 3µ2
βνβ

〈
PQ2

〉
+ 3µβν

2
β

〈
P 2Q

〉
;

which can be readily solved in terms of the homodyne quadratures
given by the tomogram W (X, θ) only.



The previous construction of the solutions

〈
PQ2

〉
=

1

∆
det

(
A (µα, να) 3µαν

2
α

A (µβ, νβ) 3µβν
2
β

)
;

〈
P 2Q

〉
=

1

∆
det

(
3µ2

ανα A (µα, να)
3µ2

βνβ A (µβ, νβ)

)
, (114)

with

∆ = det

(
3µ2

ανα 3µαν
2
α

3µ2
βνβ 3µβν

2
β

)
, (115)

shows that the same procedure can be applied to get all the highest
moments 〈PnQm〉 and 〈PmQn〉 (n,m = 0, 1, . . .) in terms of the
tomogram W (X, θ) only. It provides the tool to check all the
known high moments quantum uncertainty relations in fact both in
one mode and multimode case. As an example we derive simple
uncertainty relations for cubic moments.



Let us consider the linear forms:

f̂ = y1Q+ y2P
2 ; f̂ † = y∗1Q+ y∗2P

2 . (116)

The obvious inequality for the mean value〈
f̂ f̂ †

〉
≥ 0 (117)

gives a condition of nonnegativity for the quadratic form

y1y
∗
1

〈
Q2
〉

+ y1y
∗
2

〈
QP 2

〉
+ y2y

∗
1

〈
P 2Q

〉
+ y2y

∗
2

〈
P 4
〉
≥ 0. (118)



Thus the matrix of the quadratic form

M =

( 〈
Q2
〉 〈

QP 2
〉〈

P 2Q
〉 〈

P 4
〉 ) (119)

must be nonnegative, and this implies〈
Q2
〉 〈
P 4
〉
−
〈
QP 2

〉 〈
P 2Q

〉
≥ 0. (120)



This inequality can be written in terms of tomograms as∫
X2W(X, θ = 0)dX

∫
X4W(X, θ =

π

2
)dX

−
[〈
QP 2

〉 〈
P 2Q

〉]
θα,θβ

≥ 0 (121)

where local oscillator phases, for instance θα = π/3, θβ = 2π/3, are
taken ı̀n Eq. (114), so that the parameters (µα, να) and (µβ, νβ)
are
(√

3/2, 1/2
)
and

(
1/2,
√

3/2
)
respectively. Of course, one

could use other suitable local oscillator phases, such that ∆ 6= 0 in
Eq. (114) . The above cubic-in-quadrature uncertainty relation
must be satisfied by any of the six modes used in experiments.



In view of the generalization for Schrödinger–Robertson uncertainty
relations, an analogous generalization can be proposed for the
above highest order moments inequality, that can be written in
covariant form, i.e. for all the local oscillator phases as:∫

X2W(X, θ)dX

∫
X4W(X, θ +

π

2
)dX

−
[〈
QP 2

〉 〈
P 2Q

〉]
θ+θα,θ+θβ

≥ 0, (122)

where, as before, Eq. (114) has to be used with the new values of
local oscillator phases, say θ + π/3, θ + 2π/3.



Group properties of tomograms in quantum mechanics
As we have mentioned in the previous sections, it has been shown
how to describe quantum states by using a standard positive
probability distribution called a symplectic probability distribution
or symplectic tomogram. We recall that the symplectic tomogram
W(X,µ, ν) is a nonnegative function of the random position X
measured in reference frames in phase–space with rotated and
scaled axes q → µq, p→ νp where µ = eλ cos θ, ν = e−λ sin θ, θ is
the angle of rotation and eλ is the scaling parameter.



The symplectic tomographic probability distribution W(X,µ, ν)
contains complete information on quantum states in the sense that
for a given wave function ψ(x) or density operator ρ̂ (determining
the quantum state in the conventional formulation of quantum
mechanics) the tomogram can be calculated.
On the other hand, for a given tomogram W(X,µ, ν) one can
reconstruct explicitly the density operator ρ̂. It means that for a
given symplectic tomogram of a system with continuous variables
all the properties of the quantum system can be obtained as well as
for a given density operator ρ̂.



