Tensor Networks
 in Algebraic Geometry and Statistics

Jason Morton
Penn State
May 10, 2012
Centro de ciencias de Benasque Pedro Pascual

Supported by DARPA N66001-10-1-4040 and FA8650-11-1-7145.

What is algebraic geometry?

Study of solutions to systems of polynomial equations

- Multivariate polynomials $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
- The zero locus of a set of polynomials \mathcal{F} is a variety $V(\mathcal{F})$.
- Given a set $S \subset \mathbb{C}^{n}$, the vanishing ideal of S is

$$
I(S)=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: f(a)=0 \forall a \in S\right\}
$$

Such an ideal has a finite generating set. Closure $V(I(S))$.

- Implicitization: if $x=t, y=t^{2}, y-x^{2}=0$ cuts out the image.

To an algebraic geometer, a tensor network

- appearing in statistics, signal processing, computational complexity, quantum computation, ...
- describes a regular map ϕ from the parameter space (choice of tensors at the nodes) to an ambient space.
- The image of ϕ is an algebraic variety of representable probability distributions, tensor network states, etc.

Why are geometers interested?

- Applications (especially tensor networks in statistics and CS) have revived classical viewpoints such as invariant theory.
- Re-climbing the hierarchy of languages and tools (Italian school, Zariski-Serre, Grothendieck) as applied problems are unified and recast in more sophisticated language.
- Applied problems have also revealed gaps in our knowledge of algebraic geometry and driven new theoretical developments
- Objects which are "large": high-dimensional, many points, but with many symmetries
- These often stabilize in some sense for large n.

Tensor Networks

ML and Statistics
Complexity Theory
Quantum Information

Approximate Dictionary?

Tensor Networks in Physics	Graphical Models in Stats/ML
MPS	HMM
TTN	GMM
PEPS	CRF/MRF
MERA	?DBM?
DMRG	$? ?$

In Algebraic Statistics we have been studying the right-hand column

- often determining the ideal / variety / manifold (invariants)
- characteristics of the parameterization map
- e.g. is it generically injective? Singular locus?
- generally work in complex projective space
- so pure states are more natural than probabilities
- related optimization, contraction, approximation problems

Algebraic description of MPS

Fix parameter matrices A_{1}, \ldots, A_{d}.

$$
\Psi=\sum_{i_{1}, \ldots, i_{n}} \operatorname{tr}\left(A_{i_{1}} \cdots A_{i_{n}}\right)\left|i_{1} i_{2} \cdots i_{n}\right\rangle
$$

What are the polynomial relations that hold among the coefficients

$$
\Psi_{i_{1}, \ldots, i_{n}}=\operatorname{tr}\left(A_{i_{1}} \cdots A_{i_{n}}\right) ?
$$

That is, the set of polynomials f in the coefficients such that $f\left(\Psi_{i_{1}, \ldots, i_{n}}\right)=0$. Organize these invariants into an ideal.

$$
I=\left\{f: f\left(\Psi_{i_{1}, \ldots, i_{n}}\right)=0\right\}
$$

the space of representable states is the variety $V(I)$ cut out by the invariants. See [Bray M- 2006] for some of them.

Possible applications of invariants of TNS?

- Simplify the computation of quantities of interest
- e.g. Renyi entropy
- Representability and approximation error
- which states/systems can be represented and which cannot?
- bounds on approximation error
- Paths of optimization or time evolution on the manifold of representable states

Some of the things we think about

Naïve Bayes / Secant Segre / Tensor Rank

Look at one hiden node in such a network, binary variables

$$
\mathbb{P}^{1}
$$

$$
\begin{gathered}
\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{15} \\
\text { Segre variety defined by } \\
2 \times 2 \text { minors of flattenings } \\
\text { of } 2 \times 2 \times 2 \times 2 \text { tensor }
\end{gathered}
$$

$$
\sigma_{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right)
$$

First secant of Segre variety
3×3 minors of flattenings

Dimension of secant varieties

- Recently [Catalisano, Geramita, Gimigliano 2011] showed $\sigma_{k}\left(\mathbb{P}^{1}\right)^{n}$ has the expected dimension

$$
\min \left(k n+k-1,2^{n}-1\right)
$$

except $\sigma_{3}\left(\mathbb{P}^{1}\right)^{4}$ where it is 13 not 14 .

