Lattice gauge theory problems for tensor networks

Introduction

- Studying strong interaction by a 4-dimensional lattice
 - Breakthrough in Simulation Algorithm
 - Selected Results
- A toy model challenge for tensor networks
- Summary

strong force

elektroweak force

Interaction

Mon Photon

Leptonen

W, Z-Boson

The complete Particle Spectrum

Standard-Teilchen

- there are three generations
- is there a Higgsboson?
- Gravitation, interaction particle \rightarrow Graviton

Why we believe in Quantum Field Theories: Electromagnetic Interaction

Quantum Electrodynamics (QED)

coupling of the electromagnetic interaction is small \Rightarrow perturbation theory 4-loop calculation

anomalous magnetic moment of the electron

 $a_e(\text{theory}) = 1159652201.1(2.1)(27.1) \cdot 10^{-12}$ $a_e(\text{experiment}) = 1159652188.4(4.3) \cdot 10^{-12}$

anomalous magnetic moment of the muon

 $a_{\mu}(\text{theory}) = 11659169.6(9.4) \cdot 10^{-10}$ $a_{\mu}(\text{experiment}) = 11659203.0(8.0) \cdot 10^{-10}$

The Large Hadron Collider (LHC)

The search of the missing stone of the standard model of particle interaction:

The Higgs Boson generates mass of all quarks and leptons

Experimental bounds on the Higgs boson mass

- only small window remains
- excess at 125 126 GeV
- clarification with this years' run (most probably)

Quarks are the fundamental constituents of nuclear matter

Fig. 7.17 $_{\rm V}W_2$ (or F_2) as a function of q^2 at x=0.25. For this choice of x, there is practically no q^2 -dependence, that is, exact "scaling". (After Friedman and Kendall 1972.)

Friedman and Kendall, 1972)

 $\left.f(x,Q^2)\right|_{x\approx 0.25,Q^2>10{\rm GeV}}$ independent of Q^2

(x momentum of quarks, Q^2 momentum transfer)

Interpretation (Feynman): scattering on single quarks in a hadron \rightarrow (Bjorken) scaling

Quantum Fluctuations and the Quark Picture

analysis in perturbation theory

$$\int_0^1 dx f(x, Q^2) = 3 \left[1 - \frac{\alpha_s(Q^2)}{\pi} - a(n_f) \left(\frac{\alpha_s(Q^2)}{\pi} \right)^2 - b(n_f) \left(\frac{\alpha_s(Q^2)}{\pi} \right)^3 \right]$$

 $-a(n_f), b(n_f)$ calculable coefficients

deviations from scaling \rightarrow determination of strong coupling

Why Perturbation Theory fails for the Strong Interaction

 situation becomes incredibly complicated

- value of the coupling (expansion parameter) $\alpha_{\rm strong}(1 {\rm fm}) \approx 1$
- \Rightarrow need different ("exact") method
- \Rightarrow has to be non-perturbative

- Wilson's Proposal: Lattice Quantum Chromodynamics

Lattice Gauge Theory had to be invented

 \rightarrow QuantumChromoDynamics

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics actually form the required bound states. To establish whether these bound states exist one must solve a strong coupling problem and present methods for solving field theories don't work for strong coupling. Wilson, Cargese Lecture notes 1976 Schwinger model: 2-dimensional Quantum Electrodynamics

Schwinger 1962 (typical system explored in DESY summerstudent programme; www.desy.de/summerstudents/)

Quantization via Feynman path integral

$$\mathcal{Z} = \int \mathcal{D}A_{\mu} \mathcal{D}\Psi \mathcal{D}\bar{\Psi}e^{-S_{\text{gauge}}-S_{\text{ferm}}}$$

Fermion action

$$S_{\text{ferm}} = \int d^2 x \bar{\Psi}(x) \left[D_{\mu} + m \right] \Psi(x)$$

gauge covriant derivative

$$D_{\mu}\Psi(x) \equiv (\partial_{\mu} - ig_0 A_{\mu}(x))\Psi(x)$$

with A_{μ} gauge potential, g_0 bare coupling

$$S_{\text{gauge}} = \int d^2 x F_{\mu\nu} F_{\mu\nu} , \ F_{\mu\nu}(x) = \partial_{\mu} A_{\nu}(x) - \partial_{\nu} A_{\mu}(x)$$

equations of motion: obtain classical Maxwell equations

Properties of the Schwinger Model

- existence of bound states (mass gap)
- asymptotic free $(g_0 \rightarrow 0$ for distance between charges going to zero)
- exactly solvable for zero fermion mass (Coleman)
- super-renormalizable
- ⇒ valuable test laboratory for QCD (simulations can be done on your desk top)

