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What is algebraic geometry?
Study of solutions to systems of polynomial equations

Multivariate polynomials f ∈ C[x1, . . . , xn].

The zero locus of a set of polynomials F is a variety V (F).

Given a set S ⊂ Cn, the vanishing ideal of S is

I (S) = {f ∈ C[x1, . . . , xn] : f (a) = 0 ∀a ∈ S}.
Such an ideal has a finite generating set. Closure V (I (S)).

Implicitization: if x = t, y = t2, y − x2 = 0 cuts out the image.

To an algebraic geometer, a tensor network

appearing in statistics, signal processing, computational
complexity, quantum computation, . . .

describes a regular map φ from the parameter space (choice of
tensors at the nodes) to an ambient space.

The image of φ is an algebraic variety of representable
probability distributions, tensor network states, etc.
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Why are geometers interested?

Applications (especially tensor networks in statistics and CS)
have revived classical viewpoints such as invariant theory.

Re-climbing the hierarchy of languages and tools (Italian school,
Zariski-Serre, Grothendieck) as applied problems are unified and
recast in more sophisticated language.

Applied problems have also revealed gaps in our knowledge of
algebraic geometry and driven new theoretical developments

I Objects which are “large”: high-dimensional, many points, but
with many symmetries

I These often stabilize in some sense for large n.
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Tensor Networks
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Bayesian networks: directed factor graph models

Converting a Bayesian network (a) to a directed factor graph (b).
Factor f is the conditional distribution py |x , g is pz|x , and h is pw |z,y .
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(c) is a string diagram for a type of monoidal category; most of the
rest of the talk will be defining this.
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Pfaffian circuit/kernel counting example
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# of satisfying assignments =

〈all possibile assignments, all restrictions〉 = αβ
√

det(x + y)

4096-dimensional space (C2)⊗12 12× 12 matrix
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FIG. 19. Left (a) the circuit realization (internal to the triangle) of the function fW of e.g. (23) which outputs
logical-one given input |x1x2x3〉 = |001〉, |010〉 and |100〉 and logical-zero otherwise. Right (b) reversing time and
setting the output to |1〉 (e.g. post-selection) gives a network representing the W-state. The näıve realization of fW
is given in Figure 21 with an optimized co-algebraic construction shown in Figure 21.

FIG. 20. Näıve CTNS realization of the familiar W-state |001〉+ |010〉+ |100〉. A standard (temporal) acyclic classical
circuit decomposition in terms of the XOR-algebra realizes the function fW of three bits. This function is given a
representation on tensors. As illustrated, the networks input is post selected to |1〉 to realize the desired W-state.

Example 22 (Network realization of |ψ〉 = |01〉+ |10〉+ αk|11〉). We will now design a network to realize
the state |01〉+ |10〉+ αk|11〉. The first step is to write down a function fS such that

fS(0, 1) = fS(1, 0) = fS(1, 1) = 1 (27)

and fS(00) = 0 (in the present case, fS is the logical OR-gate). We post select the network output on |1〉,
which yields the state |01〉 + |10〉+ |11〉, see Figure 23(a). The next step is to realize a diagonal operator,
that acts as identity on all inputs, except |11〉 which gets sent to αk|11〉. To do this, we design a function fd
such that

fd(0, 1) = fd(1, 0) = fd(0, 0) = 0 (28)

and fd(1, 1) = 1 (in the present case, fd is the logical AND-gate). This diagonal, takes the form in Figure
23(b). The final state |ψ〉 = |01〉+ |10〉+ αk|11〉 is realized by connecting both networks, leading to Figure
23(c).

VI. PROOF OF THE MAIN THEOREMS

We are now in a position to state the main theorem of this work. Specifically, we have a constructive
method to realize any quantum state in terms of a categorical tensor network.8 We state and prove the
theorem for the case of qubit. The higher dimensional case of qudits follows from known results that any
d-state switching function can be expressed as a polynomial and realized as a connected network [47, 86, 87].
The theorem can be stated as

8 A corollary of our exhaustive factorization of quantum states into tensor networks is a new type of quantum network
universality proof. To avoid confusion, we point out that past universality proofs in the gate model already imply that the
linear fragment (Figure 3) together with local gates is quantum universal. However, the known universality results clearly
do not provide a method to factor a state into a tensor network! Indeed, the decomposition or factorization of a state into a
tensor network is an entirely different problem which we address here.
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Approximate Dictionary?

Tensor Networks in Physics Graphical Models in Stats/ML

MPS HMM
TTN GMM
PEPS CRF/MRF
MERA ?DBM?
DMRG ??

