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The question The motivation The assumptions

The challenge...

Prove that gapped quantum phases are stable at zero temperature.
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The question The motivation The assumptions

What does it mean to be a stable phase?
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The question The motivation The assumptions

Opening the gap.
Splitting groundstate degeneracy.

Example

1 Consider the N ×N Ising Hamiltonian HN and a perturbation ∆N :

HN = −
∑
p∼q

σz
p ⊗ σz

q , ∆N = δN
∑
p

σz
p , δN ∼ 1/N2.

2 The groundstate subspace is spanned by
∣∣000 · · · 0

〉
and∣∣111 · · · 1

〉
, with spectral gap 1.

3 H ′N = HN −∆N has unique groundstate
∣∣000 · · · 0

〉
, with∣∣111 · · · 1

〉
having energy of order 1.

4 Good classical memory, bad quantum memory: Encoded state∣∣+
〉

=
∣∣000 . . . 0

〉
+
∣∣111 . . . 1

〉
flips to∣∣− 〉 =

∣∣000 . . . 0
〉
−
∣∣111 . . . 1

〉
, since

e itH
′
N

∣∣+
〉
∼
∣∣000 . . . 0

〉
+ e it

∣∣111 . . . 1
〉
.
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The question The motivation The assumptions

So... how do we protect against splitting of the groundstates?
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The question The motivation The assumptions

Topological Quantum Order.

Macroscopic indistinguishability of groundstates.

TQO: No two groundstates can be distinguished locally:

〈ψ0|Olocal

∣∣ψ0

〉
= 〈φ0|Olocal

∣∣φ0

〉
= c(Olocal). (1)

Note: Every Hamiltonian with a unique groundstate satisfies
the above condition trivially - nothing to distinguish...
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The question The motivation The assumptions

Examples of Topological Quantum Order and its absence.

Ising vs. Kitaev: 0-1.

1 The Ising Hamiltonian does not satisfy the TQO condition.

2 Recall TQO =⇒ 〈ψ0|Olocal

∣∣ψ0

〉
= 〈φ0|Olocal

∣∣φ0

〉
= c(Olocal).

But, 〈000 · · · 0|σz
p

∣∣000 · · · 0
〉

= 1 and 〈111 · · · 1|σz
p

∣∣111 · · · 1
〉

= −1.

3 It is no coincidence
∑

p σ
z
p is used to split the groundstate subspace.

4 Kitaev’s Toric Code, a four-fold degenerate groundstate subspace,
satisfies the TQO condition.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 6/ 26



The question The motivation The assumptions

Examples of Topological Quantum Order and its absence.

Ising vs. Kitaev: 0-1.

1 The Ising Hamiltonian does not satisfy the TQO condition.

2 Recall TQO =⇒ 〈ψ0|Olocal

∣∣ψ0

〉
= 〈φ0|Olocal

∣∣φ0

〉
= c(Olocal).

But, 〈000 · · · 0|σz
p

∣∣000 · · · 0
〉

= 1 and 〈111 · · · 1|σz
p

∣∣111 · · · 1
〉

= −1.

3 It is no coincidence
∑

p σ
z
p is used to split the groundstate subspace.

4 Kitaev’s Toric Code, a four-fold degenerate groundstate subspace,
satisfies the TQO condition.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 6/ 26



The question The motivation The assumptions

Examples of Topological Quantum Order and its absence.

Ising vs. Kitaev: 0-1.

1 The Ising Hamiltonian does not satisfy the TQO condition.

2 Recall TQO =⇒ 〈ψ0|Olocal

∣∣ψ0

〉
= 〈φ0|Olocal

∣∣φ0

〉
= c(Olocal).

But, 〈000 · · · 0|σz
p

∣∣000 · · · 0
〉

= 1 and 〈111 · · · 1|σz
p

∣∣111 · · · 1
〉

= −1.

3 It is no coincidence
∑

p σ
z
p is used to split the groundstate subspace.

4 Kitaev’s Toric Code, a four-fold degenerate groundstate subspace,
satisfies the TQO condition.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 6/ 26



The question The motivation The assumptions

Examples of Topological Quantum Order and its absence.

Ising vs. Kitaev: 0-1.

1 The Ising Hamiltonian does not satisfy the TQO condition.

2 Recall TQO =⇒ 〈ψ0|Olocal

∣∣ψ0

〉
= 〈φ0|Olocal

∣∣φ0

〉
= c(Olocal).

