Stability of Gapped Phases

Spyridon Michalakis

Joint work with Justyna Pytel - Oregon State University.

Benasque 2012.

The challenge...

Prove that gapped quantum phases are stable at zero temperature.

What does it mean to be a stable phase?

Splitting groundstate degeneracy.

Example

1 Consider the $N \times N$ Ising Hamiltonian H_N and a perturbation Δ_N :

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z, \quad \Delta_N = \delta_N \sum_p \sigma_p^z, \quad \delta_N \sim 1/N^2.$$

Splitting groundstate degeneracy.

Example

1 Consider the $N \times N$ Ising Hamiltonian H_N and a perturbation Δ_N :

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z, \quad \Delta_N = \delta_N \sum_p \sigma_p^z, \quad \delta_N \sim 1/N^2.$$

2 The groundstate subspace is spanned by $|000\cdots 0\rangle$ and $|111\cdots 1\rangle$, with spectral gap 1.

Splitting groundstate degeneracy.

Example

1 Consider the $N \times N$ Ising Hamiltonian H_N and a perturbation Δ_N :

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z, \quad \Delta_N = \delta_N \sum_p \sigma_p^z, \quad \delta_N \sim 1/N^2.$$

2 The groundstate subspace is spanned by $|000\cdots 0\rangle$ and $|111\cdots 1\rangle$, with spectral gap 1.

3 $H'_N = H_N - \Delta_N$ has unique groundstate $|000 \cdots 0\rangle$, with $|111 \cdots 1\rangle$ having energy of order 1.

Splitting groundstate degeneracy.

Example

1 Consider the $N \times N$ Ising Hamiltonian H_N and a perturbation Δ_N :

$$H_N = -\sum_{p \sim q} \sigma_p^z \otimes \sigma_q^z, \quad \Delta_N = \delta_N \sum_p \sigma_p^z, \quad \delta_N \sim 1/N^2.$$

- 2 The groundstate subspace is spanned by $|000\cdots0\rangle$ and $|111\cdots1\rangle$, with spectral gap 1.
- 3 $H'_N = H_N \Delta_N$ has unique groundstate $|000 \cdots 0\rangle$, with $|111 \cdots 1\rangle$ having energy of order 1.
- 4 Good classical memory, bad quantum memory: Encoded state $\begin{vmatrix} + \rangle = |000...0\rangle + |111...1\rangle \text{ flips to} \\
 |-\rangle = |000...0\rangle - |111...1\rangle, \text{ since} \\
 e^{itH'_N} | + \rangle \sim |000...0\rangle + e^{it} |111...1\rangle.$

3/26

So... how do we protect against splitting of the groundstates?

Topological Quantum Order.

Macroscopic indistinguishability of groundstates.

TQO: No two groundstates can be distinguished locally:

$$\langle \psi_{0} | O_{local} | \psi_{0} \rangle = \langle \phi_{0} | O_{local} | \phi_{0} \rangle = c(O_{local}).$$
(1)

Note: Every Hamiltonian with a **unique groundstate** satisfies the above condition trivially - **nothing to distinguish**...

Ising vs. Kitaev: 0-1.

1 The Ising Hamiltonian does not satisfy the TQO condition.

Ising vs. Kitaev: 0-1.

- 1 The Ising Hamiltonian does not satisfy the TQO condition.
- 2 Recall **TQO** $\implies \langle \psi_{\mathbf{0}} | \mathbf{O}_{\mathsf{local}} | \psi_{\mathbf{0}} \rangle = \langle \phi_{\mathbf{0}} | \mathbf{O}_{\mathsf{local}} | \phi_{\mathbf{0}} \rangle = \mathbf{c}(\mathbf{O}_{\mathsf{local}}).$ But, $\langle 000 \cdots 0 | \sigma_{p}^{z} | 000 \cdots 0 \rangle = 1$ and $\langle 111 \cdots 1 | \sigma_{p}^{z} | 111 \cdots 1 \rangle = -1.$

Ising vs. Kitaev: 0-1.