- Progress in Palatini 1909, Alexander Hirschowitz 1995, 2000, CGG 2002,03,05, Abo Ottaviani Peterson 2006, Draisma 2008, others.
- Classically studied, revived by applications to statistics, quantum information, and complexity; shift to higher secants, solution.
- So a generic tensor of $\left(\mathbb{C}^{2}\right)^{\otimes n}$ can be written as a sum of $\left\lceil\frac{2^{n}}{n+1}\right\rceil$ decomposable tensors, no fewer.

Representation theory of secant varieties

Raicu (2011) proved the ideal-theoretic GSS [Garcia Stillman Sturmfels 05] conjecture using representation theory of ideal of $\sigma_{2}\left(\mathbb{P}^{k_{1}} \times \cdots \times \mathbb{P}^{k_{n}}\right)$ as a $G L_{k_{1}} \times \cdots \mathrm{GL}_{k_{n}}$-module (progress in [Landsberg Manivel 04, Landsberg Weyman 07, Allman Rhodes 08]).

Let's write down the action of the map π_{μ} on the tableaux pictured above

$$
\begin{aligned}
& +\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 2 & 2 & 2 \\
\hline & 1 & 1 & & \begin{array}{|l|l|l|}
\hline 1 & 2 \\
\hline 1 & & \\
\hline 2 &
\end{array} .
\end{array}
\end{aligned}
$$

Representation theory

- Which tensor products $\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{n}}$ have finitely many orbits under $\mathrm{GL}\left(d_{1}, \mathbb{C}\right) \times \cdots \times \mathrm{GL}\left(d_{n}, \mathbb{C}\right)$?
- Related to SLOCC-equivalent entanglement classification
- Kac (1980), Parfenov (1998, 2001): up to $\mathbb{C}^{2} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{6}$, orbit representatives and abutment graph

Case $(2, m, n)$	The number of orbits of $\mathrm{GL}_{2} \times \mathrm{GL}_{m} \times \mathrm{GL}_{n}$	$\operatorname{deg} f$
$(2,2,2)$	7	4
$(2,2,3)$	9	6
$(2,2,4)$	10	4
$(2,2, n), n \geqslant 5$	10	0
$(2,3,3)$	18	12
$(2,3,4)$	24	12
$(2,3,5)$	26	0
$(2,3,6)$	27	6
$(2,3, n), n \geqslant 7$	27	0

Computational Algebraic Geometry

- There are computational tools for algebraic geometry, and many advances mix computational experiments and theory.
- Gröbner basis methods power general purpose software: Singular, Macaulay 2, CoCoA, (Mathematica, Maple)
- Symbolic term rewriting
- Numerical Algebraic Geometry: Numerical methods for approximating complex solutions of polynomial systems.
- Homotopy continuation (numerical path following).
- Can be used to find isolated solutions or points on each positive-dimensional irreducible component.
- Can scale to thousands of variables for certain problems.

Identifiability: uniqueness of parameter estimates

- A parameterization of a set of probability distributions is identifiable if it is injective.
- A parameterization of a set of probability distributions is generically identifiable if it is injective except on a proper algebraic subvariety of parameter space.
- Identifiability questions can be answered with algebraic geometry (e.g. many recent results in phylogenetics)
- A weaker question: What conditions guarantee generic identifiability up to known symmetries?
- A still weaker question: is the dimension of the space of representable distributions (states) equal to the expected dimension (number of parameters)? Or are parameters wasted?

Graphical model on a bipartite graph

Unnormalized potential is built from node and edge parameters

$$
\psi(v, h)=\exp \left(h^{\top} W v+b^{\top} v+c^{\top} h\right)
$$

The probability distribution on the binary random variables is

$$
p(v, h)=\frac{1}{Z} \cdot \psi(v, h), \quad Z=\sum_{v, h} \psi(v, h)
$$

Restricted Boltzmann machines

Unnormalized fully-observed potential is

$$
\psi(v, h)=\exp \left(h^{\top} W v+b^{\top} v+c^{\top} h\right) .
$$

The probability distribution on the visible random variables is

$$
p(v)=\frac{1}{Z} \cdot \sum_{h \in\{0,1\}^{k}} \psi(v, h), \quad Z=\sum_{v, h} \psi(v, h)
$$

Restricted Boltzmann machines

- The restricted Boltzmann machine (RBM) is the undirected graphical model for binary random variables thus specified.
- Denote by M_{n}^{k} the set of joint distributions as $b \in \mathbb{R}^{n}, c \in \mathbb{R}^{k}, W \in \mathbb{R}^{k \times n}$ vary.
- M_{n}^{k} is a subset of the probability simplex $\Delta_{2^{n}-1}$.