Lattice Schwinger model

introduce a 2-dimensional lattice with lattice spacing a

fields $\Psi(x)$, $\bar{\Psi}(x)$ on the lattice sites $x = (t, \mathbf{x})$ integers

discretized fermion action

 $S \to a^2 \sum_x \bar{\Psi} \left[\gamma_\mu \partial_\mu + m \right] \Psi(x)$ $\partial_\mu = \frac{1}{2} \left[\nabla^*_\mu + \nabla_\mu \right]$

 $\nabla_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x + a\hat{\mu}) - \Psi(x) \right] , \quad \nabla^{*}_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x) - \Psi(x - a\hat{\mu}) \right]$

fermion propagator

$$\tilde{G} = \frac{i}{a} \left[p_{\mu} \gamma_{\mu} + m \frac{1}{a} \left(i \gamma_{\mu} \sin p_{\mu} a \right) + m \right]^{-1}$$

 \rightarrow has poles for $p\approx 0$ AND $p\approx \pi/a$

 \Rightarrow doubling of spectrum

The Wilson-Dirac Operator

Wilson's suggestion: add a second derivative term

$$S \to a^2 \sum_x \bar{\Psi} \left[\gamma_\mu \partial_\mu - r \underbrace{\partial^2_\mu}_{\nabla^*_\mu \nabla_\mu} + m \right] \Psi(x)$$

$$\rightarrow \tilde{G} = \left[\frac{1}{a}\left(i\gamma_{\mu}\sin p_{\mu}a\right) + \frac{r}{a}\sum_{\mu}(1-\cos p_{\mu}a) + m\right]^{-1}$$

pole for $p \approx 0$

at $p\approx \pi/a : \to \tilde{G}^{-1}\approx \frac{r}{a}$

 \Rightarrow unwanted fermion doubler decouples in continuum limit ($a \rightarrow 0$)

Problem: Wilson term acts as a mass term

 \Rightarrow breaking of chiral symmetry: $D\gamma_5 + \gamma_5 D = 0$ for fermion mass m = 0

clash between *chiral symmetry* and *fermion proliferation*

 \rightarrow Nielsen-Ninomiya theorem:

For any lattice Dirac operator D the conditions

- D is local (bounded by $Ce^{-\gamma/a|x|}$)
- $\tilde{D}(p) = i \gamma_{\mu} p_{\mu} + \mathcal{O}(a p^2)$ for $p \ll \pi/a$
- $\tilde{D}(p)$ is invertible for all $p \neq 0$
- $\gamma_5 D + D\gamma_5 = 0$

can not be simultaneously fulfilled

The theorem simply states the fact that the Chern number is a cobordism invariant (Friedan)

Implementing gauge invariance

Wilson's fundamental observation: introduce Paralleltransporter connecting the points x and $y = x + a\hat{\mu}$:

$$U(x,\mu) = e^{iaA_{\mu}(x)} \in U(1)$$

 $\Rightarrow \text{ lattice derivatives } \nabla_{\mu}\Psi(x) = \frac{1}{a} \left[U(x,\mu)\Psi(x+\mu) - \Psi(x) \right]$ $\nabla^{*}_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x) - U^{-1}(x-\mu,\mu)\Psi(x-\mu) \right]$

action gauge invariant under

$$\begin{split} \Psi(x) &\to g(x) \Psi(x), \ \bar{\Psi}(x) \to \bar{\Psi}(x) g^*(x), \\ U(x,\mu) &\to g(x) U(x,\mu) g^*(x+\mu) \end{split}$$

Self-interaction of gauge fields

basic object: plaquette:

$$U_p = U(x,\mu)U(x+\mu,\nu)U^{-1}(x+\nu,\mu)U^{-1}(x,\nu) \to F_{\mu\nu}F^{\mu\nu}(x) \quad \text{for} \quad a \to 0$$

action

$$S_{\text{gauge}} = a^2 \sum_x \left\{ \beta \left[1 - \operatorname{Re}(U_{(x,p)}) \right] \right\}$$

Quantization of Theory

 $\mathcal{Z} = \int_{\text{fields}} e^{-S}$

Partition functions (pathintegral) with Boltzmann weight (action) S

 $S = a^2 \sum_x \left\{ \beta \left[1 - \operatorname{Re}(U_{(x,p)}) \right] + \bar{\psi} \left[\mathbf{m_0} + \frac{1}{2} \{ \gamma_\mu (\partial_\mu + \partial_\mu^\star) - a \partial_\mu^\star \partial_\mu \} \right] \psi \right\}$