Analogous complete information on the quantum states is
contained in the Wigner function W (q, p) which is a real function
on the phase space of the system. The Wigner function is related to
the symplectic tomogram by means of an integral Radon transform,
however the Wigner function is not definite in sign, it takes
negative values for some quantum states and cannot be considered
as a positive probability distribution on phase space.
The necessary and sufficient conditions for a real function on the
phase space to describe the Wigner function of a quantum state
were found in where the corresponding properties of the function
under consideration were associated with the so called h–positivity
condition of a function on the Abelian translation group on the
phase space.



As we have shown elsewhere, in this description plays an important
role the Weyl-Heisenberg group and its group of automorphisms,
along with the Abelian vector group which arises as quotient group
of Weyl-Heisenberg group by its central subgroup.
In this section, we would like to consider the tomographic
description of quantum mechanics as another picture, on the same
footing as the Schroedinger, Heisenberg or Weyl–Wigner pictures.
To this aim, we have to provide a characterization of symplectic
tomograms which stands on its own, without relying on other
pictures. In other terms, we need necessary and sufficient conditions
for a function f(X,µ, ν) to be the symplectic tomogram
W(X,µ, ν) of a quantum state.



The strategy to find these conditions is based on Naimark’s
theorem that provides a characterization of positive operator-valued
measures and that allows to characterize functions which are
elements of matrices of group representations.
In particular, we use the result that a function ϕ(g) on a group G,
g ∈ G, which is a diagonal matrix element of a unitary
representation of the group G, has the property of being positive
definite in the sense that the matrix

Mjk = ϕ(gjg
−1
k ) (123)

for any j, k = 1, 2, ..., N and arbitrary N , is positive definite.



Below we will show that symplectic tomograms can be associated
with positive definite functions ϕ on the Weyl-Heisenberg group.
Since Naimark’s theorem for positive operator–valued measures
allows to construct and determine uniquely a Hilbert space and a
vector in it representing the function ϕ (using what today is called
the Gelfand-Naimark-Segal (GNS) method) the connection
established below of the symplectic tomograms with positive
definite functions on the Weyl-Heisenberg group yields the
necessary and sufficient condition which we are looking for.
It is worthy to note that this condition can be also studied using
the necessary and sufficient condition for a function to be a Wigner
function, but we do not use here the connection of symplectic
tomogram with the Wigner function and provide the condition for
the tomogram independently of any other result concerning Wigner
functions.



Symplectic tomography
In this section, we again recall the construction of tomographic
probability densities determining the quantum state of a particle in
one degree of freedom. Generalizations to many degrees of freedom
are also possible. Hereafter, we put ~ = 1.
Given the density operator ρ̂ of a particle quantum state, ρ̂ = ρ̂†,
Trρ̂ = 1, and ρ̂ ≥ 0, the symplectic tomogram of ρ̂ is defined by:

W(X,µ, ν) = Tr[ρ̂ δ(X 1̂− µQ̂− νP̂ )], X, µ, ν ∈ R. (124)

Here Q̂ and P̂ are the position and momentum operators. The
Dirac delta–function with operator arguments is defined by the
standard Fourier integral,

δ(X 1̂− µQ̂− νP̂ ) =

∫
e−ik(X 1̂−µQ̂−νP̂ ) dk

2π
.



The symplectic tomogram W(X,µ, ν) has the properties which
follow from its definition by using the known properties of
delta-function, namely:

i. Nonnegativity:
W(X,µ, ν) ≥ 0 (125)

(this holds by observing that the trace of the product of two
positive operators is a positive number).

ii. Normalization: ∫
W(X,µ, ν)dX = 1. (126)

iii. Homogeneity:

W(λX, λµ, λν) =
1

|λ|
W(X,µ, ν). (127)



However, the three above properties are by no means sufficient to
determine the quantum character of a tomographic function
f(X,µ, ν). For instance, consider

f(X,µ, ν) = exp

(
− X2

2 (µ2 + ν2)

)
5
(
µ2 + ν2

)
−X2√

2 (µ2 + ν2)3
. (128)

Despite the uncertainty relations are satisfied by such a function, f
is not a quantum tomogram because

〈
P̂ 2
〉

=
〈
Q̂2
〉

= −1/2, as it
can be checked using〈

P̂ 2
〉

=

∫
X2 f(X,µ, ν)|µ=0,ν=1 dX (129)

and analogously for
〈
Q̂2
〉
.



