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Strong correlated systems 

Strong many-body effect: 

 Single particle approximation invalid 

 No good analytic tool: particles are 

highly entangled 

Weak coupling systems 

Week interaction     

 Mean-field or single particle 

approximation works 

 Particles are app. disentangled 

Why should we study the renormalization of tensors? 

Cold atoms  3He-superfluid  4He-superfluid  CMR     simple metal 
             heavy fermions      QHE     high-Tc    
                                      superconductor   

10-6               10-4               10-2               100               102              104     T(K) 

Energy 

Weak coupling Strong coupling: non-perturbative 



Can we solve the problem numerically? 

Cold atoms  3He-superfluid  4He-superfluid  CMR     simple metal 
             heavy fermions      QHE     high-Tc    
                                      superconductor   

10-6               10-4               10-2               100               102              104     T(K) 

Energy 

Weak coupling 

Density Functional Theory 

Walter Kohn 1997 

   Numerical Renormalization Group 

K. Wilson 1982 

Strong coupling: non-perturbative 



1. Wilson NRG  1975 -              
0 Dimensional problems (single impurity Kondo model) 

 

2. Density Matrix Renormalization Group (1D algorithm) 1992 -          
1 Dimensional quantum lattice models 

 

3. Tensor Renormalization Group 
2 or higher dimensional lattice models 

Three Stages of Numerical Renormalization Group Study 
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L D: minimal number of basis states needed 

for describing the ground state 

d: spatial dimension 

What is the wavefunction that satisfies this area law? 

Why is it more difficult to study higher-dimensional systems? 

Area Law of Entanglement Entropy 



The Answer: Tensor Network State 

Tensor network state (projected entangled pair state) is a faithful 

representation of the ground state of a quantum lattice model 

                Verstraete, Cirac, arXiv:0407066 

x = 1 … D 



Classical Statistical Models = Tensor-network Model  

The partitions for all statistical models with local interactions 

can be represented as tensor-network models 



Tensor-Network Representation in the Original Lattice 
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Tensor-Network Representation in the Dual Lattice 
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Duality transformation 



Levin, Nave, PRL 99 (2007) 120601 

Step I: Rewiring 
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Singular value decomposition: SVD 
best scheme for truncating a matrix 

Step II: decimation 

D 
D2 

Coarse Grain Tensor Renormalization Group (TRG)  



Accuracy of TRG 

Ising model on a triangular lattice 

D = 24 

TRG is a good method, but it can be further improved 



Second renormalization of tensor-network state (SRG) 

( )envZ=Tr MM
 TRG:  
 truncation error of M is 

minimized by the singular 
value decomposition 

 
 
But, what really needs to be 

minimized is the error of Z!  
 
 SRG:  
 The renormalization effect of 

Menv to M is considered 

system 

 Xie et al, PRL 103, 160601 (2009) 
Zhao, et al, PRB 81, 174411 (2010) 

environment 

Λ 



I. Poor Man’s SRG: entanglement mean-field approach 

( )envZ=Tr MM / / / /
,

env 1 2 1 2 1 2 1 2
kl ij k l i jM Λ Λ Λ Λ≈

Mean field (or cavity) approximation 
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        From environment 
 
From system 

Bond field – measures the 
entanglement between U and V  

Λ 



Accuracy of Poor Man’s SRG 

Ising model on a triangular lattice 

D = 24 

Tc = 4/ln3 



II. More accurate treatment of SRG 

TRG 
 
Menv  

Evaluate the environment contribution Menv using TRG 
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Accuracy of SRG 

Ising model on a triangular lattice 

D = 24 



• Efforts of Prof. Wen’s group:  
     

 Decompose a tensor into 3 parts 
 

 11 RG moves 
 

 Error ~ 1 % 

 Z. C. Gu, M. Levin, and X. G. Wen, unpublished 

Extension to 3D is difficult 



 
Corner Transfer Tensor Renormalization Group method 

 Nishino & Okunishi, JPSJ 67, 3066 (1998)       
 