Physical Observables

expectation value of physical observables $\ensuremath{\mathcal{O}}$

$$\underbrace{\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int_{\text{fields}} \mathcal{O}e^{-S}}_{\text{fields}}$$

 \downarrow lattice discretization

01011100011100011110011

Lattice QCD

change:

- 2-d \rightarrow 4-d
- gauge field $U(x,\mu) \in U(1) \rightarrow U(x,\mu) \in SU(3)$
- Pauli matrices $\sigma_{\mu} \rightarrow \text{Dirac-matrices } \gamma_{\mu}$
- spinors become 12-component complex vectors
- theory needs renormalization

Costs of dynamical fermions simulations, the "Berlin Wall"

see panel discussion in Lattice2001, Berlin, 2001

 χ PT (?)

point

formula
$$C \propto \left(\frac{m_{\pi}}{m_{\rho}}\right)^{-z_{\pi}} (L)^{z_L} (a)^{-z_a}$$

 $z_{\pi} = 6, \ z_L = 5, \ z_a = 7$

"both a 10^8 increase in computing power AND spectacular algorithmic advances before a useful interaction with experiments starts taking place." (Wilson, 1989)

 \Rightarrow need of **Exaflops Computers**

Why are fermions so expensive?

need to evaluate

 $\mathcal{Z} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\bar{\psi}\left\{D_{\text{lattice}}^{\text{Dirac}}\right\}\psi} \propto \det[D_{\text{lattice}}^{\text{Dirac}}]$

bosonic representation of determinant

det $[D_{\text{lattice}}^{\text{Dirac}}] \propto \int \mathcal{D}\Phi^{\dagger} \mathcal{D}\Phi e^{-\Phi^{\dagger} \{D_{\text{lattice}}^{-1}\}\Phi}$

- need vector $X = D_{\text{lattice}}^{-1} \Phi$
- solve linear equation $D_{\text{lattice}}X = \Phi$ D_{lattice} matrix of dimension 100million \otimes 100million (however, sparse)
- number of such "inversions": O(100) for one field configuration
- want: O(1000 10000) such field configurations

A generic improvement for Wilson type fermions

New variant of HMC algorithm (Urbach, Shindler, Wenger, K.J.) (see also SAP (Lüscher) and RHMC (Clark and Kennedy) algorithms)

- even/odd preconditioning
- (twisted) mass-shift (Hasenbusch trick)
- multiple time steps

- comparable to staggered
- reach small pseudo scalar masses $\approx 300 \text{MeV}$

Computer and algorithm development over the years

time estimates for simulating $32^3 \cdot 64$ lattice, 5000 configurations

→ O(few months) nowadays with a typical collaboration supercomputer contingent

State of the art

• BG/P

Blue Gene/P system structure

Strong Scaling

- Test on 72 racks BG/P installation at supercomputer center Jülich
- using tmHMC code

• Cyprus (Nicosia)

C. Alexandrou, M. Constantinou, T. Korzec, G. Koutsou

- France (Orsay, Grenoble)
 - R. Baron, B. Bloissier, Ph. Boucaud, M. Brinet, J. Carbonell, V. Drach, P. Guichon, P.A. Harraud, Z. Liu, O. Pène
- Italy (Rome I,II,III, Trento)
 - P. Dimopoulos, R. Frezzotti, V. Lubicz, G. Martinelli, G.C. Rossi, L. Scorzato, S. Simula, C. Tarantino
- Netherlands (Groningen)
 - A. Deuzeman, E. Pallante, S. Reker
- Poland (Poznan)
- *K. Cichy, A. Kujawa***Spain (Valencia)**
 - V. Gimenez, D. Palao
- Switzerland (Bern)
 - U. Wenger
- United Kingdom (Glasgow, Liverpool) G. McNeile, C. Michael, A. Shindler
- Germany (Berlin/Zeuthen, Hamburg, Münster)
 - F. Farchioni, X. Feng, J. González López, G. Herdoiza, K. Jansen, I. Montvay,
 - G. Münster, M. Petschlies, D. Renner, T. Sudmann, C. Urbach, M. Wagner