- 1 The Ising Hamiltonian does not satisfy the TQO condition.
- 2 Recall **TQO** $\implies \langle \psi_{\mathbf{0}} | \mathbf{O}_{\mathsf{local}} | \psi_{\mathbf{0}} \rangle = \langle \phi_{\mathbf{0}} | \mathbf{O}_{\mathsf{local}} | \phi_{\mathbf{0}} \rangle = \mathbf{c}(\mathbf{O}_{\mathsf{local}}).$ But, $\langle 000 \cdots 0 | \sigma_{p}^{z} | 000 \cdots 0 \rangle = 1$ and $\langle 111 \cdots 1 | \sigma_{p}^{z} | 111 \cdots 1 \rangle = -1.$
- 3 It is no coincidence $\sum_{p} \sigma_{p}^{z}$ is used to split the groundstate subspace.

Ising vs. Kitaev: 0-1.

- 1 The Ising Hamiltonian does not satisfy the TQO condition.
- 2 Recall **TQO** $\implies \langle \psi_{\mathbf{0}} | \mathbf{O}_{\mathsf{local}} | \psi_{\mathbf{0}} \rangle = \langle \phi_{\mathbf{0}} | \mathbf{O}_{\mathsf{local}} | \phi_{\mathbf{0}} \rangle = \mathbf{c}(\mathbf{O}_{\mathsf{local}}).$ But, $\langle 000 \cdots 0 | \sigma_{p}^{z} | 000 \cdots 0 \rangle = 1$ and $\langle 111 \cdots 1 | \sigma_{p}^{z} | 111 \cdots 1 \rangle = -1.$
- 3 It is no coincidence $\sum_{p} \sigma_{p}^{z}$ is used to split the groundstate subspace.
- 4 Kitaev's Toric Code, a four-fold degenerate groundstate subspace, satisfies the TQO condition.

So... is the toric code stable?

The toric code...

Plaquettes have $B_p = \prod_{j \in \text{edges}(p)} \sigma_j^z$ and stars have $A_s = \prod_{j \in \text{star(s)}} \sigma_j^x$. Note that $[\mathbf{A}_s, \mathbf{B}_p] = \mathbf{0}$ for all s and p.

Kitaev's Toric Code

The toric code is a stable topological phase.

Example

The standard toric code model is defined by the Hamiltonian:

$$H_{tc} = -\sum_{p} B_{p} - \sum_{s} A_{s},$$

where qubits live on the edges of a lattice on a torus.

Lowest-energy subspace P₀ (toric code) has B_p = 1, A_s = 1 for all p and s. That is, for any ground state |Ψ₀⟩ we have:

$$B_{\rho} |\Psi_0\rangle = A_s |\Psi_0\rangle = |\Psi_0\rangle.$$
 stabilizing property (2)

Kitaev's Toric Code

The toric code is a stable topological phase.

Example

The standard toric code model is defined by the Hamiltonian:

$$H_{tc} = -\sum_{p} B_{p} - \sum_{s} A_{s},$$

where qubits live on the edges of a lattice on a torus.

■ Lowest-energy subspace P₀ (toric code) has B_p = 1, A_s = 1 for all p and s. That is, for any ground state |Ψ₀⟩ we have:

$$B_{p}|\Psi_{0}\rangle = A_{s}|\Psi_{0}\rangle = |\Psi_{0}\rangle.$$
 stabilizing property (2)

There are 4 such groundstates on the torus, distinguished only through macroscopic string operators.

Breaking the Toric Code

Example

$$H_0 = -\sum_s A_s - \sum_{p\sim p'} B_p \cdot B_{p'} - B_0.$$

Groundstate subspace P_0 is still the toric code $(A_s = 1, B_p = 1)$.

Breaking the Toric Code

Example

$$H_0 = -\sum_s A_s - \sum_{p\sim p'} B_p \cdot B_{p'} - B_0.$$

Groundstate subspace P_0 is still the toric code $(A_s = 1, B_p = 1)$.

This gapped Hamiltonian does not have a stable spectral gap!

Breaking the Toric Code

Example

$$H_0 = -\sum_s A_s - \sum_{p\sim p'} B_p \cdot B_{p'} - B_0.$$

- Groundstate subspace P_0 is still the toric code $(A_s = 1, B_p = 1)$.
- This gapped Hamiltonian does not have a stable spectral gap!
- **Perturb** H_0 by adding the vanishing **B-field**: $\delta_{\Lambda} \sum_{p} B_{p}$, with $\delta_{\Lambda} \sim 1/|\Lambda|$ and Λ the lattice (torus) on which H_0 is defined.