Variational wavefunction (transfer matrix) 
Okunishi, Nishino, Prog. Theor. Phys, 103, 541 (2000); 
Maeshima, Hieida, Akutsu, Nishino, Okunishi, PRE 64, 016705 (2001); 
Nishino, Hieida, Okunishi, Maeshima, Akutsu, Gendiar, Prog. Theo. Phys. 
105, 409 (2001).  
Gendiar & Nishino, PRB 71, 024404 (2005) 

  
 

Main problem:  tensor dimension D = 2 ~ 5 
error > 0.6 % 

Efforts made by Nishino and collaborators 



• Recent work of Garcia and Latorre 
     

Dmax ~ 5 
error ~  2.7 %   

A. Garcia-Saez, and J. I. Latorre, arXiv:1112.1412 



TRG with Higher-Order Singular Value Decomposition of Tensors   

Higher order singular 
value decompostion 

D 

D2 D 

Z. Y. Xie et al, arXiv:1201.1144 



Core tensor 
 all-orthogonal: 
 
 
 pseudo-diagonal / ordering: 

 

Higher-Order Singular Value Decomposition(HOSVD) 

L. de Latheauwer, B. de Moor, and J. Vandewalle, SIAM, J. Matrix Anal. Appl, 21, 1253 (2000). 

Nearly optimal low-rank approximation 



Only horizontal bonds need to be cut 
    if  ε1 < ε2 ,   U(n) = UL

 

    if  ε1 > ε2 ,   U(n) = UR 

truncation error = min(ε1 , ε2 ) 

Unitary Transformation Matrix 



How to do the HOSVD 

HOSVD can be achieved by successive SVD for each index of the tensor 

For example 



D = 24 

Ising model on the square lattice 

Accuracy of HOTRG 



Hierarchical structure of HOTRG 



Second Renormalization : HOSRG 

Forward iterations: HOTRG to determine U(n) and T(n) 
 
backward iterations : evaluate the environment tensors 



HOSRG: sweeping 

Forward iterations:  

 Evaluate the bond density matrix 

 Find new U(n) and T(n) 



D = 24 

Ising model on the square lattice 

Accuracy of HOSRG 



D = 10 

Ising model on the square lattice 

HOSRG with forward-backward sweeping 



Three dimensions 



Benchmark result for the 3D Ising model 

Critical exponent 
         TRG:           0.3237 
           MC:           0.3262 
       HTSE:           0.3265  

Tc = 4.511546 

Relative Error  

TRG   <  10-6 

other RG methods ∼ 10-2 

3D Ising model 



Thermodynamics of 2D QuantumTransverse Ising Model 

T = 0K 



σi = 1,…,4 
8 neighbors  
 
4 neighbors 

Phase Transition with Partial Symmetry Breaking 
QN Chen et al, PRL  107, 165701 (2011) 

The Potts model is a basic model of statistical physics  

It has been intensively studied for more than 70 years 

q=4 Potts Model on the UnionJack Lattice 

Is there any phase transition? 



Full versus Partial Symmetry Breaking 

full symmetry breaking 

Entropy = 0 

partial symmetry breaking 

Entropy is finite 

random 
orientation 



Ground States and Their Entropies 

 If red or green sublattice is ordered, the ground states are 

ξ3N/4-fold degenerate                                   S = (3N/4) ln ξ 

 both red and green sublattices are ordered, the ground 

states are 2N/2-fold degenerate:                  S = (N/2) ln 2 

S = (N/2) ln 2 + 2 * (3N/4) ln ξ   



The red or green sublattice 
is ordered 

Entropy and Partial Order 



Conjecture: There is a Finite T Phase Transition 

There is a partial symmetry breaking at 0K 

There is a finite T phase transition with two singularities:  

1. ordered and disordered states 

2. Z2 between green and red 

q = 4 Potts model 



Phase Transition: Specific Heat Jump 



Partial Order Phase Transition in Other Irregular Lattices 

Diced Lattice 
Centered Diced Lattice 

Checkerboard Lattice 



Summary 

1. HOSRG provides an accurate and efficient numerical 

method for studying 2D or 3D classical/quanutum lattice 

models 

2. AF Potts Model has an entropy driven partial ordering and 

finite T phase transition on irregular lattices 
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