
Finite Uncostrained
Tree Tensor Networks

and critical systems

Matteo Rizzi
Max-Planck-Institut für QuantenOptik, Garching, Germany



Outline

• Hierarchical Tensor Networks

• Finite Unconstrained Trees (TTN)

• Preliminary results (1D)

• Outlook



Hierarchical Tensor Networks

• hierarchical (TTN, MERAs) are intriguing:
• built-in scale invariance
• power-law correlations
• can represent ground states of critical H

MPS
PEPS MERATTN

common key idea:
break down the state

into manageable structure



Hierarchical Tensor Networks
• good sides of MERAs:

• nice dealing with area laws
• causal cone structure
• interpretation as CPT maps &

computation of TL properties

• hindrances of MERAs:

• loopful structure
--> high-power power law scaling

• need for unitary constraint
--> “complicate” minimization issues



• incorporate area law on average

• allow for easier/cheaper contractions

• allow relaxation of isometricity !
--> standard optimization methods <--
(can be re-isometrized when needed)

• easy implementation of symmetries

• huge sizes with moderate effort

Hierarchical Tensor Networks
Loop-free structures (e.g. TTN): naive…
...BUT have good sides also:



Finite Unconstrained Trees
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Finite Unconstrained Trees

Simple form of coarse-grained Hamiltonian at each level

norm tensor

Everything still doable in 



Finite Unconstrained Trees
Unconstrained form of tensors

standard optimization methods can be used
(e.g. conjugate gradient)

Gradient can be computed efficiently also in

‘easy’ example: norm
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Finite Unconstrained Trees

energy gradient
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Finite Unconstrained Trees

energy gradient



Finite Unconstrained Trees

energy gradient

only few kinds of contractions 
per every layer !



Finite Unconstrained Trees
TTN initialization à la DMRG:

Hamiltonian
on 4 (effective) sites

ground wavefunction
and 2-sites density matrix

truncation isometry
defines the tensors

• naive, not so correlated as it should... :(
• avoids long paths due to random start
   (already 2-3 digits of energy in critical cases)  :)
• helps to guess symmetry multiplets  :)
• is feasible only up to m=16-20 :(

Larger m’s started by ‘enlarging’ ansätze with smaller  bonds:
add extra random elements to tensors



Preliminary results (1D)
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• ~ size independent precision on E (as for MERA)
• quite precise local observables (4 digits at m=20)
• tiny dimerization < 10-4÷5 despite binary structure

Critical Ising model



Preliminary results (1D)
Critical Ising model

•  fast decaying correlations captured well at m~10
•  good precision on critical exponents (large N helps)
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Preliminary results (1D)
Critical Ising model

•  super-slow correlations need a large m~30
    but, over it, very precise on dx~1000  !!!
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Preliminary results (1D)
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Non-critical Ising model

•  accurate energy
•  vanishing dimerization
•  m~12 captures almost everything 

expected from a
nearly product state :)



Preliminary results (1D)
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Non-critical Ising model

• curiously, correlations approximated ‘from above’
   as if TTN is summing power-laws to cancel their effect !?



Preliminary results (1D)
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AF Heisenberg spin 1

• despite non-critical, precision lacking even for m~30
   (reference energy from White’s DMRG’93)
• does it depend on local dim? or on symmetries?



Preliminary results (1D)
AF Heisenberg spin 1
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• correlations consistent with
   but the corrections (exp+pow) make it tricky



Preliminary results (1D)
AF Heisenberg spin 1/2

• constant precision in m at big sizes :)

• energy less precise than Ising :(
• quite ‘brutal’ dimerization ~10-1÷2  :(
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 ! symmetry !



Preliminary results (1D)
AF Heisenberg spin 1/2
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• nonetheless, at short enough d, decay d-1 :)
   need for larger m’s as in critical Ising Cxx ...



Outlook: symmetries
3-legs structure ease the symmetry preservation

(work in progress in our code)

j = irreducible representation index
m = internal index of irred.rep.

a = degeneracy index
!

R = variational tensor
(few free parameters) 

C = structure tensor
(e.g. ! in U(1),  CG in SU(2),...)
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Outlook: local optimization
Loop-free and non-unitary nature of tensors

permits to deal with non-translational invariant networks
via generalized eigen-problems à la MPS

Same contraction as for gradients
(i.e. O(m4) operations) 

Might these additional freedom help
towards better results?

(in progress)



Outlook: use in 2D ?

might the use of 2D-TTNs be revived ?

• low contraction costs
• uncostrained optimization
• ‘simplicity’ of programming

make them appealing even if probably not optimal

site-by-site H is not invariant                but...
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Outlook
• Hierarchical Tensor Networks
• Finite Unconstrained Trees

• standard optimization / small cost

• Preliminary results (1D)
• size-indep. precision at fixed bond
• ~same precision on Energy/Observables

• future(?) directions:
• need for symmetries !
• revive the use in 2D?


