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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds
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π
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)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N)]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
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N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
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N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑
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and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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because boundary energy corrections exist under OBCs, where
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bulk properties by means of finite-size scaling [1–3].
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chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
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(
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for OBC (α = 0),
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where the energy index $ runs from 1 to N . The ground-state
energy E
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0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size
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to the deformation function [sin(jπ/N )]2 specified by the site
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(SSD) [15] completely suppresses the boundary effects when
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is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
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−2t cos
(
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N+1

)
for OBC (α = 0),
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N
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for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E
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ĥi,i+1 = Ĥ(λ = 0)
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N)]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot

[
(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N )]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E
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0 /(N − 1) under

OBCs. After a short algebra, one obtains
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tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].
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practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
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(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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Sin^m Deformation

The case m = 2, Sine-Square Deformation, is cool.
arXiv: 1012.0472, 1012.1472 / 1108.2973, 1104.1721, ...

Non-uniform: exp[     j], cosh[     j], random, etc., AND!

Uniform .... infinite, or finite: examples

Ĥuniform =
∑

j

ĥi,i+1 = Ĥ(λ = 0)

ĥi,i+1 = J ŝi · ŝj

−t (ĉ†j+1ĉj + h.c.)

−t (ĉ†j+1ĉj + h.c.) + V n̂jnj+1

Ĥ(λ) =
∑

j

gj(λ) ĥj

1
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Why do we use the term Gauge?

H. Weyle introduced a gradual change of unit length, 
when he tried to unify Gravity and Electro Dynamics. 

... one does not easily detect the change of the scale, 
as long as one stays within a small finite region.
(similar to the slow change in the metric.)

What is the ‘slow variation/modulation’ on the Lattice?
... we expect that the variation (almost) does not 
change the (ground or equilbrium) state, when the 
variation is sufficiently slow.

Is there an example where the ground state of an 
uniform Hamiltonian stays uniform even after the 
introduction of variation? 

Probably yes. A very slow change in energy scale 
might not affect the physical (?) state so much.

Set up a Question:
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ĥi,i+1 = J ŝi · ŝj
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Starting point: Uniform 1D Hamiltonians

Local operators:

Deformed Hamiltonian

The non-zero real (or complex) function g varies very 
slowly from site to site. It contains a parameter        . 

Suppose that the ground state is uniform. (- - or commensulate)

                                     ... ferrro, AF, Fermi liquid, etc.
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ĥi,i+1 = Ĥ(λ = 0)
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∆

ξ ∼ 1/∆

g(λ = 1) = 1
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Ĥ(λ) =
∑

j

gj(λ) ĥj

1

Deformation
Function



Ĥuniform =
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ĥi,i+1 = J ŝi · ŝj
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Deformation

The introduced ‘Deformation’ is NOT a perturbation.

Perturbation

Ĥuniform =
∑

j

ĥi,i+1 = Ĥ(λ = 0)

ĥi,i+1 = J ŝi · ŝj

−t (ĉ†j+1ĉj + h.c.)

−t (ĉ†j+1ĉj + h.c.) + V n̂jnj+1

Ĥ(λ) =
∑

j

gj(λ) ĥj

∆

ξ ∼ 1/∆

g(λ = 1) = 1

Ĥ ′ =
∑

j

ĥj +
∑

j

V̂j

1

Only the local energy scale changes.

Energy scale does not change, but local 
operators are modified by perturbation V.

To connect these two cases is another issue....
    (Key Wort: Position dependent mass in SUSY QM.)



Case 1: Gapped System
When there is finite excitation gap from the ground state,
the correlation length is finite, and is inversely proportional 
to the gap.

If the deformation function varies far slower than the 
correlation length, it is natural to expect that the ground 
state is (relatively) unaffected.

Case 2: Finitely Correlated State / positive semidefinite operators

Ĥuniform =
∑

j

ĥi,i+1 = Ĥ(λ = 0)

ĥi,i+1 = J ŝi · ŝj

−t (ĉ†j+1ĉj + h.c.)
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Ĥ(λ) =
∑

j

gj(λ) ĥj

∆

ξ ∼ 1/∆

1

If the Hamiltonian is represented as a sum of (local) 
positive semi-definite operators, and if the ground-state 
energy is zero, the ground state is unchanged even when
(the positive function) g changes randomly, and rapidly.

Effect of deformation

Ĥuniform =
∑
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ĥi,i+1 = J ŝi · ŝj
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−t (ĉ†j+1ĉj + h.c.) + V n̂jnj+1
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∑

j

gj(λ) ĥj

1



Answer: Yes, there are exponential, hyperbolic, sine-square
                deformations.

Case 3: Critical Ground State

It is not hard to imagine that even a weak disturbance 
introduces non-negligible modulation to the critical state.

... there are analytic expressions for such cases:

matrix product states
finitely correlated states
etc.

Question: Is there a way of deformation which does NOT
                 introduce position dependence to the critical 
                 state?



Exponential Deformation

Shift of the position, represented by S, causes magnification in energy scale.
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where J ≥ 0 represents the interaction parameter. Be-
fore considering the deformed Hamiltonian Hcosh(λ) in
Eq. (1.3), let us observe effects of the exponential defor-
mation in Eq. (1.1). For latter convenience we treat the
system whose linear size is 2N + 2. The exponentially
deformed Hamiltonian is then written as

Hexp(λ) =
N∑

j=−N

ejλ hj,j+1 , (2.3)

where the deformation parameter λ is real and positive.10
When λ = 0 the above Hamiltonian Hexp(λ) coincides
with the uniform Hamiltonian H in Eq. (2.1).

It is known that the factor Λ = eλ controls the eigen-
value structure.5,6 In order to observe the fact briefly,
let us consider the infinite system size limit N → ∞. To
simplify the discussion we assume that the ground state
energy E0 is zero, and all other eigenvalues are positive.
This assumption can be satisfied by adding appropriate
constant to each neighboring interaction hj,j+1.11

Consider a right shift operation S that moves the lat-
tice sites by one to the right direction. It is obvious that
S†, the conjugate of S, represents the left shift operation,
and therefore SS† = S†S = 1 is satisfied. If we apply S
to Hexp(λ) when the system size is infinite, we obtain
the following relation

S Hexp(λ) S† =
∞∑

j=−∞
ejλ

(
S hj,j+1 S†) (2.4)

=
∞∑

j=−∞
ejλ hj+1,j+2

=
∞∑

j=−∞
e(j−1)λ hj,j+1 = e−λ Hexp(λ) .

As a result of translation the deformation parameter ejλ

is modified to e(j−1)λ, and this modification can simply
be expressed by multiplying the factor e−λ to Hexp(λ).
This translation property in Hexp(λ) restricts the eigen-
value structure, which is obtained from the eigenvalue
relation

Hexp(λ) |Ψ〉 = E |Ψ〉 . (2.5)

If there is an eigenstate |Ψ〉 the shifted state S |Ψ〉 is also
an eigenstate, since we have the relation

[
S Hexp(λ)S†]S |Ψ〉 = S Hexp(λ) |Ψ〉 = ES |Ψ〉 , (2.6)

and using the relation in Eq. (2.4) we can verify that
[
e−λ Hexp(λ)

]
S |Ψ〉 = E S |Ψ〉 (2.7)

is satisfied. Thus if the eigenvalue E in Eq. (2.5) is posi-
tive, there is a family of eigenvalues

. . . , e−2λ E, e−λ E, E, eλ E, e2λ E, . . . , (2.8)

that are equidistant in logarithmic scale. Such a positive
energy eigenstate |Ψ〉 is not translationally invariant, and
the orthogonality

〈Ψ|S |Ψ〉 = 0 (2.9)

is satisfied.

It should be noted that presence of periodic eigenstates
are not excluded. For example, if there is unique zero-
energy eigenstate |Φ〉, it is translationally invariant. This
is because Eq. (2.7) shows that S |Φ〉 is also the zero
energy state. Thus we can say that if the zero-energy
state is unique, it satisfies the translational invariance

S |Φ〉 = |Φ〉 . (2.10)

As an extension one can consider digenerated case, where
there are two zero-energy eigenstates |Φa〉 and |Φb〉 that
satisfies

|Φb〉 = S |Φa〉

|Φa〉 = S |Φb〉 . (2.11)

This is the case when there is dimerization in the ground
state. This degeneracy would be lifted by the effect of
boundary when the system size 2N + 2 is finite. It is
straightforward to extend the argument of degeneracy to
trimerized state, etc.

It is possible to consider various generalizations of
Hexp(λ). As an example one can consider the deformed
tight-binding Hamiltonian

Hexp
t.b. (λ) =

∞∑

j=−∞
ejλ

[
−t (c†j+1cj + c†jcj+1)

+ (−1)j ∆
2

(c†jcj − c†j+1cj+1)
]

(2.12)

for spinless lattice Fermions, where t represents the hop-
ping parameter and where ∆ the band gap. Since this
Hamiltonian contains oscillating potential, the transla-
tion period is 2-site when λ = 0. Thus for this de-
formed Hamiltonian Hexp

t.b. (λ) one should modify the rela-
tion Eq. (2.4) according to this period. It can be verified
that all the one-particle states |Ψ〉 satisfy the orthogo-
nality in Eq. (2.9), and are represented by localized wave
functions similar to wavelet basis function. The half-filled
state |Φ〉 has finite excitation gap, where |Φ〉 is periodic
and satisfies S2 |Φ〉 = |Φ〉. When λ = 0 the one-particle
eigenfunctions and energy spectrum is explained by the
Bloch’s theorem. It is not trivial how such an energy
structure is destructed by the introduction of exponen-
tial deformation. It is straightforward to generalize the
exponential deformation to systems that contain inter-
actions of longer range.

3. Hyperbolic Deformation

The eigenvalue distribution of Hexp(λ) explained in
the last section prevents numerical study of the bulk
property of the system around the center j = 0. This
is because the energy scale in the left side of the system
(j < 0) is smaller than that at the center, and to ap-
ply the DMRG method to such system is difficult. This
problem can be avoided if we take an average between
Hexp(λ) and Hexp(−λ) as

Hcosh(λ) =
1
2
[
Hexp(λ) + Hexp(−λ)

]

=
N∑

j=−N

cosh jλ hj,j+1 . (3.1)
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where J ≥ 0 represents the interaction parameter. Be-
fore considering the deformed Hamiltonian Hcosh(λ) in
Eq. (1.3), let us observe effects of the exponential defor-
mation in Eq. (1.1). For latter convenience we treat the
system whose linear size is 2N + 2. The exponentially
deformed Hamiltonian is then written as

Hexp(λ) =
N∑

j=−N

ejλ hj,j+1 , (2.3)

where the deformation parameter λ is real and positive.10
When λ = 0 the above Hamiltonian Hexp(λ) coincides
with the uniform Hamiltonian H in Eq. (2.1).

It is known that the factor Λ = eλ controls the eigen-
value structure.5,6 In order to observe the fact briefly,
let us consider the infinite system size limit N → ∞. To
simplify the discussion we assume that the ground state
energy E0 is zero, and all other eigenvalues are positive.
This assumption can be satisfied by adding appropriate
constant to each neighboring interaction hj,j+1.11

Consider a right shift operation S that moves the lat-
tice sites by one to the right direction. It is obvious that
S†, the conjugate of S, represents the left shift operation,
and therefore SS† = S†S = 1 is satisfied. If we apply S
to Hexp(λ) when the system size is infinite, we obtain
the following relation

S Hexp(λ) S† =
∞∑

j=−∞
ejλ

(
S hj,j+1 S†) (2.4)

=
∞∑

j=−∞
ejλ hj+1,j+2

=
∞∑

j=−∞
e(j−1)λ hj,j+1 = e−λ Hexp(λ) .

As a result of translation the deformation parameter ejλ

is modified to e(j−1)λ, and this modification can simply
be expressed by multiplying the factor e−λ to Hexp(λ).
This translation property in Hexp(λ) restricts the eigen-
value structure, which is obtained from the eigenvalue
relation

Hexp(λ) |Ψ〉 = E |Ψ〉 . (2.5)

If there is an eigenstate |Ψ〉 the shifted state S |Ψ〉 is also
an eigenstate, since we have the relation

[
S Hexp(λ)S†]S |Ψ〉 = S Hexp(λ) |Ψ〉 = ES |Ψ〉 , (2.6)

and using the relation in Eq. (2.4) we can verify that
[
e−λ Hexp(λ)

]
S |Ψ〉 = E S |Ψ〉 (2.7)

is satisfied. Thus if the eigenvalue E in Eq. (2.5) is posi-
tive, there is a family of eigenvalues

. . . , e−2λ E, e−λ E, E, eλ E, e2λ E, . . . , (2.8)

that are equidistant in logarithmic scale. Such a positive
energy eigenstate |Ψ〉 is not translationally invariant, and
the orthogonality

〈Ψ|S |Ψ〉 = 0 (2.9)

is satisfied.

It should be noted that presence of periodic eigenstates
are not excluded. For example, if there is unique zero-
energy eigenstate |Φ〉, it is translationally invariant. This
is because Eq. (2.7) shows that S |Φ〉 is also the zero
energy state. Thus we can say that if the zero-energy
state is unique, it satisfies the translational invariance

S |Φ〉 = |Φ〉 . (2.10)

As an extension one can consider digenerated case, where
there are two zero-energy eigenstates |Φa〉 and |Φb〉 that
satisfies

|Φb〉 = S |Φa〉

|Φa〉 = S |Φb〉 . (2.11)

This is the case when there is dimerization in the ground
state. This degeneracy would be lifted by the effect of
boundary when the system size 2N + 2 is finite. It is
straightforward to extend the argument of degeneracy to
trimerized state, etc.

It is possible to consider various generalizations of
Hexp(λ). As an example one can consider the deformed
tight-binding Hamiltonian

Hexp
t.b. (λ) =

∞∑
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ejλ

[
−t (c†j+1cj + c†jcj+1)

+ (−1)j ∆
2

(c†jcj − c†j+1cj+1)
]

(2.12)

for spinless lattice Fermions, where t represents the hop-
ping parameter and where ∆ the band gap. Since this
Hamiltonian contains oscillating potential, the transla-
tion period is 2-site when λ = 0. Thus for this de-
formed Hamiltonian Hexp

t.b. (λ) one should modify the rela-
tion Eq. (2.4) according to this period. It can be verified
that all the one-particle states |Ψ〉 satisfy the orthogo-
nality in Eq. (2.9), and are represented by localized wave
functions similar to wavelet basis function. The half-filled
state |Φ〉 has finite excitation gap, where |Φ〉 is periodic
and satisfies S2 |Φ〉 = |Φ〉. When λ = 0 the one-particle
eigenfunctions and energy spectrum is explained by the
Bloch’s theorem. It is not trivial how such an energy
structure is destructed by the introduction of exponen-
tial deformation. It is straightforward to generalize the
exponential deformation to systems that contain inter-
actions of longer range.