Breaking the Toric Code

Example

$$H_0=-\sum_s A_s-\sum_{p\sim p'} B_p\cdot B_{p'}-B_0.$$

- Groundstate subspace P_0 is still the toric code $(A_s = 1, B_p = 1)$.
- This gapped Hamiltonian does not have a stable spectral gap!
- **Perturb** H_0 by adding the vanishing **B-field**: $\delta_{\Lambda} \sum_{p} B_{p}$, with $\delta_{\Lambda} \sim 1/|\Lambda|$ and Λ the lattice (torus) on which H_0 is defined.
- The subspace $A_s = 1$, $B_p = -1$, becomes **new groundstate space**.

Distinguishability implies instability!

Hamiltonians are **unstable** because **local order parameters** can act as perturbations to **split the groundstate subspace**, or **close the gap** between **groundstates** and **local**, **low-energy excitations**.

But, can we prove that?

Yes! For an important class of gapped Hamiltonians!

Frustration-free Hamiltonians.

Definition

1 We say $H_0 = \sum_{u \in \Lambda} Q_u$ is frustration-free, if the groundstate subspace P_0 satisfies:

$$\mathbf{Q}_{\mathbf{u}}\mathbf{P}_{\mathbf{0}} = \lambda_{\mathbf{u}}\mathbf{P}_{\mathbf{0}}, \quad \forall \mathbf{u} \in \mathbf{\Lambda} \subset \mathbb{Z}^{\mathbf{d}}$$

where λ_u is the smallest eigenvalue of Q_u .

Frustration-free Hamiltonians.

Definition

1 We say $H_0 = \sum_{u \in \Lambda} Q_u$ is frustration-free, if the groundstate subspace P_0 satisfies:

$$\mathbf{Q}_{\mathbf{u}}\mathbf{P}_{\mathbf{0}} = \lambda_{\mathbf{u}}\mathbf{P}_{\mathbf{0}}, \quad \forall \mathbf{u} \in \mathbf{\Lambda} \subset \mathbb{Z}^{\mathbf{d}}$$

where λ_u is the **smallest eigenvalue** of Q_u .

2 NOT all COMMUTING Hamiltonians are FRUSTRATION-FREE! Take 3 qubits on the vertices {u, v, w} of a triangle, with Ising Hamiltonian H_Δ = σ^z_u ⊗ σ^z_v + σ^z_v ⊗ σ^z_w + σ^z_u ⊗ σ^z_w. Since σ^z_u ⊗ σ^z_w = (σ^z_u ⊗ σ^z_v) · (σ^z_v ⊗ σ^z_w), it is impossible to have common groundstate for all three terms.

Frustration-free Hamiltonians.

Definition

1 We say $H_0 = \sum_{u \in \Lambda} Q_u$ is frustration-free, if the groundstate subspace P_0 satisfies:

$$\mathbf{Q}_{\mathbf{u}}\mathbf{P}_{\mathbf{0}} = \lambda_{\mathbf{u}}\mathbf{P}_{\mathbf{0}}, \quad \forall \mathbf{u} \in \mathbf{\Lambda} \subset \mathbb{Z}^{\mathbf{d}}$$

where λ_u is the **smallest eigenvalue** of Q_u .

- 2 NOT all COMMUTING Hamiltonians are FRUSTRATION-FREE! Take 3 qubits on the vertices {u, v, w} of a triangle, with Ising Hamiltonian H_Δ = σ^z_u ⊗ σ^z_v + σ^z_v ⊗ σ^z_w + σ^z_u ⊗ σ^z_w. Since σ^z_u ⊗ σ^z_w = (σ^z_u ⊗ σ^z_v) · (σ^z_v ⊗ σ^z_w), it is impossible to have common groundstate for all three terms.
- **3 NOT all FRUSTRATION-FREE Hamiltonians are COMMUTING!** Parent Hamiltonians of MPS and PEPS (e.g. AKLT).