On the other hand, it is easy to see that formula (124) has an
inverse:

ρ̂ =
1

2π

∫
W(X,µ, ν)ei(X 1̂−µQ̂−νP̂ ) dX dµdν. (130)

Thus the knowledge of the symplectic tomogram W(X,µ, ν)
means that the density operator ρ̂ is also known, more precisely,
can be reconstructed. This correspondence between symplectic
tomograms W(X,µ, ν) and density operators ρ̂ gives the possibility
to formulate the notion of quantum state using tomograms as the
primary notion. However to make this idea precise, we need to
formulate additional conditions to be satisfied by the function
W(X,µ, ν) which are extra to the conditions (125)-(127) and
which guarantee that by using the inversion formula (130) we get
an operator with all the necessary properties of a density state. The
general recipe to formulate these demands can be given by
checking the nonnegativity condition of the integral:∫

W(X,µ, ν)ei(X 1̂−µQ̂−νP̂ ) dX dµdν ≥ 0. (131)



It means that for a given function W(X,µ, ν) satisfying the
conditions (125)-(127) one has to check the nonnegativity of the
operator (131), thus if the inequality (131) holds the function
W(X,µ, ν) is the symplectic tomogram of a quantum state,
however it must be realized that this is not an operative procedure.
Below we formulate the conditions for a function W(X,µ, ν) to be
a tomogram of a quantum state avoiding the integrations in eq.
(131). As anticipated in the introduction, to be able to use
Naimark’s results we have to deal with functions defined on a
group. Thus, we have to show how symplectic tomograms may be
associated with the Weyl-Heisenberg group. In doing this we can
exploit results where the theorems on properties of diagonal matrix
elements of unitary representations provide the key to construct
tomograms which represent quantum states.



Tomographic probability measures
To get a mathematical formulation of the tomographic picture we
invoke the spectral theory of Hermitian operators, which moreover
will provide us with a probabilistic interpretation of the symplectic
tomogram. We start rewriting the formal definition, eq. (124), for a
quantum tomogram:

W(X,µ, ν) = Tr

[
ρ̂

∫
eik(X 1̂−µQ̂−νP̂ ) dk

2π

]
=

∫
eikXTr[ρ̂e−ik(µQ̂+νP̂ )]

dk

2π
.

(132)
then we observe that

µQ̂+ νP̂ = SµνQ̂S
†
µν (133)

where

Sµν = exp

[
iλ

2

(
Q̂P̂ + P̂ Q̂

)]
exp

[
iθ

2

(
Q̂2 + P̂ 2

)]
, (134)

with
µ = eλ cos θ , ν = e−λ sin θ . (135)



In other words, by acting with the unitary operators Sµν on the
position operator Q̂ we get out the iso-spectral family of hermitian
operators

Xµν = µQ̂+ νP̂ .

This family is a symplectic tomographic set.
To any operator of this family is associated a projector valued
measure Πµν on the σ–algebra of Borel sets on the real line:

µQ̂+ νP̂ =

∫
λ dΠµν(λ).

Given any density state ρ̂, the projector valued measure Πµν yields
a normalized probability measure mρ,µν on the Borel sets
E ∈ Bo(R) of the real line:

mρ,µν(E) = Tr[ ρ̂Πµν(E)]; mρ,µν(R) = 1. (136)



We recall that mρ,µν(E) is the probability that a measure of the
observable µQ̂+ νP̂ in the state ρ̂ is in E. All these measures
mρ,µν are absolutely continuous with respect to the Lebesgue
measure dX on the real line, so that densities Vρ(X,µ, ν) may be
introduced such that

mρ,µν(E) =

∫
E
Vρ(X,µ, ν) dX. (137)

We can write

Tr
(
ρ̂e−iλ(µQ̂+νP̂ )

)
= Tr

(
ρ̂Sµνe

−iλQ̂S†µν

)
=

∫
e−iλX Vρ(X,µ, ν) dX

(138)
so that

W(X,µ, ν) =

∫
eikX Tr[ρ̂e−ik(µQ̂+νP̂ )]

dk

2π
(139)

=

∫
eikX e−ikX

′
Vρ(X

′, µ, ν)dX ′
dk

2π

=

∫
δ(X −X ′)Vρ(X ′, µ, ν)dX ′ = Vρ(X,µ, ν).