3. Hyperbolic Deformation

The eigenvalue distribution of Hexp(λ) explained in
the last section prevents numerical study of the bulk
property of the system around the center j = 0. This
is because the energy scale in the left side of the system
(j < 0) is smaller than that at the center, and to ap-
ply the DMRG method to such system is difficult. This
problem can be avoided if we take an average between
Hexp(λ) and Hexp(−λ) as

Hcosh(λ) =
1
2
[
Hexp(λ) + Hexp(−λ)

]

=
N∑

j=−N

cosh jλ hj,j+1 . (3.1)
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where J ≥ 0 represents the interaction parameter. Be-
fore considering the deformed Hamiltonian Hcosh(λ) in
Eq. (1.3), let us observe effects of the exponential defor-
mation in Eq. (1.1). For latter convenience we treat the
system whose linear size is 2N + 2. The exponentially
deformed Hamiltonian is then written as

Hexp(λ) =
N∑

j=−N

ejλ hj,j+1 , (2.3)

where the deformation parameter λ is real and positive.10
When λ = 0 the above Hamiltonian Hexp(λ) coincides
with the uniform Hamiltonian H in Eq. (2.1).

It is known that the factor Λ = eλ controls the eigen-
value structure.5,6 In order to observe the fact briefly,
let us consider the infinite system size limit N → ∞. To
simplify the discussion we assume that the ground state
energy E0 is zero, and all other eigenvalues are positive.
This assumption can be satisfied by adding appropriate
constant to each neighboring interaction hj,j+1.11

Consider a right shift operation S that moves the lat-
tice sites by one to the right direction. It is obvious that
S†, the conjugate of S, represents the left shift operation,
and therefore SS† = S†S = 1 is satisfied. If we apply S
to Hexp(λ) when the system size is infinite, we obtain
the following relation

S Hexp(λ) S† =
∞∑

j=−∞
ejλ

(
S hj,j+1 S†) (2.4)

=
∞∑

j=−∞
ejλ hj+1,j+2

=
∞∑

j=−∞
e(j−1)λ hj,j+1 = e−λ Hexp(λ) .

As a result of translation the deformation parameter ejλ

is modified to e(j−1)λ, and this modification can simply
be expressed by multiplying the factor e−λ to Hexp(λ).
This translation property in Hexp(λ) restricts the eigen-
value structure, which is obtained from the eigenvalue
relation

Hexp(λ) |Ψ〉 = E |Ψ〉 . (2.5)

If there is an eigenstate |Ψ〉 the shifted state S |Ψ〉 is also
an eigenstate, since we have the relation

[
S Hexp(λ)S†]S |Ψ〉 = S Hexp(λ) |Ψ〉 = ES |Ψ〉 , (2.6)

and using the relation in Eq. (2.4) we can verify that
[
e−λ Hexp(λ)

]
S |Ψ〉 = E S |Ψ〉 (2.7)

is satisfied. Thus if the eigenvalue E in Eq. (2.5) is posi-
tive, there is a family of eigenvalues

. . . , e−2λ E, e−λ E, E, eλ E, e2λ E, . . . , (2.8)

that are equidistant in logarithmic scale. Such a positive
energy eigenstate |Ψ〉 is not translationally invariant, and
the orthogonality

〈Ψ|S |Ψ〉 = 0 (2.9)

is satisfied.

It should be noted that presence of periodic eigenstates
are not excluded. For example, if there is unique zero-
energy eigenstate |Φ〉, it is translationally invariant. This
is because Eq. (2.7) shows that S |Φ〉 is also the zero
energy state. Thus we can say that if the zero-energy
state is unique, it satisfies the translational invariance

S |Φ〉 = |Φ〉 . (2.10)

As an extension one can consider digenerated case, where
there are two zero-energy eigenstates |Φa〉 and |Φb〉 that
satisfies

|Φb〉 = S |Φa〉

|Φa〉 = S |Φb〉 . (2.11)

This is the case when there is dimerization in the ground
state. This degeneracy would be lifted by the effect of
boundary when the system size 2N + 2 is finite. It is
straightforward to extend the argument of degeneracy to
trimerized state, etc.

It is possible to consider various generalizations of
Hexp(λ). As an example one can consider the deformed
tight-binding Hamiltonian

Hexp
t.b. (λ) =

∞∑

j=−∞
ejλ

[
−t (c†j+1cj + c†jcj+1)

+ (−1)j ∆
2

(c†jcj − c†j+1cj+1)
]

(2.12)

for spinless lattice Fermions, where t represents the hop-
ping parameter and where ∆ the band gap. Since this
Hamiltonian contains oscillating potential, the transla-
tion period is 2-site when λ = 0. Thus for this de-
formed Hamiltonian Hexp

t.b. (λ) one should modify the rela-
tion Eq. (2.4) according to this period. It can be verified
that all the one-particle states |Ψ〉 satisfy the orthogo-
nality in Eq. (2.9), and are represented by localized wave
functions similar to wavelet basis function. The half-filled
state |Φ〉 has finite excitation gap, where |Φ〉 is periodic
and satisfies S2 |Φ〉 = |Φ〉. When λ = 0 the one-particle
eigenfunctions and energy spectrum is explained by the
Bloch’s theorem. It is not trivial how such an energy
structure is destructed by the introduction of exponen-
tial deformation. It is straightforward to generalize the
exponential deformation to systems that contain inter-
actions of longer range.

3. Hyperbolic Deformation

The eigenvalue distribution of Hexp(λ) explained in
the last section prevents numerical study of the bulk
property of the system around the center j = 0. This
is because the energy scale in the left side of the system
(j < 0) is smaller than that at the center, and to ap-
ply the DMRG method to such system is difficult. This
problem can be avoided if we take an average between
Hexp(λ) and Hexp(−λ) as

Hcosh(λ) =
1
2
[
Hexp(λ) + Hexp(−λ)

]

=
N∑

j=−N

cosh jλ hj,j+1 . (3.1)

.....



Exponential Deformation

The one-particle eigenstate is localized: ... the ground-state is not critical any 
more. As a result, the ground state stays to be uniform.

NRG successfully applied to the Kondo/Anderson impurity models, 
probably because of this locality and hierarch in the energy scale. 
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II. MODEL AND SCALE FREE PROPERTY

In Wilson NRG, the essential point is to consider the
1D lattice fermion model mapped from the degenerating
free electrons around the Fermi surface. We thus start
with the Wilson-type Hamiltonian of the spinless free
fermions with the exponentially modulated hopping

Hλ =
N−1
∑

n=1

eλn(c†n+1cn + c†ncn+1), (1)

where cn is a fermion annihilation operator at nth site
and N denotes the number of sites. We have also intro-
duced Λ ≡ exp(λ) > 1 for later convenience. Thus n = 1
corresponds to the smallest energy scale and n = N does
to the impurity site with the largest energy scale18. Al-
though, in the original work5, the hopping parameter has
a supplemental coefficient and n in eλn term takes a half
integer, the essential physics is the same as Eq. (1).
Let us write the one-particle state as |ψ〉 =

∑

n ψ(n)c
†
n|0〉. Then one-particle Schrödinger equation

in the bulk region is

e−λψ(n− 1) + ψ(n+ 1) = Ee−λnψ(n). (2)

Note that Eq. (2) is invariant under the transformation,
ψ(n) → (−1)nψ(n) and E → −E, which clearly rep-
resents the particle-hole symmetry. Thus, we basically
consider the positive energy solution.
Since the system has no explicit translational sym-

metry, we employ numerical diagonalization of Eq. (2)
rather than the usual Fourier analysis, for a finite but
sufficiently large system. We assume the free boundary
condition and thus what we deal with is the tridiagonal
matrix. Figure 1 represents the absolute value of the
one-particle spectrum for λ = 0.1 and N = 200, where j
indicates the label of the eigenvalue in increasing order.
The Fermi surface is located between j = 100 and 101,
and j ≤ 100 represent negative energy eigenvalues. Thus,
the parity in Fig. 1 corresponds to the particle-hole sym-
metry. We also show the amplitude of the wavefunctions
corresponding to j = 101, 130 and 160th eigenvalues, in
Fig. 2.
The most important behavior in Fig. 1 is that, as

was already mentioned in Ref.5, E basically exhibits the
exponential dependence E ∝ ± exp(λj). We call this re-
gion of the exponential dependence as “bulk”, since the
corresponding wavefunctions are localized in the bulk re-
gion of the chain, as can be seen for j = 130 and 160 in
Fig.2. On the other hand, we can see that some eigenval-
ues near the Fermi surface j ∼ 100 deviate from the bulk
lines. We call these states as “edge states”, since they
correspond to the edge modes near the Fermi surface, as
is the wavefunction of j =101 in Fig. 2.
We analyze the bulk part of the spectrum in detail.

In connection with the exponential dependence of the
eigenvalues, an essential information can be found in the
bulk wavefunctions for j = 130 and 160 in Fig. 2. The
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FIG. 1: (Color online)One-particle eigenvalue spectrum of Eq.
(2). The horizontal axis j indicates the label of the eigenvalue
in increasing order.
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FIG. 2: (Color online)One-particle wavefunction ψ(n) of j =
101, 130 and 160. The horizontal axis means the cite index n.
The bulk states ψ(n) of j = 130 and 160 can be overlapped
with each other by a lattice translation, while ψ(n) of j = 101
is the edge state.

primary notable point is that these wavefunctions have
a very similar wavepacket-like shape, in contrast to the
usual plane wave for the uniform chain. The localization
of the wavefunction can be qualitatively understood as
follows. If a particle carrying a certain energy goes in
the larger n region, the particle can not excite the larger
energy bonds, into which the wavefunction can not pen-
etrate. While the particle goes to the smaller n region,
the bond of the smaller coupling can not carry the total
energy of the particle and thus the wavefunction decays
very rapidly.
Another important property of the bulk wavefunctions

is that they can be overlapped with each other by the
lattice translation; In Fig. 2, the wavefunctions of j =130
and 160 have the very similar shape. Indeed, we can
verify that overlap integral of the two wavefunctions after
the lattice translation is unity within the computational
accuracy. In order to see this property in analytic level,
we introduce

ψ(n) ≡ e−λn/2φ(n). (3)

Example: free Fermions (at half-filling)

[1] K. Okunishi:J. Phys. Soc. Jpn. 76 (2007) 063001; cond-mat/0702581.
[2] K. Okunishi and T. Nishino: Phys. Rev. B 82 (2010) 144409; arXiv:1001.2594.
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DMRG suffers from presence of the small energy scale 
under the exponential deformation, which prevents the 
numerical diagonalization of the super-block Hamiltonian. 
(NRG or Xiang’s RG Scheme works better.)

DMRG? iTEBD? applicable to the exp. deformation???

Because of infinitesimal time evolution, direct application 
of iTEBD is not successful. Probably one has to shift the 
ground state MPS after each evolution, assuming the 
uniformity in the ground state.

Participants of this workshop
      (a) have already solved this problem
      (b) can easily find out the solution
      (c) have no interest on this matter
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where J ≥ 0 represents the interaction parameter. Be-
fore considering the deformed Hamiltonian Hcosh(λ) in
Eq. (1.3), let us observe effects of the exponential defor-
mation in Eq. (1.1). For latter convenience we treat the
system whose linear size is 2N + 2. The exponentially
deformed Hamiltonian is then written as

Hexp(λ) =
N∑

j=−N

ejλ hj,j+1 , (2.3)

where the deformation parameter λ is real and positive.10
When λ = 0 the above Hamiltonian Hexp(λ) coincides
with the uniform Hamiltonian H in Eq. (2.1).

It is known that the factor Λ = eλ controls the eigen-
value structure.5,6 In order to observe the fact briefly,
let us consider the infinite system size limit N → ∞. To
simplify the discussion we assume that the ground state
energy E0 is zero, and all other eigenvalues are positive.
This assumption can be satisfied by adding appropriate
constant to each neighboring interaction hj,j+1.11

Consider a right shift operation S that moves the lat-
tice sites by one to the right direction. It is obvious that
S†, the conjugate of S, represents the left shift operation,
and therefore SS† = S†S = 1 is satisfied. If we apply S
to Hexp(λ) when the system size is infinite, we obtain
the following relation

S Hexp(λ) S† =
∞∑

j=−∞
ejλ

(
S hj,j+1 S†) (2.4)

=
∞∑

j=−∞
ejλ hj+1,j+2

=
∞∑

j=−∞
e(j−1)λ hj,j+1 = e−λ Hexp(λ) .

As a result of translation the deformation parameter ejλ

is modified to e(j−1)λ, and this modification can simply
be expressed by multiplying the factor e−λ to Hexp(λ).
This translation property in Hexp(λ) restricts the eigen-
value structure, which is obtained from the eigenvalue
relation

Hexp(λ) |Ψ〉 = E |Ψ〉 . (2.5)

If there is an eigenstate |Ψ〉 the shifted state S |Ψ〉 is also
an eigenstate, since we have the relation

[
S Hexp(λ)S†]S |Ψ〉 = S Hexp(λ) |Ψ〉 = ES |Ψ〉 , (2.6)

and using the relation in Eq. (2.4) we can verify that
[
e−λ Hexp(λ)

]
S |Ψ〉 = E S |Ψ〉 (2.7)

is satisfied. Thus if the eigenvalue E in Eq. (2.5) is posi-
tive, there is a family of eigenvalues

. . . , e−2λ E, e−λ E, E, eλ E, e2λ E, . . . , (2.8)

that are equidistant in logarithmic scale. Such a positive
energy eigenstate |Ψ〉 is not translationally invariant, and
the orthogonality

〈Ψ|S |Ψ〉 = 0 (2.9)

is satisfied.

