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MPS assumptions for our problem

We consider traslational invariant spin chains, that is, states of the form 

| Ai =
dX

i1,...,iN=1

tr[Ai1 . . . AiN ]|i1 . . . iN i

Ai 2 MD⇥D, d : dimension of the Hilbert space
corresponding to the physical system.
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Ai 2 MD⇥D, d : dimension of the Hilbert space
corresponding to the physical system.

| AiAn MPS          is injective if there exists an L such that for regions of 
size L or larger, different boundary conditions give rise to different 
states.
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Fractional Quantum Hall Effect

It is an emergent phenomenon!

 It shows the limits of Landau 
symmetry breaking theory!

It is a physical phenomenon 
concerning the collective 

behaviour in a two-dimensional 
system of electrons.

 The Hall conductance of 2D 
electrons shows quantised 
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Excitations have a fractional 
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Large fractionalization 
requires large entanglement 

Let | i be a spin J, U(1) invariant MPS with magnetization per particle m
verifying J �m =

q
p (p and q relatively prime).

Then there exists a multiple of p, which we denote by p̃, such that the entropy

of the reduced density matrix of any region of size L = kp̃ (8k) verifies

S(⇢L) � log(p) ,

up to a exponentially small correction in N � L.



Large fractionalization 
requires large entanglement 

J �m =

p

q
) S(⇢L) � log(p)

Let | i be a spin J, U(1) invariant MPS with magnetization per particle m
verifying J �m =

q
p (p and q relatively prime).

Then there exists a multiple of p, which we denote by p̃, such that the entropy

of the reduced density matrix of any region of size L = kp̃ (8k) verifies

S(⇢L) � log(p) ,

up to a exponentially small correction in N � L.



Technical details

• For any J, p, q there exists an MPS verifying J �m =

p
q .

• Background: characterization of symmetries of quantum states using

MPS and a generalization of the study of periodic MPS.

• In the thermodynamic limit, di↵erent injective MPS are orthogonal

to one another.

• If | i =

Pn
r=1 �r| ri where | ri are di↵erent injective MPS, then ⇢L is

“close” to �r|�r|2⇢r, being ⇢r the reduced density matrix of | ri.

• When is it true that | i =
Pn

r=1 �r| ri?
We must take into account that:

– A condition on the number of blocks implies a restriction on p(J �
m) = q.

– A condition on m imposes a restriction on p(J �m) = q.

– A condition on p(J �m) = q implies a restriction on the number of

blocks.
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form with D⇥D matrices {Ai} and such that EA has p eigenvalues of modulus
one.

If p is a factor of N , then the state can be written as a superposition of p
p-periodic di↵erent and injective MPS with bonds Di (and with the property
that

P
i Di = D).

Otherwise, if p is not a factor of N , then | Ai = 0.
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Technical details

Let p be the smallest integer such that, after blocking p sites together, | i
has a block-diagonal representation with injective blocks. Then p(J �m) = q,
with q an integer.
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Technical details

Let m be any rational number and p 2 N such that there exist two quantum

states of (local spin J and) pN and (N +1)p particles respectively, for some N,
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integer.
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q
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Large interaction length
implies large entanglement 

Given an MPS | Ai such that, for ↵ =

1
6 , we can upper-bound the ↵-Renyi

entropy by

S↵(⇢
L
A) 

4

5

log ✏+
1

10

(L log d� logL)� log

d

4

where ⇢LA is the reduced density matrix of a region of a certain size L, there
exists another MPS | Ãi with the following properties:

• | Ãi is the unique ground state of a gapped frustration-free Hamil-
tonian with interaction length L

• k⇢LA–⇢LÃk1  ✏.

Up to constants, the bound on the Renyi entropy is of the form L+ log ✏.
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Ã
||1  2

p
2

˜D
p
L�1/4 + (2L+ 3)�

||⇢LA � ⇢L
Ã
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Technical details

• Given a density operator ⇢. If 0 < ↵ < 1, then

log(✏(D))  1� ↵

↵

✓
S↵

(⇢)� log

D

1� ↵

◆
,

where ✏(D) =

P1
i=D+1

�i with �i the nonincreasingly ordered eigenval-

ues of ⇢ and S↵
(⇢), the Renyi entropy of ⇢, is given by S↵

(⇢) =

1

1�↵ log(Tr ⇢↵).

• Every traslational invariant MPS (with the exception of a zero-measure

set) reaches injectivity in the minimal possible region, that is,

blocking L sites whenever L � 2 logD
log d .

• If an MPS has already reached injectivity in L � 1 sites then it is the

unique ground state of a frustration-free Hamiltonian with inter-

action length L.

F.  Verstraete, J.I. Cirac, 
Phys. Rev. B. 73, 094423 (2006).
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Technical details
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Large interaction length
implies large entanglement 

Given an MPS | Ai such that, for ↵ =

1
6 , we can upper-bound the ↵-Renyi

entropy by

S↵(⇢
L
A) 

4

5

log ✏+
1

10

(L log d� logL)� log

d

4

where ⇢LA is the reduced density matrix of a region of a certain size L, there
exists another MPS | Ãi with the following properties:

• | Ãi is the unique ground state of a gapped frustration-free Hamil-
tonian with interaction length L

• k⇢LA–⇢LÃk1  ✏.

Up to constants, the bound on the Renyi entropy is of the form L+ log ✏.



Summary

Fractional
magnetization

Entanglement

Locality

• A large fractionalization in the 
magnetization requires large 
entanglement in a quantum 
system.

• The absence of a local model 
implies a large entanglement in a 
quantum system.

• MPS allow us to work formally 
with these physical concepts and 
deduce consequences in full 
generality.
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