Lattice spacing scaling

Nucleon mass

 \rightarrow observe (flat) $O(a^2)$ scaling

Setting the scale

$$m_{\rm PS}^{\rm latt} = a m_{\rm PS}^{\rm phys}, \quad f_{\rm PS}^{\rm latt} = a f_{\rm PS}^{\rm phys}$$
$$\frac{f_{\rm PS}^{\rm phys}}{m_{\rm PS}^{\rm phys}} = \frac{f_{\rm PS}^{\rm latt}}{m_{\rm PS}^{\rm latt}} + \mathcal{O}(a^2)$$

$$\rightarrow \text{ setting } \frac{f_{\text{PS}}^{\text{latt}}}{m_{\text{PS}}^{\text{latt}}} = 130.7/139.6$$
$$\rightarrow \text{ obtain } m_{\text{PS}}^{\text{latt}} = a139.6[\text{Mev}]$$
$$\rightarrow \text{ value for lattice spacing } a$$

The lattice QCD benchmark calculation: the spectrum ETMC ($N_f = 2$), BMW ($N_f = 2 + 1$)

 $N_f = 2 \qquad \qquad N_f = 2 + 1$

Muon magnetic moment: a tension between theory and experiment

largest error: non-perturbative QCD contribution

Some numbers

- experimental value: $a_{\mu,N_f=2}^{\text{hvp,exp}} = 5.66(05)10^{-8}$
- from our old analysis: $a_{\mu,N_f=2}^{\mathrm{hvp,old}} = 2.95(45)10^{-8}$
- \rightarrow misses the experimental value
- $\rightarrow~$ order of magnitude larger error
- from our new analysis: $a_{\mu,N_f=2}^{\text{hvp,new}} = 5.66(11)10^{-8}$

→ error (including systematics) almost matching experiment

- different volumes
- different values of lattice spacing
- included dis-connected contributions

Dark matter detection

- size of quark content of nucleon important to detect dark matter candidates
- scattering dark matter particle with Higgs boson
 - \rightarrow cross-section changes an order of magnitude with small changes of quark content

diagrammatic scattering process

 $y_N \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle} = 0.082(16)(2)$

value much smaller than earlier thought
 → severe consequences for experiments

The ρ -meson resonance: dynamical quarks at work

• usage of three Lorentz frames

 $m_{\pi^+} = 330$ MeV, a = 0.079 fm, L/a = 32 $m_{
ho} = 1033(31)$ MeV, $\Gamma_{
ho} = 123(43)$ MeV

fitting
$$z = (M_{
ho} + i \frac{1}{2} \Gamma_{
ho})^2$$

Non-zero temperature and density

suggested phase diagram

Lattice Action with chemical potential

 $\mathcal{Z} = \int_{\text{fields}} e^{-S}$

Partition functions (pathintegral) with Boltzmann weight (action) S

 $S = a^2 \sum_x \left\{ \beta \left[1 - \operatorname{Re}(U_{(x,p)}) \right] + \bar{\psi} \left[\frac{m_0}{2} + \frac{1}{2} \{ \gamma_\mu (\partial_\mu + \partial_\mu^\star) - a \partial_\mu^\star \partial_\mu \} \right] \psi \right\}$

- adding a chemical potential $S \rightarrow S + i\tau_3 \bar{\Psi} \Psi$
- action becomes complex, MC methods not possible
- partial solution: reweighting

The Schwinger model Hamiltonian

(Irving and Thomas, Nucl.Phys.B215 [FS7] (1983) 23)

Recent paper:

L. Tagliacozzo, A. Celi, A. Zamora, M. Lewenstein, *Optical Abelian Lattice Gauge Theories*, arXiv:1205.0496

Free continuum Hamiltonian

$$H = \int dx \Psi^{\dagger} (i\alpha \cdot \partial/\partial x + m_f \beta) \Psi$$
$$\alpha = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \beta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

fermion field: $\Psi = \begin{pmatrix} b \\ d^{\dagger} \end{pmatrix}$

with b^{\dagger} (d^{\dagger}) creates fermion (antifermion)

Wilson discretization, derivative $(x \rightarrow j \cdot a)$

 $\alpha \cdot \partial / \partial x \Psi \to \frac{1}{2a} \left[\alpha \cdot \left(\Psi_{j+1} - \Psi_{j-1} + i\beta \cdot \left(\Psi_{j+1} + \Psi_{j-1} - 2\Psi_j \right) \right] \right]$