It should be noted that presence of periodic eigenstates
are not excluded. For example, if there is unique zero-
energy eigenstate |Φ〉, it is translationally invariant. This
is because Eq. (2.7) shows that S |Φ〉 is also the zero
energy state. Thus we can say that if the zero-energy
state is unique, it satisfies the translational invariance

S |Φ〉 = |Φ〉 . (2.10)

As an extension one can consider digenerated case, where
there are two zero-energy eigenstates |Φa〉 and |Φb〉 that
satisfies

|Φb〉 = S |Φa〉

|Φa〉 = S |Φb〉 . (2.11)

This is the case when there is dimerization in the ground
state. This degeneracy would be lifted by the effect of
boundary when the system size 2N + 2 is finite. It is
straightforward to extend the argument of degeneracy to
trimerized state, etc.

It is possible to consider various generalizations of
Hexp(λ). As an example one can consider the deformed
tight-binding Hamiltonian

Hexp
t.b. (λ) =

∞∑

j=−∞
ejλ

[
−t (c†j+1cj + c†jcj+1)

+ (−1)j ∆
2

(c†jcj − c†j+1cj+1)
]

(2.12)

for spinless lattice Fermions, where t represents the hop-
ping parameter and where ∆ the band gap. Since this
Hamiltonian contains oscillating potential, the transla-
tion period is 2-site when λ = 0. Thus for this de-
formed Hamiltonian Hexp

t.b. (λ) one should modify the rela-
tion Eq. (2.4) according to this period. It can be verified
that all the one-particle states |Ψ〉 satisfy the orthogo-
nality in Eq. (2.9), and are represented by localized wave
functions similar to wavelet basis function. The half-filled
state |Φ〉 has finite excitation gap, where |Φ〉 is periodic
and satisfies S2 |Φ〉 = |Φ〉. When λ = 0 the one-particle
eigenfunctions and energy spectrum is explained by the
Bloch’s theorem. It is not trivial how such an energy
structure is destructed by the introduction of exponen-
tial deformation. It is straightforward to generalize the
exponential deformation to systems that contain inter-
actions of longer range.

3. Hyperbolic Deformation

The eigenvalue distribution of Hexp(λ) explained in
the last section prevents numerical study of the bulk
property of the system around the center j = 0. This
is because the energy scale in the left side of the system
(j < 0) is smaller than that at the center, and to ap-
ply the DMRG method to such system is difficult. This
problem can be avoided if we take an average between
Hexp(λ) and Hexp(−λ) as

Hcosh(λ) =
1
2
[
Hexp(λ) + Hexp(−λ)

]

=
N∑

j=−N

cosh jλ hj,j+1 . (3.1)

If one applies the deformation to the free fermion lattice, one would get similar 
off-critical state. (I have not calculated, since I’m more lazy than anyone.)
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Fig. 1. Nearest neighbor spin correlation function 〈sZ
j sZ

j+1〉 of the
deformed S = 1/2 Heisenberg model. In all cases shown here the
function contains even-odd oscillation, which decays very slowly
only when λ = 0.

λ = 0 the correlation function show even-odd oscillation
with respect to j, and the oscillation slowly decays from
the boundary to the center of the system. It is known that
the decay is in power low, which represents the gapless
nature of the undeformed S = 1/2 Heisenberg chain.
When λ is finite, the oscillation is strongly stabilized,
and the boundary effect disappears rapidly.
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Fig. 2. Decay of the correlation function (−1)2j+1 〈sZ
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j+1〉
with respect to the distance 2j + 1.

Figure 2 shows the correlation function | 〈sZ
−j sZ

j+1〉 | =
(−1)2j+1 〈sZ

−j sZ
j+1〉 with respect to the distance 2j + 1.

When λ = 0.05 and λ = 0.1 we observe exponential
decay. The correlation length ξ obtained from the de-
cay rate is almost inverse proportional to λ as shown
in Fig. 3, where ξλ ∼ 0.134 is satisfied. These calcu-
lated results suggest that the hyperbolic deformation en-
hances the local property of the system. To confirm this
locality, we calculate the entanglement entropy. Figure 4
shows the bipartite entropy S at the center of 400-site
system. The value of S decrease exponentially with λ,
where S = 1.145 at the infinite λ limit.
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Fig. 3. Correlation length ξ obtained from the spin correlation
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Fig. 4. Entanglement entropy S as a function of λ.

5. Conclusions and Discussions

We have investigated the effect of hyperbolic defor-
mation on 1D quantum lattice Hamiltonians. Numeri-
cal analysis on the deformed S = 1/2 Heisenberg model
shows that the deformation introduces dimerization in
the ground state, and the local property is enhanced.
The entangle entropy becomes finite even in the large
system size limit when λ > 0.

Though the calculated system is one-dimensional it
can possess a dimerized ground state, because shift of
dimerized pattern introduces macroscopic increase of en-
ergy expectation value; the dimer order might survive in
finite temperature. In this sense the deformed system has
property of higher dimensional systems.

It would be interesting to consider whether the ground
state is exactly represented by a matrix product state
of finite matrix dimension in the infinite λ limit. We
conjecture that integer spin Heisenberg spin chains un-
der strong hyperbolic deformation have such finite di-
mensional matrix product ground states, if appropriate
boundary conditions are imposed.

The hyperbolic deformation can be used for scal-
ing analysis of the ground state of undeformed system.
The two parameter scaling proposed by Tagliacozzo et.
al,14,15 where the controllable parameters are the system

Example: S=1/2 Heisenberg Spin Chain (DMRG)
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Matrix Product changes continuously at the transition point.
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=
∑

σ(0)
0 σU

0

ΦL(σ̄ D
0 ,σ(0)

0 , σ U
0 )ΦR(σ D

0 , σ(0)
0 ,σ U

0 )

that is treated in the context of the bipartite entangle-
ment to the vertical direction, or the block diagonal den-
sity matrix

ρ(σ̄D
0 σ(0)

0 |σD
0 σ(0)

0 ) (2.17)

=
∑

σU
0

ΦL(σ̄ D
0 ,σ(0)

0 , σ U
0 )ΦR(σ D

0 ,σ(0)
0 ,σ U

0 )

that is the 4-th power of the corner transfer matrix
(CTM).1,16–18)

3. Correlation Length Obtained by CTMRG

The matrix product representation of ΨD(σ(0)
... ) and

ΨU(σ(0)
... ) in Eq. (2.12) has the same form as those

for the square lattice Ising model. Thus we can apply
Baxter’s variational formulation1,16–18) or the DMRG
method21–24) for the calculation of the free energy and
other thermodynamic functions. In this article we em-
ploy the CTMRG method,19,20) a variant of the DMRG
method and a generalization of Baxter’s method, to ob-
tain the correlation length ξ and the entangle entropy S
of the Ising model on the (5, 4) lattice.

The CTMRG method maps the half-column spins σD
"

and σU
" , respectively, to block spins ζD

" and ζU
" by means

of the the renormalization group (RG) transformation,
which is obtained by the diagonalization of the density
matrix in Eq. (2.17), or that in Eq. (2.16). Through
this RG transformation, the HCTMs are mapped to the
renormalized ones

P̃D
"+1," = P̃ (ζD

"+1,σ
(0)
"+1| ζ

D
" , σ(0)

" )

P̃U
"+1," = P̃ (σ(0)

"+1, ζ
U
"+1|σ

(0)
" , ζU

" ) , (3.1)

where we put “̃ ” marks on top of renormalized matrices.
The column-to-column transfer matrix is renormalized in
the same manner

T̃"+1," = T̃ (ζ D
"+1,σ

(0)
"+1, ζ

U
"+1| ζ D

" ,σ(0)
" , ζ U

" )

= P̃D
"+1," P̃U

"+1," . (3.2)

In the previous studies we have shown that the system
exhibits the mean-field like second-order phase transi-
tion,9–11) where the spontaneous magnetization

M =

∑

ζD
0 σ(0)

0

σ(0)
0 ρ̃(ζD

0 σ(0)
0 | ζD

0 σ(0)
0 )

∑

ζD
0 σ(0)

0

ρ̃(ζD
0 σ(0)

0 | ζD
0 σ(0)

0 )
(3.3)

calculated from the renormalized density matrix
ρ̃(ζ̄D

0 σ(0)
0 | ζD

0 σ(0)
0 ) below the transition temperature T0 is

proportional to
√

T0 − T .
Figure 2 shows the correlation length

ξ =
1

log λ0 − log λ1

(3.4)

calculated from the largest eigenvalue λ0 and the second
largest one λ1 of T̃"+1,". We have regarded the interaction
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Fig. 3. Entanglement entropy of the MPS in Eq. (2.12).

parameter J as the unit of energy, and set the lattice
constant as the unit of length. We keep at most m = 50
states for block spins, and actually m = 5 is sufficient
enough to draw the figure. It is clear that ξ is of the
order of the lattice constant even at the second order
transition point T0 = 2.799. The fact shows that the
system is always off-critical, and thus the transition point
cannot be called as the critical point. The entanglement
entropy

S = −
∑

i

ωi log ωi , (3.5)

where ωi is the i-th eigenvalue of the reduced density
matrix ρ̃D = ρ̃D(ζ̄D

0 | ζD
0 ) in Eq. (2.16), shown in Fig. 3

is also finite for any temperature T . The result coincides
with the fact that a very small number of states m = 5
is sufficient for getting thermodynamic quantities pre-
cisely, for the Ising model on (p, q)-lattice when p ≥ 5
and q is even.9–11) Thus it is expected that the observed
non-critical nature of the 2nd-order phase transition is
common to Ising models on a wider group of hyperbolic
lattices.

4. Conclusions and Discussions

We have calculated the correlation function ξ and the
entanglement entropy S of the Ising model on the hy-
perbolic (5, 4)-lattice, as a typical example of the model
on the hyperbolic (p, q)-lattice. Both of the quantities re-
main finite at the transition temperature T0 . Therefore
the mean-field like 2nd-order phase transition observed
for this system is not related to critical phenomena with

No interest on Classical
Subjects? For me, they are 
similar to Quantum ones ...

Entanglement Entropy of the 2D Hyperbolic Ising Model
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A. GENDIAR, M. DANIŠKA, Y. LEE, AND T. NISHINO PHYSICAL REVIEW A 83, 052118 (2011)

with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N)]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot

[
(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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this function could be zero or 
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as “the deformation function”. 
The function is zero at the both 
end of the system x=0 and x=pi, 
and maximum at x=pi/2. Thus 
the function realizes so called 
the smooth boundary condition. 
We report that the ground state 
under the “Sine-Square 
Deformation”(SSD) is 
completely uniform.
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We introduce a new type of boundary conditions, smooth boundary conditions, for numerical studies

of quantum lattice systems. In a number of circumstances, these boundary conditions have substantially
smaller finite-size eAects than periodic or open boundary conditions. They can be applied to nearly any
short-ranged Hamiltonian system in any dimensionality and within almost any type of numerical ap-
proach.
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In most numerical calculations for quantum systems,
periodic boundary conditions (PBC's) are the accepted
standard. There are a number of situations, however,
where PBC's are inadequate. In systems with some form
of incommensurate order, for example, very large system
sizes are needed to approximate the incommensurate be-
havior of the infinite system, and in mean-field methods,
where a number of iterations are required to achieve con-
vergence, the system can get stuck in a commensurate
state far from the desired incommensurate order. Anoth-
er example, which forms the primary motivation for this
work, stems from the density-matrix renormalization
group (RG) method [1]. This new real-space numerical
method has proven to be extremely accurate for Heisen-
berg spin chains [2], but for greatest accuracy require-
ments are that the chain not form a closed loop, as in
PBC's. This poses no great inconvenience for the 5=l
chain, where there is a finite correlation length, but is
quite inconvenient for half-integer spin chains (and most
1D fermion systems), where boundary effects decay as a
power law.
Recently, new types of boundary conditions, such as

self-determined boundary conditions [3] and nebula
boundary conditions [4], have been studied in conjunction
with quantum Monte Carlo simulations, but cannot be
generalized in an easy manner to any arbitrary system or
to other types of numerical techniques. In this paper we
introduce a new type of boundary conditions, smooth
boundary conditions (SBC's), which in the circumstances
listed above perform better than PBC's and open bound-
ary conditions (OBC's). The main idea of these new

boundary conditions is to smoothly "turn off" (set to
zero) the parameters of the Hamiltonian near the edges
of the system. Surprisingly, in many cases where PBC's
or OBC's perform very well, SBC's perform better. They
can be applied to numerical calculations for nearly any
system with local interactions in any number of dimen-
sions.
After introducing the ideas of SBC's, we will illustrate

their use in several systems. The ideas behind SBC's are
closely related to the summation of infinite series and the
Borel transform, and we will motivate their development
by first discussing accelerated convergence of numerical
series.
Let s„=P~-Oa~ be a slowly converging alternating

series, with s =lim„s„. For example, we can consider
the series

a =(—1) /in[in(m+3)] .

The summation of such a series can be viewed as a ter-
mination problem; if we stop with an odd number of
terms, we get a positive result, while stopping with an
even number gives a negative result. We would like to
find some way of terminating the series in a way that does
not bias between an odd and even number of terms. We
can do this by constructing a smoothing function, c, and
taking

Ms=pa c (2)
m=0

The smoothing function is conveniently described as a
continuous function y(x), 0~ x ~ 1, with y(0) =1 and
y(1) =0, samples at a discrete set of M points,
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... here is an answer from a GIANT!

Before that, let us walk around the Bondary Effect.



Boundary Condition modifies the State
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drawing by active boundary

For example, look at water surface.

I thought that this drawing magnifies the 
wave height, but actually a huge Tsunami 
attacked Japan many times, as that in 
last year.
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FIG. 3. (Color online) (a) Spin correlation functions 〈Sα
j Sα

j ′ 〉
(α = x,z) in an XXZ chain for L = 80 and (",M) = (0.5,0) as
a function of the distance |j − j ′|, where sites (j,j ′) are selected
as j = L/2 − [r/2] and j ′ = L/2 + [(r + 1)/2]. Squares and circles
represent DMRG data for an open chain with SSD and a uniform open
chain, respectively, while lines show the analytic result for a uniform
periodic chain. (b) Schematic showing the relation between pairs
(j,j ′) in the open chain with SSD and those in the periodic chain.

change of the ground state. We thus conclude that the change
in slope of EE is not peculiar to a specific model but a general
outcome of the SSD when applied to a critical model.