The AKLT model.

The groundstate of the spin-1 **AKLT** Hamiltonian $H = \sum_{j} Q_{j,j+1}^{(2)}$. Each Hamiltonian term $Q_{j,j+1}^{(2)}$ projects onto the spin-2 subspace of two spin-1s.

- Any state with reduced density matrix in the spin-0, or spin-1 state of two neighboring spins, will be a groundstate.
- For periodic chains, the above state is the unique groundstate.
 The total spin of two neighboring particles cannot be larger than 1, since the singlet connecting them has total spin 0.

TQO is not enough for stability. Now what?

Focus on Local Groundstates

Every frustration-free Hamiltonian H_0 on $\Lambda \subset \mathbb{Z}^d$ is the extension of another frustration-free Hamiltonian H_B on $B \subset \Lambda$. This implies that the **local** groundstate projector P_B contains the **global** P_0 ; that is, $\mathbf{P}_B \mathbf{P}_0 = \mathbf{P}_0$.

Stability needs...

Local Groundstate Indistinguishability.

Local-TQO: H₀ satisfies **Local-TQO**, if there exists a **rapidly-decaying** function $\Delta_0(\ell)$, such that: $\|\rho_A^1 - \rho_A^2\|_1 \le \Delta_0(\ell)$, (3) where $\rho_A^i = \operatorname{Tr}_{A^c} |\psi_{B(\ell)}^i\rangle \langle \psi_{B(\ell)}^i|$, i = 1, 2 and $P_{B(\ell)} |\psi_{B(\ell)}^i\rangle = |\psi_{B(\ell)}^i\rangle$. Here, $B = B_u(r)$, $r \le L^*$ and $B(\ell) := B_u(r + \ell)$. ■ Local-TQO implies that groundstates on $B(\ell)$ are identical when viewed on the bulk B, up to rapidly-decaying error $\Delta_0(\ell)$.

- Local-TQO implies that groundstates on $B(\ell)$ are identical when viewed on the bulk *B*, up to rapidly-decaying error $\Delta_0(\ell)$.
- This is a property of the local parent Hamiltonians, not of the global groundstate subspace!

- Local-TQO implies that groundstates on $B(\ell)$ are identical when viewed on the bulk *B*, up to rapidly-decaying error $\Delta_0(\ell)$.
- This is a property of the local parent Hamiltonians, not of the global groundstate subspace!
- So focus on parent Hamiltonians constructed using only local information of the global groundstate subspace. Just like parent Hamiltonians of MPS and PEPS.

- **Local-TQO** implies that groundstates on $B(\ell)$ are identical when viewed on the bulk B, up to rapidly-decaying error $\Delta_0(\ell)$.
- This is a property of the local parent Hamiltonians, not of the global groundstate subspace!
- So focus on parent Hamiltonians constructed using only local information of the global groundstate subspace. Just like parent Hamiltonians of MPS and PEPS.
- Parent Hamiltonians of MPS, such as the AKLT model, satisfy **Local-TQO** with **exponentially-decaying** Δ_0 .

Local Gaps.

Definition

Local-Gap: We define H_0 to be **locally gapped** w.r.t. a function $\gamma(r)$, if $H_B \ge \gamma(r)(1 - P_B)$, where $B = B_u(r)$. If $\gamma(r)$ decays at most **polynomially**, we say that H_0 satisfies the **Local-Gap** condition.

Open Problem: Is the **Local-Gap** condition always satisfied if H_0 is a sum of local projections with frustration-free ground-state and a spectral gap?

Open Problem: Does Local-TQO \implies Local-Gap in this setting?

Decaying perturbations...

For each site $u \in \Lambda$, we allow perturbations supported on $B_u(r)$. As the radius of the support increases, the norm of the perturbation decreases rapidly.

The Perturbations: Local decomposition and strength.

Definition

We say that V has strength J and rapid decay f, if we can write

$$V = \sum_{u \in \Lambda} V_u, \quad V_u := \sum_{r \ge 0} V_u(r),$$

such that $V_u(r)$ has support on $B_u(r)$ and $||V_u(r)|| \le J f(r), r \ge 0$.