In Algebraic Statistics we have been studying the right-hand column

often determining the ideal / variety / manifold (invariants)

characteristics of the parameterization map
I e.g. is it generically injective? Singular locus?

generally work in complex projective space
I so pure states are more natural than probabilities

related optimization, contraction, approximation problems
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Algebraic description of MPS

Fix parameter matrices A1, . . . ,Ad .

Ψ =
∑

i1,...,in

tr(Ai1 · · ·Ain)|i1i2 · · · in〉

What are the polynomial relations that hold among the coefficients

Ψi1,...in = tr(Ai1 · · ·Ain)?

That is, the set of polynomials f in the coefficients such that
f (Ψi1,...in) = 0. Organize these invariants into an ideal.

I = {f : f (Ψi1,...in) = 0}

the space of representable states is the variety V (I ) cut out by the
invariants. See [Bray M- 2006] for some of them.
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Possible applications of invariants of TNS?

Simplify the computation of quantities of interest
I e.g. Renyi entropy

Representability and approximation error
I which states/systems can be represented and which cannot?
I bounds on approximation error

Paths of optimization or time evolution on the manifold of
representable states
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Some of the things we think about
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Näıve Bayes / Secant Segre / Tensor Rank

Look at one hiden node in such a network, binary variables

• P1

• P1×P1×P1×P1 ↪→ P15

Segre variety defined by
2× 2 minors of flattenings

of 2× 2× 2× 2 tensor

• • •

��������
•�������

•�����

•
*****

•??????? σ2(P1×P1×P1×P1)
First secant of Segre variety

3× 3 minors of flattenings
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Dimension of secant varieties

Recently [Catalisano, Geramita, Gimigliano 2011] showed
σk(P1)n has the expected dimension

min(kn + k − 1, 2n − 1)

except σ3(P1)4 where it is 13 not 14.

Progress in Palatini 1909, . . . , Alexander Hirschowitz 1995,
2000, CGG 2002,03,05, Abo Ottaviani Peterson 2006, Draisma
2008, others.

Classically studied, revived by applications to statistics, quantum
information, and complexity; shift to higher secants, solution.

So a generic tensor of (C2)⊗n can be written as a sum of d 2n

n+1
e

decomposable tensors, no fewer.
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Representation theory of secant varieties
Raicu (2011) proved the ideal-theoretic GSS [Garcia Stillman
Sturmfels 05] conjecture using representation theory of ideal of
σ2(Pk1 × · · · × Pkn) as a GLk1 × · · ·GLkn-module (progress in
[Landsberg Manivel 04, Landsberg Weyman 07, Allman Rhodes 08]).

SECANT VARIETIES OF SEGRE–VERONESE VARIETIES 15

Definition 3.14. Given a partition µ = (µ1, · · · , µt) ` r, an n-partition λ `n r and a block

M ∈ Udµ , we associate to the element cλ ·M ∈ cλ · Udµ the n-tableau

T = (T 1, · · · , Tn) = T 1 ⊗ · · · ⊗ Tn

of shape λ, obtained as follows. Suppose that the block M has the set αij in its i-th row and

j-th column. Then we set equal to i the entries in the boxes of T j indexed by elements of
αij (recall from Section 2.3 that the boxes of a tableau are indexed canonically: from left to

right and top to bottom). Note that each tableau T j has entries 1, · · · , t, with i appearing
exactly µi · dj times.

Note also that in order to construct the n-tableau T we have made a choice of the ordering
of the rows of M : interchanging rows i and i′ when µi = µi′ should yield the same element

M ∈ Udµ , therefore we identify the corresponding n-tableaux that differ by interchanging
the entries equal to i and i′.

Example 3.15. We let n = 2, d = (2, 1), r = 4, µ = (2, 2) as in Example 3.2, and consider
the 2-partition λ = (λ1, λ2), with λ1 = (5, 3), λ2 = (2, 1, 1). We have

cλ ·
1, 6 1
2, 3 4
4, 5 2
7, 8 3

1 2 2 3 3
1 4 4

⊗
1 3
4
2

cλ ·
2, 3 4
7, 8 3
1, 6 1
4, 5 2

3 1 1 4 4
3 2 2

⊗
3 4
2
1

Let’s write down the action of the map πµ on the tableaux pictured above

πµ


 1 2 2 3 3

1 4 4
⊗

1 3
4
2


 = 1 1 1 2 2

1 2 2
⊗

1 2
2
1

+ 1 2 2 1 1
1 2 2

⊗
1 1
2
2

+ 1 2 2 2 2
1 1 1

⊗
1 2
1
2

.

We collect in the following lemma the basic relations that n-tableaux satisfy.