But, 〈000 · · · 0|σz
p

∣∣000 · · · 0
〉

= 1 and 〈111 · · · 1|σz
p

∣∣111 · · · 1
〉

= −1.

3 It is no coincidence
∑

p σ
z
p is used to split the groundstate subspace.

4 Kitaev’s Toric Code, a four-fold degenerate groundstate subspace,
satisfies the TQO condition.

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 6/ 26



The question The motivation The assumptions

So... is the toric code stable?

Spyridon Michalakis Caltech

Stability of Frustration-Free Hamiltonians 7/ 26



The question The motivation The assumptions

The toric code...

Plaquettes have Bp =
∏

j∈edges(p) σ
z
j and stars have As =

∏
j∈star(s) σ

x
j .

Note that [As,Bp] = 0 for all s and p.
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The question The motivation The assumptions

Kitaev’s Toric Code

The toric code is a stable topological phase.

Example

The standard toric code model is defined by the Hamiltonian:

Htc = −
∑
p

Bp −
∑
s

As ,

where qubits live on the edges of a lattice on a torus.

Lowest-energy subspace P0 (toric code) has Bp = 1, As = 1 for all p
and s. That is, for any ground state

∣∣Ψ0

〉
we have:

Bp

∣∣Ψ0

〉
= As

∣∣Ψ0

〉
=
∣∣Ψ0

〉
. stabilizing property (2)

There are 4 such groundstates on the torus, distinguished only
through macroscopic string operators.
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The question The motivation The assumptions

Closing the spectral gap.

Breaking the Toric Code

Example

H0 = −
∑
s

As −
∑
p∼p′

Bp · Bp′ − B0.

Groundstate subspace P0 is still the toric code (As = 1,Bp = 1).

This gapped Hamiltonian does not have a stable spectral gap!

Perturb H0 by adding the vanishing B-field: δΛ

∑
p Bp, with

δΛ ∼ 1/|Λ| and Λ the lattice (torus) on which H0 is defined.

The subspace As = 1,Bp = −1, becomes new groundstate space.
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The question The motivation The assumptions

Distinguishability implies instability!

Hamiltonians are unstable because local order parameters can act as
perturbations to split the groundstate subspace, or close the gap
between groundstates and local, low-energy excitations.
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The question The motivation The assumptions

But, can we prove that?
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The question The motivation The assumptions

Yes! For an important class of gapped Hamiltonians!
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The question The motivation The assumptions

Frustration-free Hamiltonians.

Definition

1 We say H0 =
∑

u∈Λ Qu is frustration-free, if the groundstate
subspace P0 satisfies:

QuP0 = λuP0, ∀u ∈ Λ ⊂ Zd

where λu is the smallest eigenvalue of Qu.

2 NOT all COMMUTING Hamiltonians are FRUSTRATION-FREE!
Take 3 qubits on the vertices {u, v ,w} of a triangle, with Ising
Hamiltonian H4 = σz

u ⊗ σz
v + σz

v ⊗ σz
w + σz

u ⊗ σz
w.

Since σz
u ⊗ σz

w = (σz
u ⊗ σz

v ) · (σz
v ⊗ σz

w ), it is impossible to have
common groundstate for all three terms.

3 NOT all FRUSTRATION-FREE Hamiltonians are COMMUTING!
Parent Hamiltonians of MPS and PEPS (e.g. AKLT).
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The question The motivation The assumptions

The AKLT model.

The groundstate of the spin-1 AKLT Hamiltonian H =
∑

j Q
(2)
j,j+1.

Each Hamiltonian term Q
(2)
j,j+1 projects onto the spin-2 subspace of two spin-1s.

Any state with reduced density matrix in the spin-0, or spin-1 state
of two neighboring spins, will be a groundstate.

For periodic chains, the above state is the unique groundstate.
The total spin of two neighboring particles cannot be larger than 1,
since the singlet connecting them has total spin 0.
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The question The motivation The assumptions

TQO is not enough for stability. Now what?
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The question The motivation The assumptions

Focus on Local Groundstates

Every frustration-free Hamiltonian H0 on Λ ⊂ Zd is the extension of another

frustration-free Hamiltonian HB on B ⊂ Λ. This implies that the local

groundstate projector PB contains the global P0; that is, PBP0 = P0.
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The question The motivation The assumptions

Stability needs...

Local Groundstate Indistinguishability.