In other words we have shown that the symplectic tomogram
W(X,µ, ν) of a given state ρ̂ is nothing but the density
Vρ(X,µ, ν) of the probability measure associated to the state by
means of the symplectic tomographic set. The tomographic
character of the family of observables Xµν is contained in the
possibility of reconstructing any state out of the corresponding
probability measures by means of the previous reconstructing
formula. By using eqs. (138) and (130), we get

ρ̂ =
1

2π

∫
Tr[ρ̂ei(µQ̂+νP̂ )] e−i(µQ̂+νP̂ ) dµ dν, (140)

moreover

1

2π

∫
Tr[ ei(µQ̂+νP̂ )] e−i(µQ̂+νP̂ ) dµ dν = 1̂. (141)

The presence of the Weyl operators D(µ, ν) = ei(µQ̂+νP̂ ) suggests
that we are dealing with projective representations of the Abelian
vector group. We shall take up group theoretical aspects in next
section.



A group theoretical description of quantum tomograms
The probabilistic interpretation above allows to consider the
tomographic description of quantum states as a picture of quantum
mechanics on the same footing as other well known representations,
like Schrödinger, Heisenberg and Wigner-Weyl for instance. Thus,
to be an alternative picture of quantum mechanics we need criteria
to recognize a function f(X,µ, ν) as a tomogram of a quantum
state. For this, the use of the reconstruction formula to check if the
obtained operator is a density operator would be unsatisfactory,
mainly because this check requires to switch from tomographic to
Schrödinger picture. In other words, we would like to establish
self-contained criteria for a function to be a quantum tomogram.
More precisely, we have to address the following problem: given a
tomogram-like function f(X,µ, ν), that is a function with the
above properties eqs. (125)-(127) of a tomogram, what are the
necessary and sufficient conditions to recognize f as a quantum
tomogram?



To this aim we begin to observe that in the characteristic
tomographic function

Tr[ρ̂ei(µQ̂+νP̂ )] = Tr[ρ̂D(µ, ν)] (142)

a projective representation of the translation group appears. This
projective representation can be lifted to a true unitary
representation of the Weyl-Heisenberg group by means of a central
extension of the translation group. Such central extension defines
the Weyl-Heisenberg group WH(2) whose elements are denoted by
(µ, ν, t) and the group law reads:

(µ, ν, t) ◦ (µ′, ν ′, t′) = (µ+ µ′, ν + ν ′, t+ t′ +
1

2
ω((µ, ν), (µ′, ν ′))),

(143)
where ω((µ, ν), (µ′, ν ′)) = µν ′ − νµ′ denotes the symplectic form
on R2.



The nontrivial unitary irreducible representations of the
Weyl-Heisenberg group are provided by the expression:

Uγ(µ, ν, t) = Dγ(µ, ν)eiγtI . (144)

where γ is a non-vanishing real number. In what follows we will set
γ = 1. Hence we immediately observe that

Tr[ρ̂D(µ, ν)] = e−itTr[ρ̂U(µ, ν, t)] (145)

where the function Tr[ρ̂U(µ, ν, t)] is of positive type.



For convenience we recall the definition of functions of positive
type. Given a group G a function ϕ(g) on G (g ∈ G ) is of positive
type, or definite positive, if for any n–tuple of group elements
(g1, g2, ..., gn) the matrix

Mjk = ϕ(gjg
−1
k ) j, k = 1, 2, ..., n, (146)

is positive semi–definite for any n ∈ N, or in other words, if for any
finite family of elements g1, g2, . . . , gn ∈ G and for any family of
complex numbers ξ1, . . . , ξn, we have

∑n
j,k=1 ξ̄jξkϕ(gjg

−1
k ) ≥ 0,

for any n.



Moreover, a simple computation shows that given any unitary
representation U(g) of G and a state ρ, Tr[ρ̂U(g)] is a group
function of positive type. Viceversa any positive type group
function ϕ(g) can be written in the form

Tr[ρ̂ξU(g)] = 〈ξ, U(g)ξ〉, (147)

where U(g) is a unitary representation and |ξ〉 is a cyclic vector in a
suitable Hilbert space, obtained for instance by means of a GNS
construction.
So, the positivity condition on the matrix introduced in (146) is a
way to affirm that ϕ is associated with a state without making
recourse to a representation.



Thus we can state the required condition:
A tomogram–like function f(X,µ, ν) is a quantum tomogram, i.e.,
there exists a quantum state ρ̂ such that
f(X,µ, ν) = Tr[ρ̂ δ(X 1̂− µQ̂− νP̂ )], if and only if its Fourier
transform evaluated at 1 may be written in the form∫

f(X,µ, ν)eiXdX = e−itϕf (µ, ν, t), (148)

where ϕf (µ, ν, t) is a positive definite function on the
Weyl-Heisenberg group.