Correlation functions. We next investigate two-spin corre-
lation functions. Here, we consider a spin-1/2 XXZ chain
in the critical regime, for which the asymptotic forms of the
correlation functions are known to be

〈
Sx

0 Sx
r

〉
= Ax

0
(−1)r

rη
− Ax

1
cos(Qr)
rη+1/η

+ · · · , (7)

〈
Sz

0S
z
r

〉
− M2 = − 1

4π2ηr2
+ Az

1
(−1)r cos(Qr)

r1/η
+ · · · , (8)

where Q = 2πM . The exponent η and the amplitudes Ax
0 , Ax

1 ,
and Az

1 were obtained as a function of " and M .11,15–17 Figure 3
shows DMRG results for ground-state correlation functions in
an XXZ chain, Eq. (2), with SSD. We also plot DMRG data
for a uniform open chain as well as the analytic result for a
uniform periodic chain; the latter is obtained by replacing r in
Eqs. (7) and (8) with L

π
sin( π |j−j ′|

L
). As shown in Fig. 3, the

results for the open chain with SSD agree almost completely
with those for the periodic chain.

Figure 4(a) shows the ground-state correlation function
〈Sj · Sj ′ 〉 in a small system calculated by exact diagonalization.
Data are plotted as a function of position j and “distance” r =
min(|j − j ′|,L − |j − j ′|) [see Fig. 4(b)]. We again observe
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FIG. 4. (Color online) (a) Spin correlation function (−1)r〈Sj ·
Sj ′ 〉, with j ′ = j + r (mod L), in an XXZ chain for L = 24 and
(",M) = (1.0,0) as a function of j and r . Symbols show data for an
open chain with SSD: crosses represent correlations between sites j

and j ′ = j + r (pairs “within” the chain), while squares represent
those between j and j ′ = j + r − L (pairs “across” the edges).
Lines show values of correlations in the uniform periodic chain.
(b) Schematic showing the two sites (j,j ′) at a “distance” r .

that the correlations in the open chain with SSD are in excellent
agreement with those in the uniform periodic chain; The
results are independent of position j , and more remarkably,
the correlations between sites j and j ′ = j + r − L, which
are located at the distance r across the open ends, have the
same value as those in the periodic chain.18 We have observed
the same phenomena as shown in Figs. 3 and 4 for several
parameter sets of (",M). The results indicate that correlation
functions, and presumably all observables, in the ground state
of systems with SSD become equal to those in uniform periodic
systems.

We note that for the two-leg ladder with zero magnetization,
M = 0, which has an energy gap above the singlet ground state,
the spin correlation decays exponentially even in systems with
SSD and no recovery of the correlation between edge spins
is observed. This suggests that the SSD does not work for
spin-gapped systems.

Wave functions. Finally, we discuss the overlap of ground-
state wave functions. Using the exact diagonalization method,
we calculated the ground-state wave function |vSSD〉 of an
XXZ chain, Eq. (2), with SSD for L ! 24 and several sets of
(",M), and compared it with the ground-state wave function
|vPBC〉 of the uniform periodic chain. We then found that the
overlap of those ground-state wave functions is very close to
unity; the deviation from unity is at most |1 − 〈vSSD|vPBC〉| "
10−3 and exactly 0 within the numerical accuracy of 10−14

for the XX case (" = 0). The result indicates that the ground
states |vSSD〉 and |vPBC〉 are equivalent at the level of the wave
function.18

We note that the equivalence of the ground-state wave
functions is not trivial even in the case of an XX chain [Eq. (2)
with " = 0]. Through the Jordan-Wigner transformation, the
XX chain is mapped onto the free fermion system and the
one-particle eigenstates of the periodic chain are simple plane
waves. In contrast, the Hamiltonian of an open chain with SSD
is not translationally invariant and its one-particle eigenstates
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We investigate the effect of a nonuniform deformation applied to one-dimensional (1D) quantum systems,
where the local energy scale is proportional to gj = [sin(jπ/N )]m determined by a positive integer m, site
index 1 ! j ! N − 1, and system size N . This deformation introduces a smooth boundary to systems with
open-boundary conditions. When m " 2, the leading 1/N correction to the ground-state energy per bond e

(N)
0

vanishes and one is left with a 1/N2 correction, the same as with periodic boundary conditions. In particular,
when m = 2, the value of e

(N)
0 obtained from the deformed open-boundary system coincides with the uniform

system with periodic boundary conditions. We confirm the fact numerically for correlated systems, such as the
extended Hubbard model, in addition to 1D free-fermion models.

DOI: 10.1103/PhysRevA.83.052118 PACS number(s): 03.65.Aa, 05.30.Fk, 71.10.Fd

I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N )]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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Free (spinless) Fermions in an OPEN chain (of N-site)

* For simplicity, we choose half-filling.
* Ground State is given by a Slater determinant.

* System is gapless. (... the gap is O(1/N).)

Boundary Effect:

Nearest Neighbor Correlation 
Function of the ground state is 
NOT uniform at all.

The value oscillates everywhere.

How to suppress the B.E.?
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We introduce a new type of boundary conditions, smooth boundary conditions, for numerical studies

of quantum lattice systems. In a number of circumstances, these boundary conditions have substantially
smaller finite-size eAects than periodic or open boundary conditions. They can be applied to nearly any
short-ranged Hamiltonian system in any dimensionality and within almost any type of numerical ap-
proach.
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In most numerical calculations for quantum systems,
periodic boundary conditions (PBC's) are the accepted
standard. There are a number of situations, however,
where PBC's are inadequate. In systems with some form
of incommensurate order, for example, very large system
sizes are needed to approximate the incommensurate be-
havior of the infinite system, and in mean-field methods,
where a number of iterations are required to achieve con-
vergence, the system can get stuck in a commensurate
state far from the desired incommensurate order. Anoth-
er example, which forms the primary motivation for this
work, stems from the density-matrix renormalization
group (RG) method [1]. This new real-space numerical
method has proven to be extremely accurate for Heisen-
berg spin chains [2], but for greatest accuracy require-
ments are that the chain not form a closed loop, as in
PBC's. This poses no great inconvenience for the 5=l
chain, where there is a finite correlation length, but is
quite inconvenient for half-integer spin chains (and most
1D fermion systems), where boundary effects decay as a
power law.
Recently, new types of boundary conditions, such as

self-determined boundary conditions [3] and nebula
boundary conditions [4], have been studied in conjunction
with quantum Monte Carlo simulations, but cannot be
generalized in an easy manner to any arbitrary system or
to other types of numerical techniques. In this paper we
introduce a new type of boundary conditions, smooth
boundary conditions (SBC's), which in the circumstances
listed above perform better than PBC's and open bound-
ary conditions (OBC's). The main idea of these new

boundary conditions is to smoothly "turn off" (set to
zero) the parameters of the Hamiltonian near the edges
of the system. Surprisingly, in many cases where PBC's
or OBC's perform very well, SBC's perform better. They
can be applied to numerical calculations for nearly any
system with local interactions in any number of dimen-
sions.
After introducing the ideas of SBC's, we will illustrate

their use in several systems. The ideas behind SBC's are
closely related to the summation of infinite series and the
Borel transform, and we will motivate their development
by first discussing accelerated convergence of numerical
series.
Let s„=P~-Oa~ be a slowly converging alternating

series, with s =lim„s„. For example, we can consider
the series

a =(—1) /in[in(m+3)] .

The summation of such a series can be viewed as a ter-
mination problem; if we stop with an odd number of
terms, we get a positive result, while stopping with an
even number gives a negative result. We would like to
find some way of terminating the series in a way that does
not bias between an odd and even number of terms. We
can do this by constructing a smoothing function, c, and
taking

Ms=pa c (2)
m=0

The smoothing function is conveniently described as a
continuous function y(x), 0~ x ~ 1, with y(0) =1 and
y(1) =0, samples at a discrete set of M points,
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c -y(m/M),
with 0 (m (M. An eA'ective choice for y(x) is

y(x) =—1 —tanh1 x —1/2
2 x(1—x) (4)

1.0

0.8

0.6

This approach is remarkably successful at summing a
wide variety of common, slowly converging, alternating
series, such as those for z, ln2, etc. , attaining results ac-
curate to 10 or 12 digits with 100 terms. Convergence is
roughly exponential with M. For the series in Eq. (1), we
obtain the result s =8.749551241(2) with M =100. The
same c 's are used for each series, and the total numeri-
cal work is extremely small. Note that all derivatives of y
are zero at 0 and 1; in fact, the function has essential
singularities at 0 and 1. These properties are crucial for
effective termination of a series; for example, if the func-
tion y(x) =(1—x ) is used, for which y"&0 at 0 and 1,
convergence is only quadratic in 1/M.
This procedure is closely related to the Borel transform

[5], which is usually applied to divergent series. The
Borel transform of the series s is defined as

0.4

0.0
10 20 30 40

FIG. I. The smoothing function, c, as a function of the lat-
tice site, m. The solid line corresponds to Eq. (4) in the text,
and the squares correspond to the smoothing function derived
from the Borel transform defined through Eq. (8).

We consider an L-site lattice with hopping matrix ele-
ment t;, centered at F. =0, with Fermi level eF, and Ham-
iltonian matrix

aa(x)= g x
m=o m!

From the definition of a(x) it follows trivially that

(5) Hij ~i ~j,i+1 ~j ~i,j +1 ~ (9)
Ordinarily t; (which gives the hopping between sites i and
i+ I) is a constant t. To apply SBC's we set

s = dxe "a(x) .&0
The standard use of the Borel transform is to calculate
a(x) and then perform the integration; however, here
we will not calculate a(x). We will only assume that
a(x)e "is negligible for x greater than a cutoff M'. We
take M' as the upper limit of the integral in Eq. (6), then
replace a(x) by its definition Eq. (5), and exchange the
sum and integral. We obtain

s=ga c (M'),
m=0

where

(7)

—M'
n=m+i

(8)

For m & M =2M', c (M') is completely negligible, and
the sum in Eq. (7) can be terminated, yielding Eq. (2).
In Fig. I we show both c as defined in Eq. (8) with
M'=20, and y(m/M) as defined in Eq. (4) with M =40.
The Borel approach and the approach using Eq. (4) are
roughly equally eA'ective at summing common series.
However, the Borel form is slightly less convenient, since
one must chose both M and M'.
This approach to numerical series is largely pedagogi-

cal; there are probably even more efticient ways to sum
such series. To apply these ideas to reduce finite-size
effects in a general Hamiltonian system, we consider first
a trivial example, a one-dimensional tight-binding chain.

cM—;, 1~I ~M,
t/t= I, M(i ~L—M,

c;—L+M L—M &i &L.
(10)

Hl ~J ~l ~J, l + I ~J ~i,J + 1 +~i,j ~F ~l—i+~i
2E

Note that Eq. (11) explicitly depends on eF, whereas Eq.
(9) does not. This Hamiltonian reproduces the properties
of the infinite system extremely well, even on a relatively
small lattice.
If OBC's are used on this system, edge effects produce

slowly decaying Friedel-type oscillations in local proper-
ties, such as the density. PBC's work much better, but
still, the typical energy level spacing decays only as I/L
SBC's concentrate more states at eF than elsewhere. The
advantages of this are apparent in Fig. 2, where we plot

Here c; is the smoothing function defined by Eq. (4) or
Eq. (8).
We also need to adjust the diagonal elements of H. A

general rule for applying SBC's is that in the limit that
the width of the smoothing region M ~, the local
properties of the system should be constant with I.. In this
case the Fermi level t.'F is constant across the system, so
that, as we vary the local bandwidth, we must shift the
band center so that eF strikes the band in the same rela-
tive position. Thus, Eq. (9) becomes

Smoothing function near
the system boundary.
M: length of smoothing area

Vekic and White’s setting:

H(N)
smooth =

N−1∑

j=1

(−tj)
(
c†j+1cj + c†jcj+1

)
(1)
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FIG. 2: (Color online) Asymptotic behavior of e(N)
0 for the

deformed chains when 1 ≤ m ≤ 5 with respect to e(N)
0 of the

system with PBC. A logarithmic correction is present when
m = 1.

In order to confirm the N−2-dependence of e(N)
0 with

the sinusoidal deformation under m ≥ 2, we plot the

difference between e(N)
0 obtained with PBC (when N/2 is

even) and e(N)
0 with the sinusoidal deformation. To avoid

any confusion, let E(N)
PBC and E(N)

sine denote the ground-
state energy obtained with PBC and with the sinusoidal
deformation, respectively. We also use a similar notation

for the normalization factors B(N)
PBC = N and B(N)

sine for the
normalization factor defined in Eq. (6). Figure 2 depicts
the magnified difference

N2
[

e(N)
PBC − e(N)

sine

]

≡ N2

[

E(N)
PBC

B(N)
PBC

−
E(N)

sine

B(N)
sine

]

(10)

when N is even. It is shown that the logarithmic correc-
tion (N logN)−1 is present when m = 1, and is absent
when m ≥ 2.
Figure 3 shows the spatial distribution of the bond cor-

relation function 〈c†jcj+1 + c†j+1cj〉 at half filling when
N = 1000. The Friedel oscillations induced by the
boundary are clearly observed when OBC are imposed
(the asterisks), and weaker oscillations are observed with
the sinusoidal deformation when m = 1. Only when
m = 2, there are no oscillations at all; we checked the
uniformity (the translation invariance) of the bond cor-
relation function down to the 16-digits in numerical preci-
sion. Whenm ≥ 3, the boundary effects appear again. In
this case the bond correlation function toward the system
boundary does not oscillate, and decreases in monotonic
manner. Such behaviors for each m might be related to

the suppression of the boundary corrections in e(N)
0 .