Theorem

Let H_0 be a frustration-free Hamiltonian satisfying Local-TQO and Local-Gap with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.

Theorem

- Let H_0 be a frustration-free Hamiltonian satisfying Local-TQO and Local-Gap with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.
- Assume periodic-boundary conditions and a spectral gap $\gamma > 0$.

Theorem

- □ Let H_0 be a frustration-free Hamiltonian satisfying Local-TQO and Local-Gap with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.
- Assume periodic-boundary conditions and a spectral gap $\gamma > 0$.
- Let V be a strength J perturbation, with decay f(r).

Theorem

- Let H_0 be a frustration-free Hamiltonian satisfying Local-TQO and Local-Gap with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.
- Assume periodic-boundary conditions and a spectral gap $\gamma > 0$.
- Let V be a strength J perturbation, with decay f(r).
- Then, $H_0 + V$ has spectral gap bounded below by

$$(1-c_0J)\gamma-2J\delta(L),$$

where $c_0 = \sum_{r=1}^{L} r^d \cdot (w(r)/\gamma(r))$, w(r) has rapid decay related to the decay rate of f(r) and $\delta(L)$ has rapid decay related to $\Delta_0(L^*)$.

Theorem

- Let H_0 be a frustration-free Hamiltonian satisfying Local-TQO and Local-Gap with decay given by $\Delta_0(r)$ and $\gamma(r)$, respectively.
- Assume periodic-boundary conditions and a spectral gap $\gamma > 0$.
- Let V be a strength J perturbation, with decay f(r).
- Then, $H_0 + V$ has spectral gap bounded below by

$$(1-c_0J)\gamma-2J\delta(L),$$

where $c_0 = \sum_{r=1}^{L} r^d \cdot (w(r)/\gamma(r))$, w(r) has rapid decay related to the decay rate of f(r) and $\delta(L)$ has rapid decay related to $\Delta_0(L^*)$. **Groundstate splitting** is bounded by $J \cdot \delta(L)$.

Questions?

Figure: Xkcd wisdom.

Thank you!

Assume that s^* is the largest number in [0,1] such that

 $H_s = H_0 + sV$ has gap at least $\gamma/2$ for all $s \in [0, s^*]$.(assume gap)

- Assume that s^* is the largest number in [0, 1] such that $H_s = H_0 + sV$ has gap at least $\gamma/2$ for all $s \in [0, s^*]$.(assume gap)
- Use **energy filtering** transformation to write $H_s = \sum_u Q_u(s)$, where $[Q_u(s), P_0(s)] = 0$ and $Q_u(s)$ is **quasi-local**.(energy-filtering)

- Assume that s^* is the largest number in [0, 1] such that $H_s = H_0 + sV$ has gap at least $\gamma/2$ for all $s \in [0, s^*]$.(assume gap)
- Use energy filtering transformation to write $H_s = \sum_u Q_u(s)$, where $[Q_u(s), P_0(s)] = 0$ and $Q_u(s)$ is quasi-local.(energy-filtering)
- Use the **spectral flow** to **unitarily transform** the gapped family of Hamiltonians H_s into

$$\mathsf{U}_\mathsf{s}^\dagger\mathsf{H}_\mathsf{s}\mathsf{U}_\mathsf{s}=\mathsf{H}_\mathsf{0}+\sum_\mathsf{u}\mathsf{V}_\mathsf{u}',$$

so that $[V'_u, P_0] = 0$ and V'_u is quasi-local. (unitary-transformation)

- Assume that s^* is the largest number in [0, 1] such that $H_s = H_0 + sV$ has gap at least $\gamma/2$ for all $s \in [0, s^*]$.(assume gap)
- Use energy filtering transformation to write $H_s = \sum_u Q_u(s)$, where $[Q_u(s), P_0(s)] = 0$ and $Q_u(s)$ is quasi-local.(energy-filtering)
- Use the **spectral flow** to **unitarily transform** the gapped family of Hamiltonians H_s into

$$\mathsf{U}_\mathsf{s}^\dagger\mathsf{H}_\mathsf{s}\mathsf{U}_\mathsf{s}=\mathsf{H}_\mathsf{0}+\sum_\mathsf{u}\mathsf{V}_\mathsf{u}',$$

so that $[\mathbf{V}'_u, \mathbf{P}_0] = \mathbf{0}$ and V'_u is **quasi-local**. (unitary-transformation) **Decompose** $V'_u = W_u + \Delta_u + E_u \mathbf{1}$, where: $\Delta_u = (V'_u - E_u)P_0$, $W_u = (V'_u - E_u)(1 - P_0)$ and E_u is a constant energy. (energy-shift)

Use **Local-TQO** to prove that $||\Delta_u||$ decays rapidly in L^* . (small-perturbation).