In fact if W is a quantum tomogram, then because of eqs.(132)
and (145) we have,∫

W(X,µ, ν)eiX dX = Tr[ρ̂D(µ, ν)]

= e−itTr[ρ̂U(µ, ν, t)] = e−itϕ(µ, ν, t), (149)

where ϕ(µ, ν, t) is a positive definite function on the
Weyl–Heisenberg group.
Moreover, if we define ψ(µ, ν) = Tr (ρ̂D(µ, ν)), then ψ(µ, ν) is a
function on the translation group considered as a quotient of the
Weyl–Heisenberg group by the central element. It means that we
are dealing with a projective representation and not a unitary
representation like in Naimark’s theorem eq.(147).



Then, we could ask about the properties enjoyed by the matrix M̃jk

constructed using ψ instead of ϕ. If we denote as above by ω the
2–cocycle defining the projective representation, then we will say
that M̃jk is of ω–positive type, i.e.

M̃jk = ψ((µj , νj)
−1 ◦ (µk, νk))e

i 1
2
ω((µk,νk),(µj ,νj) (150)

is positive semi-definite.



This yields the corresponding condition:
A tomogram–like function f(X.µ, ν) is a quantum tomogram if
and only if its Fourier transform evaluated at 1 may be written in
the form ∫

f(X,µ, ν)eiXdX = ψf (µ, ν) (151)

where ψf (µ, ν) is a function of the translation group of ω−positive
type.



We observe that ψf (µ, ν) may be at same time of positive and
ω−positive type on the translation group. Then by Bochner
theorem ψf (µ, ν) is the Fourier transform of a probability measure
on the phase space. In other words f(X,µ, ν) is the (classical)
Radon transform of such a probability measure, i.e. a classical
tomogram. The tomogram of the ground state of the harmonic
oscillator provides an example of the above situation. In that case,
the GNS construction yields a Hilbert space of square integrable
functions on phase space with respect to the measure provided by
the Bochner theorem.
To finish this analysis let us notice that if ψ is a function of
ω−positive type on the translation group, then the function
ϕ(µ, ν, t) = eitψ(µ, ν) will be a positive definite function on the
Weyl-Heisenberg group WH(2) and, by Naimark’s theorem, there
will exist a unitary representation U of WH(2) and a cyclic state
vector |ξ〉 such that ϕ(µ, ν, t) = 〈ξ, U(µ, ν, t)ξ〉.



On the other hand, ψ(µ, ν) is obtained by f(X,µ, ν), which is a
tomogram of a quantum state ρ̂. Up to a unitary transformation ρ̂
will coincide with ρ̂ξ iff it is a pure state.
Notably, the purity of ρ̂ can be expressed, with v = (µ, ν), as:

trρ̂2 =
1

2π

∫
W(X, v)W(Y,−v)ei(X+Y )dXdY dv =

1

2π

∫
R2

|ψ(v)|2 dv

(152)
so that the above condition can be stated as:∫

R2

|ψ(v)|2 dv = 1 (153)



Thick quantum tomography
We now turn our attention to “thick"tomographic maps, which is a
more realistic approach for practical applications, because instead
of marginals defined over lines, as in the classical Radon transform
or in the transform on quadratic curves, it involves a “thick"window
function Ξ. This is convoluted with the tomographic map and
concentrates the marginals around some given background curves
(that can be lines or quadrics), without resorting to a singular delta
function. For example, if the weight function Ξ is a step function, it
defines marginals along thick lines or thick quadratic curves. In the
quantum case this amounts to replacing in the definition of the
dequantizer Û(x) the Dirac delta function by the weight function Ξ.



For the symplectic quantum tomography one has the dequantizer

Û(X,µ, ν) = Ξ (X − µq̂ − νp̂) . (154)

The new tomogram reads

wΞ(X,µ, ν) = Tr ρ̂ Ξ (X − µq̂ − νp̂) , (155)

Using the Weyl map one obtains a thick tomogram for the Wigner
function

wΞ(X,µ, ν) =
1

2π

∫
W (p, q) Ξ (X − µq − νp) dp dq. (156)



The interesting property of the above formula (156) is that it can
be inverted in completely analogy with the classical thick
tomography. The thick tomogram can be expressed in terms of
standard symplectic tomograms via a convolution formula

wΞ(X,µ, ν) =

∫
w(X,µ, ν) Ξ (X − Y ) dY, (157)

which leads to the explicit construction of the inverse transform.