We compare the efficiency of SSD (m = 2) with the
SBC proposed in Ref. [11, 12]. Figure 4 shows the bond
correlation function for both cases at half-filling, where

0 200 400 600 800 1000
j

0.634

0.635

0.636

0.637

0.638

0.639

〈c
j+  c

j+
1 +

 c
j+

1
+

 c
j 〉

m = 0 (OBC)
m = 1
m = 2
m = 3
m = 4
m = 5

FIG. 3: (Color online) Expectation value of the bond cor-
relation function 〈c†jcj+1 + c†j+1cj〉 with respect to j under
sinusoidal deformation.
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FIG. 4: (Color online) Comparison of the expectation value of
the bond correlation function at half filling under SSD (m =
2) and SBC in Ref. [11, 12]. The number M in the case
of SBC specifies the length of area where the interactions are
modified near the system boundary. The bottom graph shows
the numerical details when M = 30 (SBC) with respect to
SSD.

the length of boundary area in SBC is chosen as M = 10
andM = 30 when the system size isN = 1000. Although
bulk property is well captured by SBC already for M =
30, boundary fluctuations are still present. On the other
hand, the bond correlation function is almost uniform
away of the boundary.
Now we discuss the way of treating the deformed sys-
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Black: OBC
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Blue: M=40

half-filling
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c -y(m/M),
with 0 (m (M. An eA'ective choice for y(x) is

y(x) =—1 —tanh1 x —1/2
2 x(1—x) (4)

1.0

0.8

0.6

This approach is remarkably successful at summing a
wide variety of common, slowly converging, alternating
series, such as those for z, ln2, etc. , attaining results ac-
curate to 10 or 12 digits with 100 terms. Convergence is
roughly exponential with M. For the series in Eq. (1), we
obtain the result s =8.749551241(2) with M =100. The
same c 's are used for each series, and the total numeri-
cal work is extremely small. Note that all derivatives of y
are zero at 0 and 1; in fact, the function has essential
singularities at 0 and 1. These properties are crucial for
effective termination of a series; for example, if the func-
tion y(x) =(1—x ) is used, for which y"&0 at 0 and 1,
convergence is only quadratic in 1/M.
This procedure is closely related to the Borel transform

[5], which is usually applied to divergent series. The
Borel transform of the series s is defined as

0.4

0.0
10 20 30 40

FIG. I. The smoothing function, c, as a function of the lat-
tice site, m. The solid line corresponds to Eq. (4) in the text,
and the squares correspond to the smoothing function derived
from the Borel transform defined through Eq. (8).

We consider an L-site lattice with hopping matrix ele-
ment t;, centered at F. =0, with Fermi level eF, and Ham-
iltonian matrix

aa(x)= g x
m=o m!

From the definition of a(x) it follows trivially that

(5) Hij ~i ~j,i+1 ~j ~i,j +1 ~ (9)
Ordinarily t; (which gives the hopping between sites i and
i+ I) is a constant t. To apply SBC's we set

s = dxe "a(x) .&0
The standard use of the Borel transform is to calculate
a(x) and then perform the integration; however, here
we will not calculate a(x). We will only assume that
a(x)e "is negligible for x greater than a cutoff M'. We
take M' as the upper limit of the integral in Eq. (6), then
replace a(x) by its definition Eq. (5), and exchange the
sum and integral. We obtain

s=ga c (M'),
m=0

where

(7)

—M'
n=m+i

(8)

For m & M =2M', c (M') is completely negligible, and
the sum in Eq. (7) can be terminated, yielding Eq. (2).
In Fig. I we show both c as defined in Eq. (8) with
M'=20, and y(m/M) as defined in Eq. (4) with M =40.
The Borel approach and the approach using Eq. (4) are
roughly equally eA'ective at summing common series.
However, the Borel form is slightly less convenient, since
one must chose both M and M'.
This approach to numerical series is largely pedagogi-

cal; there are probably even more efticient ways to sum
such series. To apply these ideas to reduce finite-size
effects in a general Hamiltonian system, we consider first
a trivial example, a one-dimensional tight-binding chain.

cM—;, 1~I ~M,
t/t= I, M(i ~L—M,

c;—L+M L—M &i &L.
(10)

Hl ~J ~l ~J, l + I ~J ~i,J + 1 +~i,j ~F ~l—i+~i
2E

Note that Eq. (11) explicitly depends on eF, whereas Eq.
(9) does not. This Hamiltonian reproduces the properties
of the infinite system extremely well, even on a relatively
small lattice.
If OBC's are used on this system, edge effects produce

slowly decaying Friedel-type oscillations in local proper-
ties, such as the density. PBC's work much better, but
still, the typical energy level spacing decays only as I/L
SBC's concentrate more states at eF than elsewhere. The
advantages of this are apparent in Fig. 2, where we plot

Here c; is the smoothing function defined by Eq. (4) or
Eq. (8).
We also need to adjust the diagonal elements of H. A

general rule for applying SBC's is that in the limit that
the width of the smoothing region M ~, the local
properties of the system should be constant with I.. In this
case the Fermi level t.'F is constant across the system, so
that, as we vary the local bandwidth, we must shift the
band center so that eF strikes the band in the same rela-
tive position. Thus, Eq. (9) becomes
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FIG. 2. (Color online) Asymptotic behavior of e
(N)
0 for the

deformed chains when 1 ! m ! 5 with respect to e
(N)
0 of the system

with PBCs. We choose t as the unit of the energy. A logarithmic
correction is present when m = 1.

checked the uniformity (the translation invariance) of the bond
correlation function down to 16 digits in numerical precision.
When m " 3, the boundary effects appear again. In this case
the bond correlation function toward the system boundary
does not oscillate, and decreases in monotonic manner. Such
behaviors for each m might be related to the suppression of
the boundary corrections in e

(N)
0 .

We compare the efficiency of SSD (m = 2) with the SBCs
proposed in Refs. [11] and [12]. Figure 4 shows the bond
correlation function for both cases at half filling, where the
length of the boundary area in the SBC is chosen as M = 10
and 30 when the system size is N = 1000. Although bulk
property is well captured by the SBC already for M = 30,
boundary fluctuations are still present. On the other hand,
the bond correlation function is almost uniform away of the
boundary.
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FIG. 3. (Color online) Expectation value of the bond correlation
function 〈c†j cj+1 + c

†
j+1cj 〉 with respect to j under sinusoidal defor-

mation.

0 200 400 600 800 1000
0.634

0.635

0.636

0.637

0.638

0.639

〈c
j†  

c j+
1 +

 c
j+

1
†
 c

j〉
m  =  0 (OBC)
m  =  2 (SSD)
M = 10 (SBC)
M = 30 (SBC)

0 200 400 600 800 1000
j

0.63660

0.63661

0.63662

0.63663

0.63664

〈c
j†  

c j+
1 +

 c
j+

1
†
 c

j〉

m  =  2 (SSD)
M = 30 (SBC)

FIG. 4. (Color online) Comparison of the expectation value of
the bond correlation function at half filling under SSD (m = 2) and
a SBC in Refs. [11] and [12]. The number M in the case of the SBC
specifies the length of area where the interactions are modified near
the system boundary. The bottom graph shows the numerical details
when M = 30 (SBC) with respect to SSD.

Now we discuss the way of treating the deformed system
away from half filling. For the undeformed systems with OBCs
or PBCs, it is sufficient to include the chemical potential
term −µ

∑N
j=1 nj in Eq. (1), where nj = c

†
j cj is the number

operator. The value of µ adjusts the Fermi energy to zero, and
is given by

µ(f ) = −2t cos(πf ), (11)

where f is the filling factor,

f = 1
N

N∑

j=1

〈nj 〉. (12)

A natural way of introducing µ(f ) under the sinusoidal
deformation is to write down the Hamiltonian as a sum of
the local terms,

H(N)
sine =

N−1∑

j=1

[
sin

(
jπ

N

)]m

hj,j+1 =
N−1∑

j=1

gjhj,j+1, (13)

where µ(f ) is included in the bond operator,

hj,j+1 = −t(c†j cj+1 + c
†
j+1cj ) − µ

2
(nj + nj+1). (14)

In order to confirm the validity of these constructions in
Eqs. (11)–(14), we carried out numerical calculations for
the selected fillings f = 1/4 and f = 1/8. Figure 5 shows
the N−2 dependence of e

(N)
0 = E

(N)
0 /B(N), where E

(N)
0 is the

ground-state energy for each filling. We plot the data only when
the particle number p ≡ f N is even. Analogous to half filling,
the bond energy e

(N)
0 with PBCs coincides with that obtained
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FIG. 2: (Color online) Asymptotic behavior of e(N)
0 for the

deformed chains when 1 ≤ m ≤ 5 with respect to e(N)
0 of the

system with PBC. A logarithmic correction is present when
m = 1.

In order to confirm the N−2-dependence of e(N)
0 with

the sinusoidal deformation under m ≥ 2, we plot the

difference between e(N)
0 obtained with PBC (when N/2 is

even) and e(N)
0 with the sinusoidal deformation. To avoid

any confusion, let E(N)
PBC and E(N)

sine denote the ground-
state energy obtained with PBC and with the sinusoidal
deformation, respectively. We also use a similar notation

for the normalization factors B(N)
PBC = N and B(N)

sine for the
normalization factor defined in Eq. (6). Figure 2 depicts
the magnified difference

N2
[

e(N)
PBC − e(N)

sine

]

≡ N2

[

E(N)
PBC

B(N)
PBC

−
E(N)

sine

B(N)
sine

]

(10)

when N is even. It is shown that the logarithmic correc-
tion (N logN)−1 is present when m = 1, and is absent
when m ≥ 2.
Figure 3 shows the spatial distribution of the bond cor-

relation function 〈c†jcj+1 + c†j+1cj〉 at half filling when
N = 1000. The Friedel oscillations induced by the
boundary are clearly observed when OBC are imposed
(the asterisks), and weaker oscillations are observed with
the sinusoidal deformation when m = 1. Only when
m = 2, there are no oscillations at all; we checked the
uniformity (the translation invariance) of the bond cor-
relation function down to the 16-digits in numerical preci-
sion. Whenm ≥ 3, the boundary effects appear again. In
this case the bond correlation function toward the system
boundary does not oscillate, and decreases in monotonic
manner. Such behaviors for each m might be related to

the suppression of the boundary corrections in e(N)
0 .

We compare the efficiency of SSD (m = 2) with the
SBC proposed in Ref. [11, 12]. Figure 4 shows the bond
correlation function for both cases at half-filling, where
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FIG. 3: (Color online) Expectation value of the bond cor-
relation function 〈c†jcj+1 + c†j+1cj〉 with respect to j under
sinusoidal deformation.
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FIG. 4: (Color online) Comparison of the expectation value of
the bond correlation function at half filling under SSD (m =
2) and SBC in Ref. [11, 12]. The number M in the case
of SBC specifies the length of area where the interactions are
modified near the system boundary. The bottom graph shows
the numerical details when M = 30 (SBC) with respect to
SSD.

the length of boundary area in SBC is chosen as M = 10
andM = 30 when the system size isN = 1000. Although
bulk property is well captured by SBC already for M =
30, boundary fluctuations are still present. On the other
hand, the bond correlation function is almost uniform
away of the boundary.
Now we discuss the way of treating the deformed sys-

Blue: M=40 (Smooth B.C.)
Red: (our result, see the next page)

... precisely speaking, weak boundary effect still exists.
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N)]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot

[
(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N)]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot

[
(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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We investigate the effect of a nonuniform deformation applied to one-dimensional (1D) quantum systems,
where the local energy scale is proportional to gj = [sin(jπ/N )]m determined by a positive integer m, site
index 1 ! j ! N − 1, and system size N . This deformation introduces a smooth boundary to systems with
open-boundary conditions. When m " 2, the leading 1/N correction to the ground-state energy per bond e

(N)
0

vanishes and one is left with a 1/N2 correction, the same as with periodic boundary conditions. In particular,
when m = 2, the value of e

(N)
0 obtained from the deformed open-boundary system coincides with the uniform

system with periodic boundary conditions. We confirm the fact numerically for correlated systems, such as the
extended Hubbard model, in addition to 1D free-fermion models.

DOI: 10.1103/PhysRevA.83.052118 PACS number(s): 03.65.Aa, 05.30.Fk, 71.10.Fd

I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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Uniform Hamiltonian with Open Boundary Condition

Sine Square Deformation

Note that the Hamiltonian is NOT uniform at all.

Is the ground state uniform?
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Connecting distant ends of one-dimensional critical systems by a sine-square
deformation

Toshiya Hikihara1 and Tomotoshi Nishino2
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We study the one-dimensional quantum critical spin systems with the sine-square deformation,
in which the energy scale in the Hamiltonian at the position x is modified by the function fx =
sin2

[

π
L
(x− 1

2
)
]

, where L is the length of the system. By investigating the entanglement entropy,
spin correlation functions, and wave-function overlap, we show that the sine-square deformation
changes the topology of the geometrical connection of the ground state drastically; Although the
system apparently has open edges, the sine-square deformation links those ends and realizes the
periodic ground state at the level of wave function. Our results propose a new method to control
the topology of quantum states by energy-scale deformation.

PACS numbers: 75.10.Pq, 75.10.Jm, 75.40.Mg

Introduction: Topology is one of the most fundamen-
tal concept in physics. It rules the connectivity of local el-
ements of the system and governs how physical objects –
particles, excitations, and information – propagate. Nor-
mally, the topology of a system is fixed once the spatial
geometry of elements is given. Search for other paths
to the control of topology of the system is a challenging
problem.
In a finite system, a boundary condition determines

the topology of the geometrical connection of quantum
state and affects crucially the properties of the system. If
the system has open edges, they usually induce boundary
oscillations such as Friedel oscillation. While the bound-
ary oscillation contains important information such as
the Fermi momentum, it is often regarded as an obstacle
to mask the bulk properties. One simple way to remove
it is to employ the periodic boundary condition, how-
ever, there has also been another attempts, called the
smooth boundary condition, to suppress the boundary
effects by turning off the energy scale of local Hamilto-
nians smoothly around the open edges.[1, 2] The latter
has proven to be useful when the open system is favored,
e.g., for an efficiency of numerical methods such as the
density-matrix renormalization group (DMRG) method.
Recently, a new scheme of the smooth boundary con-

dition, which we call the sine-square deformation (SSD),
has been proposed as an efficient way to suppress the
finite-size and open-boundary effects.[3] In the system
with SSD, the energy scale in the Hamiltonians are mod-
ified according to the function,

fx = sin2
[

π

L

(

x−
1

2

)]

, (1)

where x is the position of the local term and L is the
length of the system. In Ref. 3, Gendiar et al. applied
the SSD to the one-dimensional (1D) free fermion sys-
tem with open boundaries. They then showed that the
SSD removed boundary effects successfully and resulted

0

1

1 L

fx

x(a)

0 20 40 60 80

−0.2

−0.1

j

<S
j S

j+
1>

: SSD
: Open

x
x

XXZ chain, Δ =0.5, M=0

(b)

FIG. 1: (a) Rescaling function fx of the SSD. (b) Bond
strength 〈Sx

j S
x
j+1〉 for the XXZ chain (2) with L = 80 and

(∆,M) = (0.5, 0). Squares and circles represent the data for
the chain with SSD and the uniform open chain, respectively.

in position-independent one-point functions such as the
bond strength and particle density in the ground state.
Since the spatial profiles of these quantities were nearly
completely flat, the observation raised a natural question
of what happened in the ground state of the system with
SSD. This is indeed the motivation of the present study.