Lemma 3.16. Fix an n partition λ `n r, and let T be an n-tableau of shape λ. The
following relations hold:

(1) If σ is a permutation of the entries of T that preserves the set of entries in each
column of T , then

σ(T ) = sgn(σ) · T.
In particular, if T has repeated entries in a column, then T = 0.
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Representation theory
Which tensor products Cd1 ⊗ · · · ⊗ Cdn have finitely many orbits
under GL(d1,C)× · · · × GL(dn,C)?
Related to SLOCC-equivalent entanglement classification
Kac (1980), Parfenov (1998, 2001): up to C2 ⊗ C3 ⊗ C6, orbit
representatives and abutment graph

Orbits and their closures in the spaces Ck1 ⊗ · · · ⊗ Ckr 91

presented in Fig. 1, where the indices of vertices of the graph correspond to the
indices of orbits appearing in Theorem 6. The integers on the left-hand side are
the dimensions of the orbits.

At the end of § 2 we prove Theorem 11, which asserts that in all cases under
consideration in our paper the abutment graphs are subgraphs of the abutment
graph for the case (2, 3, 6). This graph is presented in Fig. 2, where the indices
of vertices correspond to the indices of orbits in Theorem 8. The integers on the
left-hand side are the dimensions of the orbits in their dependence on n.

For clarity the results of this paper are collected in Table 0. In this table, for
each case (2, m, n) we indicate the number of orbits of GL2×GLm×GLn and the
degree of the generator for the algebra of invariants of the corresponding group
SL2×SLm×SLn; we also indicate the statements relating to the orbits and the
graphs of abuttings.

Table 0

No. Case (2,m, n)
The number
of orbits of

GL2×GLm×GLn
deg f

Assertion

on the orbits

Assertion on the

abutment graph

1 (2, 2,2) 7 4 Lemma 2 Theorem 11, Fig. 2

2 (2, 2,3) 9 6 Theorem 8 Theorem 11, Fig. 2

3 (2, 2,4) 10 4 Theorem 8 Theorem 11, Fig. 2

4 (2, 2, n), n � 5 10 0 Theorem 8 Theorem 11, Fig. 2

5 (2, 3,3) 18 12 Theorem 6 Theorem 11, Figs. 1, 2

6 (2, 3,4) 24 12 Theorem 8 Theorem 11, Fig. 2

7 (2, 3,5) 26 0 Theorem 8 Theorem 11, Fig. 2

8 (2, 3,6) 27 6 Theorem 8 Theorem 11, Fig. 2

9 (2, 3, n), n � 7 27 0 Theorem 8 Theorem 11, Fig. 2

The main results of the present paper were published (without proofs) in [6].
We use this opportunity to point out that [6] contains two disappointing mistakes,
one of which is a consequence of the other. Namely:

(1) in Theorem 2, the line

(2, 2, n), n � 4, has ten orbits with representatives 1–9, 19

must be replaced by the line

(2, 2, n), n � 4, has ten orbits with representatives 1–7, 11, 13, 19;

(2) accordingly, the figure with the abutment graph should contain no arrow
from vertex 19 to vertex 9, but there should be an arrow from the vertex 19 to
vertex 13 instead.

I would like to express my deep gratitude to my research supervisor É. B. Vinberg
for setting the problem, crucial advice, and constant attention to this research.
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Computational Algebraic Geometry

There are computational tools for algebraic geometry, and many
advances mix computational experiments and theory.

Gröbner basis methods power general purpose software:
Singular, Macaulay 2, CoCoA, (Mathematica, Maple)

I Symbolic term rewriting

Numerical Algebraic Geometry: Numerical methods for
approximating complex solutions of polynomial systems.

I Homotopy continuation (numerical path following).
I Can be used to find isolated solutions or points on each

positive-dimensional irreducible component.
I Can scale to thousands of variables for certain problems.
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Identifiability: uniqueness of parameter estimates

A parameterization of a set of probability distributions is
identifiable if it is injective.

A parameterization of a set of probability distributions is
generically identifiable if it is injective except on a proper
algebraic subvariety of parameter space.

Identifiability questions can be answered with algebraic geometry
(e.g. many recent results in phylogenetics)

A weaker question: What conditions guarantee generic
identifiability up to known symmetries?

A still weaker question: is the dimension of the space of
representable distributions (states) equal to the expected
dimension (number of parameters)? Or are parameters wasted?
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Graphical model on a bipartite graph
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Unnormalized potential is built from node and edge parameters

ψ(v , h) = exp(h>Wv + b>v + c>h).

The probability distribution on the binary random variables is

p(v , h) =
1

Z
·ψ(v , h), Z =

∑

v ,h

ψ(v , h).
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Restricted Boltzmann machines
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Unnormalized fully-observed potential is

ψ(v , h) = exp(h>Wv + b>v + c>h).