2-component fermion field $\Psi_j =$

$$\left(\begin{array}{c} \Psi_{j}^{(1)} \\ \Psi_{j}^{(2)} \end{array}\right)$$

"pseudofermion" description: $\Phi_j = \Psi_j^{(1)}$, $\bar{\Phi}_j = i \Psi_j^{\dagger(1)}$

$$H_{\text{Wilson}} = \frac{1}{2a} \left\{ \sum_{j} \left(\bar{\Phi}_{j+1}^{\dagger} \Phi_{j}^{\dagger} - \Phi_{j+1} \bar{\Phi}_{j}^{\dagger} - \bar{\Phi}_{j+1}^{\dagger} \bar{\Phi}_{j}^{\dagger} + \Phi_{j+1} \Phi_{j}^{\dagger} \right) + \text{h.c.} \right.$$
$$+ 2(m_{f}a + 1)(\Phi_{j}^{\dagger} \Phi_{j} + \bar{\Phi}_{j}^{\dagger} \bar{\Phi}_{j}) \right\}$$

vacuum: $| 0 0 0 0 0 0 \rangle = | 1 0 0 1 0 0 \rangle$

Staggered (Kogut-Susskind) discretization

ightarrow associate

upper components $\Psi_{i}^{(1)}$ with *even* lattice sites

lower components $\Psi_{j}^{(2)}$ with *odd* lattice sites

 \Rightarrow introduce single component field Φ_j with $\{\Phi_j^{\dagger}, \Phi_{j'}\} = \delta_{j,j'}$

can use naive derivative: $\partial/\partial x \Phi \rightarrow \frac{1}{2a} \left[\Phi_{j+1} - \Phi_{j-1} \right]$

special trick for staggered fermions: Jordan-Wigner transformation

 $\Phi(j) = \prod_{j < n} [i\sigma_3]\sigma^-(n)$ $\Phi^{\dagger}(j) = \prod_{j < n} [-i\sigma_3]\sigma^+(n)$

 \rightarrow allows for a direct matrix representation of Hamiltonian

Adding gauge fields

$$H = \int dx \Psi^{\dagger} (i\alpha \cdot \partial / \partial x - gA_x + m_f \beta) \Psi + \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

As in the pathintegral: introduce parallel transporters

$$U_x(j) = \exp\left\{ig \int_{ja}^{(j+1)a} A_x(x)dx\right\}$$

for Schwinger model: just a phase factor

 $U_x(j) = e^{i\theta(n)}$

Implementing gauge fields

temporal gauge: $A_t = 0 \Rightarrow F_{t,x}(j) = \partial_t A_x(j)$

energy:

$$E(j) = F_{t,x}(j)$$
, vacuum : $E(j)|0\rangle = 0$

lattice gauge fields $U_x(j)$ introduce a ladder space:

$$U_x(j)^l |0\rangle = |j\rangle_j , \ E(j)|l\rangle_j = l|l\rangle_l$$

Field strength tensor

$$\frac{1}{4}F_{\mu\nu}F^{\mu\nu}dx \to \frac{1}{2}g^2a\sum_j E^2(j)$$

Observables

- bound "positronium" states:
 - vector state:

$$v\rangle = \frac{1}{\sqrt{N}}\sum_{j}^{N} \left[\Phi^{\dagger}(j)e^{i\theta(n)}\Phi(j+1) + \text{h.c.}\right]|0\rangle$$

- scalar state:

$$|s\rangle = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} [\Phi^{\dagger}(j)e^{i\theta(n)}\Phi(j+1) - \text{h.c.}]|0\rangle$$

• average electric field:

$$\Gamma = \frac{1}{N} \sum_{j} E(j)$$

• condensates:

$$\Gamma^{5} = \langle i\bar{\Psi}\sigma_{3}\Psi/g \rangle \propto \langle \sum_{j} \left[\Phi^{\dagger}(j)\Phi(j+1) - h.c. \right] \rangle_{0}$$

DMRG improvement

(Byrnes, Sriganesh, Bursill, Hamer; 2008)

plain Hamiltonian calculations: (Crewther and Hamer, 1980; Irving and Thomas, 1982)

m/g	DMRG	plain H
	2008	1980
0	0.56419(4)	0.56(1)
0.125	0.53950(7)	0.54(1)
0.25	0.51918(5)	0.52(1)
0.5	0.48747(2)	0.50(1)
2	0.398(1)	0.413(5)
8	0.287(8)	0.299(5)
16	0.238(5)	0.245(5)
32	0.194(5)	0.197(5)

Summary

- Progress in solving QCD with lattice techniques
 - dramatic algorithm improvements
 - new supercomputer architectures
- offers possibility to
 - reach continuum limit and chiral limit
 - \rightarrow have computed the baryon spectrum
 - \rightarrow anomalous magnetic moment of muon
- challenges
 - cannot reliably simulate chemical potential
 - real time evolution not controlled
- HELP WANTED

from participants of this workshop(started game with M.C. Bañuls, K. Cichy)