In this paper, we study the SSD in several 1D quan-
tum spin systems. Using the DMRG and exact diagonal-
ization methods, we study numerically the entanglement
entropy (EE), correlation functions, and wave-function
overlap in the systems with SSD. We then show that the
ground state of a critical system with SSD is equivalent
to that of the uniform periodic system; the SSD changes
the topology of the critical ground state drastically, from
an open chain to a periodic ring. The result opens the
possibility to control the topology of quantum states by
the energy-scale deformation even in the case that the

m=2
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FIG. 2. (Color online) Asymptotic behavior of e
(N)
0 for the

deformed chains when 1 ! m ! 5 with respect to e
(N)
0 of the system

with PBCs. We choose t as the unit of the energy. A logarithmic
correction is present when m = 1.

checked the uniformity (the translation invariance) of the bond
correlation function down to 16 digits in numerical precision.
When m " 3, the boundary effects appear again. In this case
the bond correlation function toward the system boundary
does not oscillate, and decreases in monotonic manner. Such
behaviors for each m might be related to the suppression of
the boundary corrections in e

(N)
0 .

We compare the efficiency of SSD (m = 2) with the SBCs
proposed in Refs. [11] and [12]. Figure 4 shows the bond
correlation function for both cases at half filling, where the
length of the boundary area in the SBC is chosen as M = 10
and 30 when the system size is N = 1000. Although bulk
property is well captured by the SBC already for M = 30,
boundary fluctuations are still present. On the other hand,
the bond correlation function is almost uniform away of the
boundary.
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FIG. 3. (Color online) Expectation value of the bond correlation
function 〈c†j cj+1 + c

†
j+1cj 〉 with respect to j under sinusoidal defor-

mation.
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FIG. 4. (Color online) Comparison of the expectation value of
the bond correlation function at half filling under SSD (m = 2) and
a SBC in Refs. [11] and [12]. The number M in the case of the SBC
specifies the length of area where the interactions are modified near
the system boundary. The bottom graph shows the numerical details
when M = 30 (SBC) with respect to SSD.

Now we discuss the way of treating the deformed system
away from half filling. For the undeformed systems with OBCs
or PBCs, it is sufficient to include the chemical potential
term −µ

∑N
j=1 nj in Eq. (1), where nj = c

†
j cj is the number

operator. The value of µ adjusts the Fermi energy to zero, and
is given by

µ(f ) = −2t cos(πf ), (11)

where f is the filling factor,

f = 1
N

N∑

j=1

〈nj 〉. (12)

A natural way of introducing µ(f ) under the sinusoidal
deformation is to write down the Hamiltonian as a sum of
the local terms,

H(N)
sine =

N−1∑

j=1

[
sin

(
jπ

N

)]m

hj,j+1 =
N−1∑

j=1

gjhj,j+1, (13)

where µ(f ) is included in the bond operator,

hj,j+1 = −t(c†j cj+1 + c
†
j+1cj ) − µ

2
(nj + nj+1). (14)

In order to confirm the validity of these constructions in
Eqs. (11)–(14), we carried out numerical calculations for
the selected fillings f = 1/4 and f = 1/8. Figure 5 shows
the N−2 dependence of e

(N)
0 = E

(N)
0 /B(N), where E

(N)
0 is the

ground-state energy for each filling. We plot the data only when
the particle number p ≡ f N is even. Analogous to half filling,
the bond energy e

(N)
0 with PBCs coincides with that obtained
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N)]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot

[
(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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The N -dependence of the energy correction changes if we impose the periodic
boundary conditions, where the Hamiltonian is given by

ĤP = −t
N−1∑

!=1

(
ĉ†! ĉ!+1 + ĉ†!+1ĉ!

)
− t

(
ĉ†N ĉ1 + ĉ†1ĉN

)
. (2.8)

In this case, the one-particle wave function is the plane wave

ψm(") =
√

1
N

exp
[
i
2mπ(" − 1)

N

]
, (2.9)

where m is an integer that satisfies −N/2 + 1 ≤ m ≤ N/2. The corresponding
one-particle energy is

εm = −2t cos
2mπ

N
. (2.10)

If N is a multiple of four, the ground state energy at half filling is calculated as

EN
P =

N/4∑

m=−N/4+1

εm = −2t cot
π

N
. (2.11)

Thus, the finite-size correction to the energy per site

EN
P

N
−

(
− 2

π
t

)
= −2t

N
cot

π

N
+

2t

π
∼ 2πt

3N2
(2.12)

is of the order of 1/N2.
As verified in the above calculations, the finite-size correction to the energy per

site EN/N decreases faster for the system with the periodic boundary conditions
than with the open boundary conditions. Regardless of this fact, the open boundary
systems are often chosen in numerical studies by the density matrix renormalization
group (DMRG) method3),20)–22) because of the simplicity in numerical calculation. It
should be noted that for those systems that exhibits incommensurate modulation, the
open boundary condition is more appropriate than the periodic boundary condition.
Thus, it will be convenient if there is a way of decreasing the finite-size correction
to EN/N as fast as 1/N2 also for the open boundary systems.

§3. Spherical deformation

We first consider the N -site open boundary system described by the Hamiltonian

ĤS = −t
N−1∑

!=1

sin
"π

N

(
ĉ†! ĉ!+1 + ĉ†!+1ĉ!

)
. (3.1)

Compared with the undeformed Hamiltonian ĤO in Eq. (2·2), the strength of the
hopping term is scaled by the factor A! = sin("π/N), which decreases towards the
system boundary as shown in Fig. 1. For a geometrical reason which we discuss in

2
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Fig. 1. A spherically deformed lattice, which contains (N = 11)-sites, drawn on the upper half
of the circumference. Open circles denote lattice sites, where the angle of the !-th site is
θ! = (!− 1

2 )π/N for ! = 1, 2, . . . , N . The length of the vertical line shows the relative strength
sin(!π/N) of the bond drawn by the thick arc between !-th and (! + 1)-th sites.

Fig. 2. The circles shows the expectation value 〈ĉ†! ĉ!+1 + ĉ†!+1ĉ!〉 of the spherically deformed lat-

tice Fermion model defined by ĤS when N = 1000. For comparison, we also plot the same
expectation value for the undeformed case defined by ĤO by the cross marks.

the next section, we call the modification from ĤO to ĤS the spherical deformation.
We regard N , the number of sites on the upper half of the circumference shown in
Fig. 1, as the system size.

Let us observe the N dependence of the ground-state energy at half filling,
where n! = 〈ĉ†! ĉ!〉 = 1/2 is satisfied by the particle-hole symmetry. So far we have
not obtained the analytic form of the one-particle wave function ψm, except for the
zero-energy state, and the corresponding one-particle eigenvalue εm for the deformed
Hamiltonian ĤS. We therefore calculate them numerically by diagonalizing ĤS in
the one-particle subspace. We then obtain the expectation value 〈ĉ†! ĉ!+1+ĉ†!+1ĉ!〉 and
the ground state energy EN

S at half filling. In the following numerical calculations,
we set t as the unit of the energy.

Figure 2 shows 〈ĉ†! ĉ!+1 + ĉ†!+1ĉ!〉 of the ground state when N = 1000. For com-
parison, we also show the same quantity obtained by the undeformed Hamiltonian
ĤO of the same system size. As it is observed, the spherical deformation suppresses
the position dependence in 〈ĉ†! ĉ!+1+ ĉ†!+1ĉ!〉. In this sense we can say that the ground
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FIG. 1. (Color online) (a) Rescaling function fx of the SSD.
(b) Bond strength 〈Sx

j Sx
j+1〉 for the XXZ chain, Eq. (2), with L = 80

and (!,M) = (0.5,0). Squares and circles represent the data for the
chain with SSD and the uniform open chain, respectively.

form,6–8

S(l) = s ln[g(l)] + const., (4)

where g(l) = L
π

sin( π l
L

). The slope s is determined by the
boundary condition; s = c/3 for the periodic system, while
s = c/6 for the system with open boundaries, where c is the
central charge. Namely, the slope s divided by c/6 gives
the number of “cuts” of the 1D critical state between the
subsystem # and the environment #̄.

Figures 2(a) and 2(b) show DMRG data for EE in an
XXZ chain with SSD [Eq. (2)]. EE in uniform open chains
is also shown for comparison. Remarkably, EE in systems
with SSD has slope s = c/3, which is twice as large as that

in uniform open systems. This means that the ground state
of the system with SSD has two cuts between the left and
the right subsystems, # and #̄, although the lattice seemingly
has only one cut. In addition, the boundary oscillation, which
is pronounced in the uniform systems, is removed by the
SSD. The results suggest that, although the system apparently
possesses open edges, the SSD connects the open ends of the
ground state effectively and the state becomes periodic, having
two cuts between # and #̄.

We have also examined EE in the other models, the
antiferromagnetic J1-J2 chain and two-leg ladder systems
under a magnetic field. The Hamiltonians are given by

HJ1−J2 =
L−1∑

j=1

∑

n=1,2

Jnfj+ n
2
Sj · Sj+n − h

L∑

j=1

fjS
z
j , (5)

Hlad = J‖

L−1∑

j=1

∑

n=1,2

fj+ 1
2
Sn,j · Sn,j+1

+ J⊥

L∑

j=1

fj S1,j · S2,j − h

L∑

j=1

fj

(
Sz

1,j + Sz
2,j

)
. (6)

In Figs. 2(c)–2(e), we present DMRG results for EE of left
l sites/rungs for subsystem # [see Fig. 2(f)]. The models in
Figs. 2(c) and 2(e) are in critical phases with c = 1, while
the model in Fig. 2(d) has c = 2.9–13 It is again found that
the slope of EE is doubled by the SSD. We note that, for the
J1-J2 chain with large J2/J1, sizable boundary oscillations
are observed in EE and one-point functions (not shown), even
in the system with SSD. This is presumably attributed to an
effective boundary field that cannot be eliminated completely
by the SSD in Eq. (5).14 However, we emphasize that, even in
that case, the doubled slope of EE is observed, which suggests
that the SSD also works for those models to lead to a topology
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FIG. 2. (Color online) Entanglement entropy S(l) as a function of g(l) = (L/π ) sin(π l/L) for L = 80 and (a) an XXZ chain with
(!,M) = (0.5,0), (b) an XXZ chain with (!,M) = (1.0,0.25), (c) a J1-J2 chain with (J2/J1,M) = (0.5,0.125), (d) a J1-J2 chain with
(J2/J1,M) = (0.6,0.4), and (e) a two-leg ladder with (J⊥/J‖,M) = (1.0,0.25). (a–c, e) Central charge c = 1; (d) c = 2. Squares and circles
represent data for the open system with SSD and the uniform open system, respectively. Solid and dotted lines show the slopes of c/3 and c/6,
respectively. (f) Shape of subsystem # for which S(l) is calculated.
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N)]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot

[
(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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In the article we have published, we studied the finite-size correction to the energy per site
EN/N for the spherically deformed free fermion lattice, whose Hamiltonian is given by

Ĥ(n)
S =

N−1X

!=1

»
sin

!π
N

–n
 
−t ĉ†! ĉ!+1 − t ĉ†!+1ĉ! − µ

ĉ†! ĉ! + ĉ†!+1ĉ!+1

2

!
(1)

for the case n = 1. While we proceeded to a further study on the spherical deformation, we noticed
the data shown in Figs. 2–7 were incorrect, and these figures corresponded to the Hamiltonian for the
case n = 2. This error happened due to a very primitive confusion in the file name of computational
source codes, and we misused the data with n = 2, instead of n = 1. We show appropriate data for
the typical case µ = 0, which corresponds to the half filling.

Fig. 1. Bond correlations at half filling calculated

for Ĥ
(n)
S with n = 0, 1, and 2.

Fig. 2. Finite-size corrections to the energy.

To correct the former Fig. 2, we draw Fig. 1 which shows bond correlation function 〈ĉ†! ĉ!+1 +

ĉ†!+1ĉ!〉 calculated for ĤO = Ĥ(0)
S , Ĥ(1)

S , and Ĥ(2)
S . Compared with the correlation obtained by

ĤO, one finds that Ĥ(1)
S exhibits a weaker position dependence. Small fluctuations are, however,

present near the system boundary in contrast to the negligible dependence for Ĥ(2)
S . These position

Fig. 3. Occupation 〈c†!c!〉 at quarter filling.

dependencies are related to the finite-size correc-
tions to the ground-state energy, as shown in Fig. 2,
which correspond to the former Fig. 4. For Ĥ(1)

S the
corrections are proportional to 1/N log N , in con-
trast to the 1/N2-dependence for Ĥ(2)

S . Figure 3
corresponds to the former Fig. 6, where the occu-
pation 〈ĉ†! ĉ!〉 is plotted with respect to !. For Ĥ(1)

S

there is a density fluctuation near the system bound-
ary, while it is almost absent for Ĥ(2)

S . In conclu-
sion, the boundary effects are reduced by way of
the spherical deformation from Ĥ(0)

S to Ĥ(1)
S , but

the reduction effect is still insufficient in the sense
that the ground-state energy contains the logarith-
mic correction shown in Fig. 2.
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System-size dependence of the ground-state energy EN is investigated for N -site one-
dimensional (1D) quantum systems with open boundary condition, where the interaction
strength decreases towards the both ends of the system. For the spinless Fermions on the
1D lattice we have considered, it is shown that the finite-size correction to the energy per
site, which is defined as EN/N − limN→∞ EN/N , is of the order of 1/N2 when the reduction
factor of the interaction is expressed by a sinusoidal function. We discuss the origin of this
fast convergence from the viewpoint of the spherical geometry.

Subject Index: 021, 047, 397

§1. Introduction

A purpose of numerical studies in condensed matter physics is to obtain bulk
properties of systems in the thermodynamic limit. In principle numerical methods
are applicable to systems with finite degrees of freedom, and therefore occasionally
it is impossible to treat infinite system directly. A way of estimating the thermody-
namic limit is to study finite-size systems, and subtract the finite-size corrections by
means of extrapolation with respect to the system size.1),2)

As an example of extensive functions, which is essential for bulk properties,
we consider the ground state energy EN of N -site one-dimensional (1D) quantum
systems. In this article we focus on the convergence of energy per site EN/N with
respect to the system size N . In order to clarify the discussion, we specify the form
of lattice Hamiltonian

Ĥ =
∑

!

ĥ!,!+1 +
∑

!