Indeed, the inverse transform is obtained by means of a Fourier
transform of the convolution integral

W (p, q) =
NΞ

2π

∫
wΞ(Y, µ, ν) ei(X−µq−νp) dX dµ dν, (158)

where
NΞ =

1

Ξ̃(−1)
, Ξ̃(−1) =

∫
Ξ(z) eiz dz.



In invariant form the state reconstruction is achieved by

ρ̂ =
NΞ

2π

∫
wΞ(X,µ, ν) ei(XI−µq̂−νp̂) dX dµ dν.

The quantizer operator in thick symplectic tomography is

D̂(X,µ, ν) =
NΞ

2π
ei(XI−µq̂−νp̂). (159)



Now we consider a particular example of thick tomogram to
illustrate the potentialities of the new method. If the weight
function is a gaussian function

Ξ(z) =
1√

2πσ2
e−z

2/2σ2

which tends to the delta distribution in the σ → 0 limit,

lim
σ→0

Ξ(z) = δ(z),

the thick tomogram of the coherent states |α〉〈α| read

wασ (X,µ, ν) =
1√

π(µ2 + ν2 + σ2)
e−(X−X̄)2/(µ2+ν2+σ2), (160)

where
X̄ =

√
2µReα+

√
2 ν Imα. (161)



For the vacuum state |0〉〈0| the tomogram reads

wvac
σ (X,µ, ν) =

1√
π(µ2 + ν2 + σ2)

e−X
2/(µ2+ν2+σ2), (162)

The quantizer reads

D̂σ(X,µ, ν) =
1

2π
e−σ

2/[2+i(XI−µq̂−νp̂)]

and the dequantizer is given by

Ûσ(X,µ, ν) =
1√

2πσ2
e−[(XI−µq̂−νp̂)2]/2σ2

.

One interesting property, that is preserved by the smoothing of the
tomogram, is that the marginals wΞ(X,µ, ν) are also probability
distributions. In the limit σ → 0, Ξ(z)→ δ(z), Ξ̃(−1) = 1,
NΞ = 1.



Conclusions and outlooks
To conclude we resume the main results of our work. The
symplectic tomographic probability distribution, considered as the
primary concept of a particle quantum state alternative to the wave
function or density matrix, was shown to be associated with a
unitary representation of the Weyl-Heisenberg group.
This connection was used to formulate an autonomous conditions
for the symplectic tomogram to describe quantum states using the
positivity properties of the matrix Mjk of eq.(146) and connected
with the diagonal elements of the unitary representation (positive
type function ϕ(g) on the group).



The function f(X,µ, ν), satisfying the necessary properties of
tomographic probability distribution, i.e. non-negativity,
homogeneity and normalization, was shown to be a quantum
tomogram iff its Fourier transform in the quadrature variable X can
be written in the form of eq.(148) as the product of a positive type
function on the Weyl-Heisenberg group and a phase factor
associated with central elements of the group.
By using the quantum Radon anti-transform eq.(130), this
condition guarantees that the function f(X,µ, ν) provides a density
state, so that f is the symplectic tomogram of a quantum state.
The criterion, formulated in terms of positivity properties of a
group function obtained from the tomographic function, is not easy
to implement operatively. Nevertheless, it is simpler than the
criterion based on checking the non negativity of the operator given
by the quantum Radon anti transform.



Also, we have shown that the purity of the quantum state can be
expressed as the square of the L2−norm of that positive group
function, which is obtained by tomograms measured directly in
optical experiments, without considering density matrices or Wigner
functions.
As a spin-off we have shown that the notion of h−positivity may be
subsumed under the notion of positivity for a centrally extended
group.
We have considered tomograms associated with the
Weyl-Heisenberg group. It can be shown how to deal with the
tomographic picture for general Lie groups and for finite groups. In
this connection, the C∗−algebraic approach to quantum mechanics
and its counterpart in terms of tomograms can be elaborated.



To resume, quantum mechanics can be formulated using the fair
probability distribution as a concept of the quantum state instead
of the wave function and density operator. This provides the
possibility to obtain the quantum evolution and energy-level
equations for the fair probability distributions like the evolution
equations in classical statistical mechanics.
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