Local-TQO: H0 satisfies Local-TQO, if there exists a rapidly-decaying
function ∆0(`), such that:

‖ρ1
A − ρ2

A‖1 ≤ ∆0(`), (3)

where ρiA = TrAc |ψi
B(`)〉〈ψ

i
B(`)|, i = 1, 2 and

PB(`)

∣∣ψi
B(`)

〉
=
∣∣ψi

B(`)

〉
.

Here, B = Bu(r), r ≤ L∗ and B(`) := Bu(r + `).
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The question The motivation The assumptions

Local-TQO implies that groundstates on B(`) are identical when
viewed on the bulk B, up to rapidly-decaying error ∆0(`).

This is a property of the local parent Hamiltonians, not of the
global groundstate subspace!

So focus on parent Hamiltonians constructed using only local
information of the global groundstate subspace. Just like parent
Hamiltonians of MPS and PEPS.

Parent Hamiltonians of MPS, such as the AKLT model, satisfy
Local-TQO with exponentially-decaying ∆0.
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The question The motivation The assumptions

Local Gaps.

Definition

Local-Gap: We define H0 to be locally gapped w.r.t. a function
γ(r), if HB ≥ γ(r)(1− PB), where B = Bu(r). If γ(r)
decays at most polynomially, we say that H0 satisfies
the Local-Gap condition.

Open Problem: Is the Local-Gap condition always satisfied if H0 is a
sum of local projections with frustration-free ground-
state and a spectral gap?

Open Problem: Does Local-TQO =⇒ Local-Gap in this setting?
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The question The motivation The assumptions

Decaying perturbations...

For each site u ∈ Λ, we allow perturbations supported on Bu(r). As the radius

of the support increases, the norm of the perturbation decreases rapidly.
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The question The motivation The assumptions

The Perturbations: Local decomposition and strength.

Definition
We say that V has strength J and rapid decay f , if we can write

V =
∑
u∈Λ

Vu, Vu :=
∑
r≥0

Vu(r),

such that Vu(r) has support on Bu(r) and ‖Vu(r)‖ ≤ J f (r), r ≥ 0.
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The main result.

Theorem

Let H0 be a frustration-free Hamiltonian satisfying Local-TQO
and Local-Gap with decay given by ∆0(r) and γ(r), respectively.

Assume periodic-boundary conditions and a spectral gap γ > 0.

Let V be a strength J perturbation, with decay f (r).

Then, H0 + V has spectral gap bounded below by

(1− c0J)γ − 2J δ(L),

where c0 =
∑L

r=1 r
d ·
(
w(r)/γ(r)

)
, w(r) has rapid decay related to

the decay rate of f (r) and δ(L) has rapid decay related to ∆0(L∗).

Groundstate splitting is bounded by J · δ(L).
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Questions?

Figure: Xkcd wisdom.

Thank you!
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The proof

Overview of the proof...

Assume that s∗ is the largest number in [0, 1] such that
Hs = H0 + sV has gap at least γ/2 for all s ∈ [0, s∗].(assume gap)

Use energy filtering transformation to write Hs =
∑

u Qu(s), where
[Qu(s),P0(s)] = 0 and Qu(s) is quasi-local.(energy-filtering)

Use the spectral flow to unitarily transform the gapped family of
Hamiltonians Hs into

U†s HsUs = H0 +
∑

u

V′u,

so that [V′u,P0] = 0 and V ′u is quasi-local. (unitary-transformation)

Decompose V ′u = Wu + ∆u + Eu11, where:

∆u = (V ′
u − Eu)P0,

Wu = (V ′
u − Eu)(1− P0) and

Eu is a constant energy. (energy-shift)
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The proof

Overview of the proof...

Use Local-TQO to prove that ‖∆u‖ decays rapidly in L∗.
(small-perturbation).

Show that Wu is a strength J perturbation with rapid decay
w(r), satisfying Wu(r)PBu(r) = 0. (local-annihilation)

Combine the Local-Gap condition with local-annihilation to prove
that | 〈ψ|

∑
u Wu

∣∣ψ〉| ≤ c0 · J 〈ψ|H0

∣∣ψ〉, for arbitrary states ψ.
(relative-bound)

Relative-bound and small-perturbation imply that
H0 +

∑
u(V ′u − Eu), has spectral gap ≥ (3/4)γ, for J ≤ 1/(5c0).

But, H0 +
∑

u V
′
u − E · 11 and H0 + sV have equal spectral gap!

(unitary transformation + energy-shift)

Contradiction! H0 + s∗V has gap at most γ/2, by assumption! So,
s∗ = 1, for J ≤ 1/(5c0).
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