ĝ! , (1.1)

which contains on-site terms ĝ! and nearest neighbor interactions ĥ!,!+1. We assume
that the operator form of ĥ!,!+1 and ĝ! are independent of the site index !, which
means that Ĥ is translationally invariant in the infinite N limit. It is possible to
include ĝ! into ĥ!,!+1 by the redefinition

ĥ!,!+1 +
ĝ! + ĝ!+1

2
→ ĥ!,!+1 , (1.2)



Looking at the ground state wave function (GSWF) of the above Hamiltonian at 
half-filling, it is the same as the GSWF of the system with Periodic Boundary 
Condition.
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N)]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot

[
(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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FIG. 3. (Color online) (a) Spin correlation functions 〈Sα
j Sα

j ′ 〉
(α = x,z) in an XXZ chain for L = 80 and (",M) = (0.5,0) as
a function of the distance |j − j ′|, where sites (j,j ′) are selected
as j = L/2 − [r/2] and j ′ = L/2 + [(r + 1)/2]. Squares and circles
represent DMRG data for an open chain with SSD and a uniform open
chain, respectively, while lines show the analytic result for a uniform
periodic chain. (b) Schematic showing the relation between pairs
(j,j ′) in the open chain with SSD and those in the periodic chain.

change of the ground state. We thus conclude that the change
in slope of EE is not peculiar to a specific model but a general
outcome of the SSD when applied to a critical model.

Correlation functions. We next investigate two-spin corre-
lation functions. Here, we consider a spin-1/2 XXZ chain
in the critical regime, for which the asymptotic forms of the
correlation functions are known to be
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where Q = 2πM . The exponent η and the amplitudes Ax
0 , Ax

1 ,
and Az

1 were obtained as a function of " and M .11,15–17 Figure 3
shows DMRG results for ground-state correlation functions in
an XXZ chain, Eq. (2), with SSD. We also plot DMRG data
for a uniform open chain as well as the analytic result for a
uniform periodic chain; the latter is obtained by replacing r in
Eqs. (7) and (8) with L

π
sin( π |j−j ′|

L
). As shown in Fig. 3, the

results for the open chain with SSD agree almost completely
with those for the periodic chain.

Figure 4(a) shows the ground-state correlation function
〈Sj · Sj ′ 〉 in a small system calculated by exact diagonalization.
Data are plotted as a function of position j and “distance” r =
min(|j − j ′|,L − |j − j ′|) [see Fig. 4(b)]. We again observe
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FIG. 4. (Color online) (a) Spin correlation function (−1)r〈Sj ·
Sj ′ 〉, with j ′ = j + r (mod L), in an XXZ chain for L = 24 and
(",M) = (1.0,0) as a function of j and r . Symbols show data for an
open chain with SSD: crosses represent correlations between sites j

and j ′ = j + r (pairs “within” the chain), while squares represent
those between j and j ′ = j + r − L (pairs “across” the edges).
Lines show values of correlations in the uniform periodic chain.
(b) Schematic showing the two sites (j,j ′) at a “distance” r .

that the correlations in the open chain with SSD are in excellent
agreement with those in the uniform periodic chain; The
results are independent of position j , and more remarkably,
the correlations between sites j and j ′ = j + r − L, which
are located at the distance r across the open ends, have the
same value as those in the periodic chain.18 We have observed
the same phenomena as shown in Figs. 3 and 4 for several
parameter sets of (",M). The results indicate that correlation
functions, and presumably all observables, in the ground state
of systems with SSD become equal to those in uniform periodic
systems.

We note that for the two-leg ladder with zero magnetization,
M = 0, which has an energy gap above the singlet ground state,
the spin correlation decays exponentially even in systems with
SSD and no recovery of the correlation between edge spins
is observed. This suggests that the SSD does not work for
spin-gapped systems.

Wave functions. Finally, we discuss the overlap of ground-
state wave functions. Using the exact diagonalization method,
we calculated the ground-state wave function |vSSD〉 of an
XXZ chain, Eq. (2), with SSD for L ! 24 and several sets of
(",M), and compared it with the ground-state wave function
|vPBC〉 of the uniform periodic chain. We then found that the
overlap of those ground-state wave functions is very close to
unity; the deviation from unity is at most |1 − 〈vSSD|vPBC〉| "
10−3 and exactly 0 within the numerical accuracy of 10−14

for the XX case (" = 0). The result indicates that the ground
states |vSSD〉 and |vPBC〉 are equivalent at the level of the wave
function.18

We note that the equivalence of the ground-state wave
functions is not trivial even in the case of an XX chain [Eq. (2)
with " = 0]. Through the Jordan-Wigner transformation, the
XX chain is mapped onto the free fermion system and the
one-particle eigenstates of the periodic chain are simple plane
waves. In contrast, the Hamiltonian of an open chain with SSD
is not translationally invariant and its one-particle eigenstates
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are located at the distance r across the open ends, have the
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parameter sets of (",M). The results indicate that correlation
functions, and presumably all observables, in the ground state
of systems with SSD become equal to those in uniform periodic
systems.

We note that for the two-leg ladder with zero magnetization,
M = 0, which has an energy gap above the singlet ground state,
the spin correlation decays exponentially even in systems with
SSD and no recovery of the correlation between edge spins
is observed. This suggests that the SSD does not work for
spin-gapped systems.

Wave functions. Finally, we discuss the overlap of ground-
state wave functions. Using the exact diagonalization method,
we calculated the ground-state wave function |vSSD〉 of an
XXZ chain, Eq. (2), with SSD for L ! 24 and several sets of
(",M), and compared it with the ground-state wave function
|vPBC〉 of the uniform periodic chain. We then found that the
overlap of those ground-state wave functions is very close to
unity; the deviation from unity is at most |1 − 〈vSSD|vPBC〉| "
10−3 and exactly 0 within the numerical accuracy of 10−14

for the XX case (" = 0). The result indicates that the ground
states |vSSD〉 and |vPBC〉 are equivalent at the level of the wave
function.18

We note that the equivalence of the ground-state wave
functions is not trivial even in the case of an XX chain [Eq. (2)
with " = 0]. Through the Jordan-Wigner transformation, the
XX chain is mapped onto the free fermion system and the
one-particle eigenstates of the periodic chain are simple plane
waves. In contrast, the Hamiltonian of an open chain with SSD
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A. Gendiar,1,2,3 M. Daniška,1,4 Y. Lee,1,3 and T. Nishino3

1Institute of Physics, Slovak Academy of Sciences, SK-845 11 Bratislava, Slovakia
2Institute of Electrical Engineering, Slovak Academy of Sciences, SK-841 04 Bratislava, Slovakia

3Department of Physics, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
4Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University,

SK-842 48 Bratislava, Slovakia
(Received 7 December 2010; published 19 May 2011)

We investigate the effect of a nonuniform deformation applied to one-dimensional (1D) quantum systems,
where the local energy scale is proportional to gj = [sin(jπ/N )]m determined by a positive integer m, site
index 1 ! j ! N − 1, and system size N . This deformation introduces a smooth boundary to systems with
open-boundary conditions. When m " 2, the leading 1/N correction to the ground-state energy per bond e

(N)
0

vanishes and one is left with a 1/N2 correction, the same as with periodic boundary conditions. In particular,
when m = 2, the value of e

(N)
0 obtained from the deformed open-boundary system coincides with the uniform

system with periodic boundary conditions. We confirm the fact numerically for correlated systems, such as the
extended Hubbard model, in addition to 1D free-fermion models.
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I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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)]. The model can be

mapped onto a free spinless fermion model with site-dependent hopping amplitudes
and on-site potentials via the Jordan-Wigner transformation. Although the single-
particle eigenstates of this system cannot be obtained in closed form, it is shown that
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boundary conditions. This proves a conjecture of Hikihara and Nishino [Hikihara T
and Nishino T 2011 Phys. Rev. B 83 060414(R)] based on numerical evidence.
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The N -dependence of the energy correction changes if we impose the periodic
boundary conditions, where the Hamiltonian is given by

ĤP = −t
N−1∑

!=1

(
ĉ†! ĉ!+1 + ĉ†!+1ĉ!

)
− t

(
ĉ†N ĉ1 + ĉ†1ĉN

)
. (2.8)

In this case, the one-particle wave function is the plane wave

ψm(") =
√

1
N

exp
[
i
2mπ(" − 1)

N

]
, (2.9)

where m is an integer that satisfies −N/2 + 1 ≤ m ≤ N/2. The corresponding
one-particle energy is

εm = −2t cos
2mπ

N
. (2.10)

If N is a multiple of four, the ground state energy at half filling is calculated as

EN
P =

N/4∑

m=−N/4+1

εm = −2t cot
π

N
. (2.11)

Thus, the finite-size correction to the energy per site

EN
P

N
−

(
− 2

π
t

)
= −2t

N
cot

π

N
+

2t

π
∼ 2πt

3N2
(2.12)

is of the order of 1/N2.
As verified in the above calculations, the finite-size correction to the energy per

site EN/N decreases faster for the system with the periodic boundary conditions
than with the open boundary conditions. Regardless of this fact, the open boundary
systems are often chosen in numerical studies by the density matrix renormalization
group (DMRG) method3),20)–22) because of the simplicity in numerical calculation. It
should be noted that for those systems that exhibits incommensurate modulation, the
open boundary condition is more appropriate than the periodic boundary condition.
Thus, it will be convenient if there is a way of decreasing the finite-size correction
to EN/N as fast as 1/N2 also for the open boundary systems.

§3. Spherical deformation

We first consider the N -site open boundary system described by the Hamiltonian

ĤS = −t
N−1∑

!=1

sin
"π

N

(
ĉ†! ĉ!+1 + ĉ†!+1ĉ!

)
. (3.1)

Compared with the undeformed Hamiltonian ĤO in Eq. (2·2), the strength of the
hopping term is scaled by the factor A! = sin("π/N), which decreases towards the
system boundary as shown in Fig. 1. For a geometrical reason which we discuss in

2
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We study the one-dimensional quantum critical spin systems with the sine-square deformation,
in which the energy scale in the Hamiltonian at the position x is modified by the function fx =
sin2

[

π
L
(x− 1

2
)
]

, where L is the length of the system. By investigating the entanglement entropy,
spin correlation functions, and wave-function overlap, we show that the sine-square deformation
changes the topology of the geometrical connection of the ground state drastically; Although the
system apparently has open edges, the sine-square deformation links those ends and realizes the
periodic ground state at the level of wave function. Our results propose a new method to control
the topology of quantum states by energy-scale deformation.
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Introduction: Topology is one of the most fundamen-
tal concept in physics. It rules the connectivity of local el-
ements of the system and governs how physical objects –
particles, excitations, and information – propagate. Nor-
mally, the topology of a system is fixed once the spatial
geometry of elements is given. Search for other paths
to the control of topology of the system is a challenging
problem.
In a finite system, a boundary condition determines

the topology of the geometrical connection of quantum
state and affects crucially the properties of the system. If
the system has open edges, they usually induce boundary
oscillations such as Friedel oscillation. While the bound-
ary oscillation contains important information such as
the Fermi momentum, it is often regarded as an obstacle
to mask the bulk properties. One simple way to remove
it is to employ the periodic boundary condition, how-
ever, there has also been another attempts, called the
smooth boundary condition, to suppress the boundary
effects by turning off the energy scale of local Hamilto-
nians smoothly around the open edges.[1, 2] The latter
has proven to be useful when the open system is favored,
e.g., for an efficiency of numerical methods such as the
density-matrix renormalization group (DMRG) method.
Recently, a new scheme of the smooth boundary con-

dition, which we call the sine-square deformation (SSD),
has been proposed as an efficient way to suppress the
finite-size and open-boundary effects.[3] In the system
with SSD, the energy scale in the Hamiltonians are mod-
ified according to the function,

fx = sin2
[

π

L

(

x−
1

2

)]

, (1)

where x is the position of the local term and L is the
length of the system. In Ref. 3, Gendiar et al. applied
the SSD to the one-dimensional (1D) free fermion sys-
tem with open boundaries. They then showed that the
SSD removed boundary effects successfully and resulted

0

1

1 L

fx

x(a)

0 20 40 60 80

−0.2

−0.1

j

<S
j S

j+
1>

: SSD
: Open

x
x

XXZ chain, Δ =0.5, M=0

(b)

FIG. 1: (a) Rescaling function fx of the SSD. (b) Bond
strength 〈Sx

j S
x
j+1〉 for the XXZ chain (2) with L = 80 and

(∆,M) = (0.5, 0). Squares and circles represent the data for
the chain with SSD and the uniform open chain, respectively.

in position-independent one-point functions such as the
bond strength and particle density in the ground state.
Since the spatial profiles of these quantities were nearly
completely flat, the observation raised a natural question
of what happened in the ground state of the system with
SSD. This is indeed the motivation of the present study.