The probability distribution on the visible random variables is

p(v) =
1

Z
·
∑

h∈{0,1}k
ψ(v , h), Z =

∑

v ,h

ψ(v , h).
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Restricted Boltzmann machines
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The restricted Boltzmann machine (RBM) is the undirected
graphical model for binary random variables thus specified.

Denote by Mk
n the set of joint distributions as

b ∈ Rn, c ∈ Rk ,W ∈ Rk×n vary.

Mk
n is a subset of the probability simplex ∆2n−1.
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Hadamard Products of Varieties
Given two projective varieties X and Y in Pm, their Hadamard
product X∗Y is the closure of the image of

X × Y 99K Pm , (x , y) 7→ (x0y0 : x1y1 : . . . : xmym).

We also define Hadamard powers X [k] = X ∗ X [k−1].

If M is a subset of the simplex ∆m−1 then M [k] is also defined by
componentwise multiplication followed by rescaling so that the
coordinates sum to one. This is compatible with taking Zariski

closure: M [k] = M
[k]

Lemma
RBM variety and RBM model factor as

V k
n = (V 1

n )[k] and Mk
n = (M1

n )[k].
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RBM as Hadamard product of näıve Bayes
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Representational power of RBMs
Conjecture

The restricted Boltzmann machine has the expected dimension: Mk
n

is a semialgebraic set of dimension min{nk + n + k , 2n − 1} in ∆2n−1.

We can show many special cases and the following general result:

Theorem (Cueto M- Sturmfels)

The restricted Boltzmann machine has the expected dimension

nk + n + k when k < 2n−dlog2(n+1)e

min{nk + n + k , 2n − 1} when k = 2n−dlog2(n+1)e and

2n − 1 when k ≥ 2n−blog2(n+1)c.

Covers most cases of restricted Boltzmann machines in practice,
as those generally satisfy k ≤ 2n−dlog2(n+1)e.
Proof uses tropical geometry, coding theory
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Computational complexity and efficient contraction
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Secant varieties in algebraic complexity theory
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A multilinear operator
T : U ⊗ V → W
is a tensor

The tensor rank min{r : T =
∑r

i=1 ui ⊗ vi ⊗ wi} of

B
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B∗
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��

A∗

WW

M : (A∗ ⊗ B)× (B∗ ⊗ C )→ A∗ ⊗ C
gives the exponent of matrix multiplication.
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Satisfiability and #CSP problems

Given a problem P in conjunctive normal form:

a collection of Boolean variables x1 . . . xm

subject to clauses c1 . . . cp (all must hold, each true or false),
e.g. OR(i) = 1 if i ∈ {001, 010, 100, 011, 101, 110, 111}

Does there exist a satisfying assignment to the variables?

Counting the number of satisfying assignments is computing a
partition function, #P-complete in general.

In [Landsberg, M-, Norine 2012] and [M- 2010], geometric
interpretation and geometrically-motivated generalization of the
holographic circuits of Valiant 04.

Generates new families of efficiently contractable tensor networks

Beyond noninteracting fermionic linear optics
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Binary Variables and NAE clauses

76540123
NAE

76540123
76540123Not-All-Equal Clause //

Binary Variable //

As a tensor, a Boolean predicate is the formal sum of the rows of its
truth table as bitstrings.

OR3 = (|0〉+ |1〉)⊗3 − |000〉

.
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Pfaffian circuit/kernel counting example
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# of satisfying assignments =

〈all possible assignments, all restrictions〉 = αβ
√

det(x + y)

4096-dimensional space (C2)⊗12 12× 12 matrix
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Efficient contraction with Pfaffian circuits
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A =

(
1 1
1 −1

)




0 1 −1 1 0 0 0 0 0 0 −1/3 −1/3
−1 0 1 −1 0 0 0 0 −1/3 −1/3 0 0
1 −1 0 1 0 0 −1/3 −1/3 0 0 0 0
−1 1 −1 0 −1/3 −1/3 0 0 0 0 0 0
0 0 0 1/3 0 −1/3 0 0 0 0 0 1
0 0 0 1/3 1/3 0 1 0 0 0 0 0
0 0 1/3 0 0 −1 0 −1/3 0 0 0 0
0 0 1/3 0 0 0 1/3 0 1 0 0 0
0 1/3 0 0 0 0 0 −1 0 −1/3 0 0
0 1/3 0 0 0 0 0 0 1/3 0 1 0

1/3 0 0 0 0 0 0 0 0 −1 0 −1/3
1/3 0 0 0 −1 0 0 0 0 0 1/3 0




25 · ( 6
23

)4 · Pfaff(z̃ + y) = 14 satisfying assignments.
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