Hadamard Products of Varieties

Given two projective varieties X and Y in \mathbb{P}^{m}, their Hadamard product $X * Y$ is the closure of the image of

$$
X \times Y \xrightarrow{ } \quad \mathbb{P}^{m},(x, y) \mapsto\left(x_{0} y_{0}: x_{1} y_{1}: \ldots: x_{m} y_{m}\right)
$$

We also define Hadamard powers $X^{[k]}=X * X^{[k-1]}$.
If M is a subset of the simplex Δ_{m-1} then $M^{[k]}$ is also defined by componentwise multiplication followed by rescaling so that the coordinates sum to one. This is compatible with taking Zariski closure: $\overline{M^{[k]}}=\bar{M}^{[k]}$

Lemma

RBM variety and RBM model factor as

$$
V_{n}^{k}=\left(V_{n}^{1}\right)^{[k]} \quad \text { and } \quad M_{n}^{k}=\left(M_{n}^{1}\right)^{[k]}
$$

RBM as Hadamard product of naïve Bayes

Representational power of RBMs

Conjecture

The restricted Boltzmann machine has the expected dimension: M_{n}^{k} is a semialgebraic set of dimension $\min \left\{n k+n+k, 2^{n}-1\right\}$ in $\Delta_{2^{n}-1}$.

We can show many special cases and the following general result:

Theorem (Cueto M- Sturmfels)

The restricted Boltzmann machine has the expected dimension

- $n k+n+k$ when $k<2^{n-\left\lceil\log _{2}(n+1)\right\rceil}$
- $\min \left\{n k+n+k, 2^{n}-1\right\}$ when $k=2^{n-\left\lceil\log _{2}(n+1)\right\rceil}$ and
- $2^{n}-1$ when $k \geq 2^{n-\left\lfloor\log _{2}(n+1)\right\rfloor}$.
- Covers most cases of restricted Boltzmann machines in practice, as those generally satisfy $k \leq 2^{n-\left\lceil\log _{2}(n+1)\right\rceil}$.
- Proof uses tropical geometry, coding theory

Computational complexity and efficient contraction

Secant varieties in algebraic complexity theory

A multilinear operator

$$
T: U \otimes V \rightarrow W
$$

is a tensor

W

The tensor rank $\min \left\{r: T=\sum_{i=1}^{r} u_{i} \otimes v_{i} \otimes w_{i}\right\}$ of

Satisfiability and \#CSP problems

Given a problem P in conjunctive normal form:

- a collection of Boolean variables $x_{1} \ldots x_{m}$
- subject to clauses $c_{1} \ldots c_{p}$ (all must hold, each true or false), e.g. $O R(i)=1$ if $i \in\{001,010,100,011,101,110,111\}$

Does there exist a satisfying assignment to the variables?

- Counting the number of satisfying assignments is computing a partition function, \#P-complete in general.
- In [Landsberg, M-, Norine 2012] and [M- 2010], geometric interpretation and geometrically-motivated generalization of the holographic circuits of Valiant 04.
- Generates new families of efficiently contractable tensor networks
- Beyond noninteracting fermionic linear optics

Binary Variables and NAE clauses

As a tensor, a Boolean predicate is the formal sum of the rows of its truth table as bitstrings.

$$
O R_{3}=(|0\rangle+|1\rangle)^{\otimes 3}-|000\rangle
$$

Pfaffian circuit/kernel counting example

\# of satisfying assignments $=$
\langle all possible assignments, all restrictions $\rangle=\alpha \beta \sqrt{\operatorname{det}(x+y)}$ 4096-dimensional space $\left(\mathbb{C}^{2}\right)^{\otimes 12} \quad 12 \times 12$ matrix

Efficient contraction with Pfaffian circuits

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$$
\left(\begin{array}{cccccccccccc}
0 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 / 3 & -1 / 3 \\
-1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 / 3 & -1 / 3 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 & 0 & -1 / 3 & -1 / 3 & 0 & 0 & 0 & 0 \\
-1 & 1 & -1 & 0 & -1 / 3 & -1 / 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 3 & 0 & -1 / 3 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & -1 & 0 & -1 / 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 0 & 1 / 3 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 / 3 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 / 3 & 0 & 0 \\
0 & 1 / 3 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 & 0 \\
1 / 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 / 3 \\
1 / 3 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 / 3 & 0
\end{array}\right)
$$

$2^{5} \cdot\left(\frac{6}{2^{3}}\right)^{4} \cdot \operatorname{Pfaff}(\tilde{z}+y)=14$ satisfying assignments.

morton@math.psu.edu www.math.psu.edu/morton/aspsu2012/