- Use **Local-TQO** to prove that $||\Delta_u||$ decays rapidly in L^* . (small-perturbation).
- Show that W_u is a strength J perturbation with rapid decay w(r), satisfying $W_u(r)P_{B_u(r)} = 0$. (local-annihilation)

- Use **Local-TQO** to prove that $||\Delta_u||$ decays rapidly in L^* . (small-perturbation).
- Show that W_u is a strength J perturbation with rapid decay w(r), satisfying $W_u(r)P_{B_u(r)} = 0$. (local-annihilation)
- □ Combine the **Local-Gap** condition with **local-annihilation** to prove that $|\langle \psi | \sum_{u} W_{u} | \psi \rangle| \le c_0 \cdot J \langle \psi | H_0 | \psi \rangle$, for arbitrary states ψ . (relative-bound)

- Use **Local-TQO** to prove that $||\Delta_u||$ decays rapidly in L^* . (small-perturbation).
- Show that W_u is a strength J perturbation with rapid decay w(r), satisfying $W_u(r)P_{B_u(r)} = 0$. (local-annihilation)
- □ Combine the **Local-Gap** condition with **local-annihilation** to prove that $|\langle \psi | \sum_{u} W_{u} | \psi \rangle| \le c_0 \cdot J \langle \psi | H_0 | \psi \rangle$, for arbitrary states ψ . (relative-bound)
- **Relative-bound** and **small-perturbation** imply that $H_0 + \sum_u (V'_u E_u)$, has spectral gap $\geq (3/4)\gamma$, for $J \leq 1/(5c_0)$.

- Use **Local-TQO** to prove that $||\Delta_u||$ decays rapidly in L^* . (small-perturbation).
- Show that W_u is a strength J perturbation with rapid decay w(r), satisfying $W_u(r)P_{B_u(r)} = 0$. (local-annihilation)
- Combine the **Local-Gap** condition with **local-annihilation** to prove that $|\langle \psi | \sum_{u} W_{u} | \psi \rangle| \leq c_{0} \cdot J \langle \psi | H_{0} | \psi \rangle$, for arbitrary states ψ . (relative-bound)
- **Relative-bound** and **small-perturbation** imply that $H_0 + \sum_u (V'_u E_u)$, has spectral gap $\geq (3/4)\gamma$, for $J \leq 1/(5c_0)$.
- But, $H_0 + \sum_u V'_u E \cdot \mathbf{1}$ and $H_0 + sV$ have equal spectral gap! (unitary transformation + energy-shift)

- Use **Local-TQO** to prove that $||\Delta_u||$ decays rapidly in L^* . (small-perturbation).
- Show that W_u is a strength J perturbation with rapid decay w(r), satisfying $W_u(r)P_{B_u(r)} = 0$. (local-annihilation)
- Combine the **Local-Gap** condition with **local-annihilation** to prove that $|\langle \psi | \sum_{u} W_{u} | \psi \rangle| \leq c_{0} \cdot J \langle \psi | H_{0} | \psi \rangle$, for arbitrary states ψ . (relative-bound)
- **Relative-bound** and **small-perturbation** imply that $H_0 + \sum_u (V'_u E_u)$, has spectral gap $\geq (3/4)\gamma$, for $J \leq 1/(5c_0)$.
- But, $H_0 + \sum_u V'_u E \cdot \mathbf{1}$ and $H_0 + sV$ have equal spectral gap! (unitary transformation + energy-shift)
- □ **Contradiction!** $H_0 + s^*V$ has gap at most $\gamma/2$, by assumption! So, $s^* = 1$, for $J \le 1/(5c_0)$.