In this paper, we study the SSD in several 1D quan-
tum spin systems. Using the DMRG and exact diagonal-
ization methods, we study numerically the entanglement
entropy (EE), correlation functions, and wave-function
overlap in the systems with SSD. We then show that the
ground state of a critical system with SSD is equivalent
to that of the uniform periodic system; the SSD changes
the topology of the critical ground state drastically, from
an open chain to a periodic ring. The result opens the
possibility to control the topology of quantum states by
the energy-scale deformation even in the case that the

2

geometrical shape of the system is fixed.
Sine-square deformation: The SSD introduces a spa-

tial modulation of energy scale by applying the rescaling
factor fx [Eq.(1)] to the local Hamiltonian at the position
x. For example, the model Hamiltonian of the spin-1/2
antiferromagnetic XXZ chain with SSD is given by

HXXZ = J
L−1
∑

j=1

fj+ 1

2

(

Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

j S
z
j+1

)

−h
L
∑

j=1

fjS
z
j , (2)

where we have introduced the magnetic field h which
induces magnetization M per spin[4]. Hereafter, we con-
sider the case of even L otherwise mentioned. The energy
scale of the local Hamiltonians thus decreases smoothly
as being closer to the boundaries and eventually vanishes
at the open ends, as shown in Fig. 1 (a).[5]
Figure 1 (b) gives the DMRG data of the bond strength

〈Sx
j S

x
j+1〉 in the ground state of the XXZ chain (2) with

and without SSD. The data clearly show that the SSD
eliminates the Friedel oscillation seen in the uniform open
chain almost completely[3]. We will demonstrate below
that the SSD is not only an efficient measure to sup-
press the boundary effects but also a device to drastically
change the topology of the ground-state wave function.
Entanglement entropy: We first investigate EE in the

ground state of the 1D systems with SSD. We consider
EE for a subsystem Ω of the left l spins,

S(l) = −TrΩ [ρ(l) ln ρ(l)] , (3)

where ρ(l) is the reduced density matrix for Ω. For the
1D critical uniform systems, EE is known to take a uni-
versal form,[6–8]

S(l) = s ln[g(l)] + const., (4)

where g(l) = L
π sin

(

πl
L

)

. The slope s is determined by
the boundary condition; s = c/3 for the periodic system
while s = c/6 for the system with open boundaries, where
c is the central charge. Namely, the slope s divided by
c/6 gives the number of “cuts” of the 1D critical state
between the subsystem Ω and the environment Ω̄.
Figures 2 (a) and (b) show the DMRG data of EE in

the XXZ chain with SSD [Eq. (2)]. EE in the uniform
open chains is also shown for a comparison. Remarkably,
EE in systems with SSD has the slope s = c/3, which is
twice as large as that in the uniform open systems. This
means that the ground state of the system with SSD has
two cuts between the left and right subsystems, Ω and Ω̄,
although the lattice has seemingly only one cut. In ad-
dition, the boundary oscillation, which is pronounced in
the uniform systems, is removed by the SSD. The results
suggest that, although the system apparently possesses
the open edges, the SSD connects the open ends of the

1 2 3
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S(l) s =1/3

s =1/6

XXZ chain
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s =1/6
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(b)
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J2 /J1=0.5, M=0.125

(c) 1 2 30
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J2 /J1=0.6, M=0.4

(d)
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s =1/6

two−leg ladder
J  = J  , M=0.25

(e)

l

L
!"#

Ω Ω

XXZ chain

J1 - J2 chain

two-leg ladder

FIG. 2: Entanglement entropy S(l) as a function of g(l) =
(L/π) sin(πl/L) for L = 80 and (a) XXZ chain with
(∆,M) = (0.5, 0), (b) XXZ chain with (∆,M) = (1.0, 0.25),
(c) J1-J2 chain with (J2/J1,M) = (0.5, 0.125), (d) J1-J2

chain with (J2/J1,M) = (0.6, 0.4), and (e) two-leg ladder
with (J⊥/J‖,M) = (1.0, 0.25). The central charge c = 1 for
the models in (a)-(c) and (e), while c = 2 for (d). Squares
and circles represent the data for the open system with SSD
and the uniform open system, respectively. Solid and dotted
lines show the slope of c/3 and c/6, respectively. (f) Shape of
the subsystem Ω for which S(l) is calculated.

ground state effectively and the state becomes periodic,
having two cuts between Ω and Ω̄.
We have also examined EE in the other models, the

antiferromagnetic J1-J2 chain and two-leg ladder systems
under magnetic field. The Hamiltonians are given by

HJ1−J2
=

L−1
∑

j=1

∑

n=1,2

Jnfj+n

2
Sj · Sj+n − h

L
∑

j=1

fjS
z
j , (5)

Hlad = J‖

L−1
∑

j=1

∑

n=1,2

fj+ 1

2

Sn,j · Sn,j+1

+J⊥

L
∑

j=1

fjS1,j · S2,j − h
L
∑

j=1

fj(S
z
1,j + Sz

2,j).(6)

In Figs. 2 (c)-(e), we present the DMRG results of EE
for the subsystem Ω of left l sites/rungs [see Fig. 2 (f)].
The models in Figs. 2(c) and (e) are in critical phases
with c = 1, while the model in Fig. 2(d) has c = 2[9–13].
It is found again that the slope of EE is doubled by the
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in which the energy scale in the Hamiltonian at the position x is modified by the function fx =
sin2
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π
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, where L is the length of the system. By investigating the entanglement entropy,
spin correlation functions, and wave-function overlap, we show that the sine-square deformation
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Introduction: Topology is one of the most fundamen-
tal concept in physics. It rules the connectivity of local el-
ements of the system and governs how physical objects –
particles, excitations, and information – propagate. Nor-
mally, the topology of a system is fixed once the spatial
geometry of elements is given. Search for other paths
to the control of topology of the system is a challenging
problem.
In a finite system, a boundary condition determines

the topology of the geometrical connection of quantum
state and affects crucially the properties of the system. If
the system has open edges, they usually induce boundary
oscillations such as Friedel oscillation. While the bound-
ary oscillation contains important information such as
the Fermi momentum, it is often regarded as an obstacle
to mask the bulk properties. One simple way to remove
it is to employ the periodic boundary condition, how-
ever, there has also been another attempts, called the
smooth boundary condition, to suppress the boundary
effects by turning off the energy scale of local Hamilto-
nians smoothly around the open edges.[1, 2] The latter
has proven to be useful when the open system is favored,
e.g., for an efficiency of numerical methods such as the
density-matrix renormalization group (DMRG) method.
Recently, a new scheme of the smooth boundary con-

dition, which we call the sine-square deformation (SSD),
has been proposed as an efficient way to suppress the
finite-size and open-boundary effects.[3] In the system
with SSD, the energy scale in the Hamiltonians are mod-
ified according to the function,

fx = sin2
[

π

L

(

x−
1

2

)]

, (1)

where x is the position of the local term and L is the
length of the system. In Ref. 3, Gendiar et al. applied
the SSD to the one-dimensional (1D) free fermion sys-
tem with open boundaries. They then showed that the
SSD removed boundary effects successfully and resulted
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FIG. 1: (a) Rescaling function fx of the SSD. (b) Bond
strength 〈Sx

j S
x
j+1〉 for the XXZ chain (2) with L = 80 and

(∆,M) = (0.5, 0). Squares and circles represent the data for
the chain with SSD and the uniform open chain, respectively.

in position-independent one-point functions such as the
bond strength and particle density in the ground state.
Since the spatial profiles of these quantities were nearly
completely flat, the observation raised a natural question
of what happened in the ground state of the system with
SSD. This is indeed the motivation of the present study.

In this paper, we study the SSD in several 1D quan-
tum spin systems. Using the DMRG and exact diagonal-
ization methods, we study numerically the entanglement
entropy (EE), correlation functions, and wave-function
overlap in the systems with SSD. We then show that the
ground state of a critical system with SSD is equivalent
to that of the uniform periodic system; the SSD changes
the topology of the critical ground state drastically, from
an open chain to a periodic ring. The result opens the
possibility to control the topology of quantum states by
the energy-scale deformation even in the case that the

Correlated case:

Heisenberg Spin Chain



Correlated case:

Extended Hubbard Model
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FIG. 9: (Color online) System size dependence of e(N)
0 of the

extended Hubbard model at half filling. The full and the
dashed lines connect the energies e(N)

0 obtained by PBC and
SSD, respectively.

the minimal position dependence. The bond correlation
function is influenced by the boundaries in all cases, and
the position dependence is the weakest when m = 2.

IV. CHEMICAL POTENTIAL

So far we have not discussed the proper value of the
chemical potential µ away from the half filling when
the interaction is present. The chemical potential term
−µ

2 (nj↑ + nj↓ + nj+1↑ + nj+1↓) has to be included to
the bond operator in Eq. (18). In the Hartree-Fock
or the Fermi liquid picture, µ is adjusted so that the
particle number p =

∑N
j=1〈nj↑ + nj↓〉 coincides with

the number of negative-energy quasiparticle states. The
number of particles is independently represented by the

derivative of E(N)
0 with respect to µ. Thus, the relation

p = −∂E(N)
0 /∂µ must be satisfied for the targeted par-

ticle number p. Within the sinusoidal deformation, this
relation is slightly modified as

p = −
N

B(N)

∂E(N)
0

∂µ
= −

∂Ne(N)
0

∂µ
(18)

according to the position dependence in the energy scale.

We plot the absolute value |p − (−∂Ne(N)
0 /∂µ)| with

respect to µ for the extended Hubbard model in Fig. 11,
under the SSD. The numerical analysis by exact diago-
nalization gives µ = −4.1425 for the case N = 12, p = 4,
U = 2, and V = 1. Figure 12 shows the corresponding
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FIG. 10: (Color online) Occupation 〈nj↑〉 = 〈nj↓〉 and the
bond energy

∑
σ〈c

†
jσcj+1+c†j+1σcjσ〉 of the extended Hubbard

model at half filling.
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µ = -2.4511µ = -4.1425

FIG. 11: (Color online) The µ dependence of |p+∂Ne(N)
0 /∂µ|

for the two cases f ≡ p/2N = 1/4 and 1/6.

occupation and the bond correlation functions. There is
a slight position dependence, since we are dealing with
relatively small system size with a few particles. The
position dependence becomes conspicuous if we choose
either an inaccurate value of µ or we consider the defor-
mations with m $= 2.

V. CONCLUSION AND DISCUSSION

We have shown that the sinusoidal deformation ap-
plied to 1D quantum Hamiltonians improves convergence

5
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FIG. 7: (Color online) Energy per bond e(N)
0 of the spinless

Fermions model at V = 1 up to N = 16.

Hamiltonian

H(N)
PBC = − t

N
∑

j=1

(

c†jcj+1 + c†j+1cj

)

(15)

+ V
N
∑

j=1

(

c†jcj −
1

2

)(

c†j+1cj+1 −
1

2

)

with PBC, where the system contains the repulsive
Coulomb interaction V > 0 between neighboring sites,
in addition to the hopping amplitude t. In this section
we restrict ourselves to the half-filled case only, therefore
the chemical potential µ is zero. [18] The construction of
the Hamiltonian with OBC and its sinusoidal deforma-
tion is analogous to what we have done in the previous
section. The deformed Hamiltonian can be defined by
putting the bond operator as

hj,j+1 = − t
(

c†jcj+1 + c†j+1cj

)

(16)

+ V

(

c†jcj −
1

2

)(

c†j+1cj+1 −
1

2

)

and substituting it to Eq. (14). We calculate the ground

state and the corresponding energy E(N)
0 at half-filling

up to N = 16.

Figure 7 shows e(N)
0 with respect to N−2. When the

sinusoidal deformation is applied, we observe the same
N−2 dependence as was seen for the non-interacting case.

In particular when N/2 is odd, e(N)
0 obtained for m = 2

shows a good agreement with the result from PBC. The
coincidence, however, becomes less accurate with increas-

ing V , and there is a deviation around 0.2% in e(N)
0 when

V = 5. Figure 8 shows the occupation number 〈nj〉 and

the bond correlation 〈c†jcj+1 + c†j+1cj〉 when V = 1 at
half filling. A clear uniformity is observed when m = 2
as shown in the non-interacting cases.
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FIG. 8: (Color online) Occupation number 〈nj〉 and the bond

energy 〈c†jcj+1 + c†j+1cj〉 when V = 1 at half filling.

B. Extended Hubbard Model

Now we consider the extended Hubbard model, which
contains the on-site Coulomb interaction U and the
neighboring interaction V . In this case there is spin de-
gree of freedom (σ =↑, ↓), therefore creation and annihi-
lation operators, respectively, are represented as c†jσ and
cjσ. The bond operator of the extended Hubbard model
is represented as

hj,j+1 = − t
∑

σ=↑,↓

(

c†jσcj+1σ + c†j+1σcjσ

)

+
U

2

[(

nj↑ −
1
2

)(

nj↓ −
1
2

)

+
(

nj+1↑ −
1
2

)(

nj+1↓ −
1
2

)]

(17)

+ V
(

nj↑ + nj↓ − 1
) (

nj+1↑ + nj+1↓ − 1
)

.

To avoid the complexity of determining the chemical po-
tential µ, we consider the half-filled case where µ = 0
is guaranteed by the particle hole symmetry. Figure 9

shows the N−2-dependence of e(N)
0 for various combina-

tions of U and V . The coincidence between PBC and
SSD at half filling occurs when the total number of both
up- and downs-spin Fermions are odd.
The occupancy 〈nj〉 = 〈nj↑ + nj↓〉 and the bond cor-

relation function
∑

σ〈c
†
jσcj+1σ + c†jσcj+1σ〉 at half filling

are shown in Fig. 10. The occupancy 〈nj〉 with OBC is
clearly influenced by the system boundaries, whereas the
sinusoidal deformations (m ≥ 1) lead to almost constant
distribution. The case with m = 2 (asterisks) realizes
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2π t

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N)]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑

j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑

j=1

[
sin

(
jπ

N

)]m

=
N−1∑

j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

"=0

(−1)"

(2")m−1

(
m
"

)
cot
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(m − 2")π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m ! 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m ! 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2[e(N)
PBC − e(N)

sine

]
≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]

(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m ! 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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We investigate the effect of a nonuniform deformation applied to one-dimensional (1D) quantum systems,
where the local energy scale is proportional to gj = [sin(jπ/N )]m determined by a positive integer m, site
index 1 ! j ! N − 1, and system size N . This deformation introduces a smooth boundary to systems with
open-boundary conditions. When m " 2, the leading 1/N correction to the ground-state energy per bond e

(N)
0

vanishes and one is left with a 1/N2 correction, the same as with periodic boundary conditions. In particular,
when m = 2, the value of e

(N)
0 obtained from the deformed open-boundary system coincides with the uniform

system with periodic boundary conditions. We confirm the fact numerically for correlated systems, such as the
extended Hubbard model, in addition to 1D free-fermion models.
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I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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is considered. In this paper we generalize the deformation
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m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.
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where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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We investigate the effect of a nonuniform deformation applied to one-dimensional (1D) quantum systems,
where the local energy scale is proportional to gj = [sin(jπ/N )]m determined by a positive integer m, site
index 1 ! j ! N − 1, and system size N . This deformation introduces a smooth boundary to systems with
open-boundary conditions. When m " 2, the leading 1/N correction to the ground-state energy per bond e

(N)
0

vanishes and one is left with a 1/N2 correction, the same as with periodic boundary conditions. In particular,
when m = 2, the value of e

(N)
0 obtained from the deformed open-boundary system coincides with the uniform

system with periodic boundary conditions. We confirm the fact numerically for correlated systems, such as the
extended Hubbard model, in addition to 1D free-fermion models.
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I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N)]2 specified by the site
index 1 ! j ! N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N)]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑

j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε$ =
{

−2t cos
(

π$
N+1

)
for OBC (α = 0),

−2t cos
( 2π$

N

)
for PBC (α = 1),

(2)

where the energy index $ runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε$ below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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The case m = 2, Sine-Square Deformation, is cool.
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