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What is algebraic geometry?

Study of solutions to systems of polynomial equations
@ Multivariate polynomials f € C[xq, ..., x,].
@ The zero locus of a set of polynomials F is a variety V/(F).
@ Given a set S C C", the vanishing ideal of S is

1(S)={f €Cl[xq,...,x,] : f(a) =0Va e S}.

Such an ideal has a finite generating set. Closure V/(/(5)).

e Implicitization: if x = t, y = t?, y — x> = 0 cuts out the image.

To an algebraic geometer, a tensor network

@ appearing in statistics, signal processing, computational
complexity, quantum computation, ...

@ describes a regular map ¢ from the parameter space (choice of
tensors at the nodes) to an ambient space.

@ The image of ¢ is an algebraic variety of representable
probability distributions, tensor network states, etc.
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Why are geometers interested?

@ Applications (especially tensor networks in statistics and CS)
have revived classical viewpoints such as invariant theory.

@ Re-climbing the hierarchy of languages and tools (ltalian school,
Zariski-Serre, Grothendieck) as applied problems are unified and
recast in more sophisticated language.

@ Applied problems have also revealed gaps in our knowledge of
algebraic geometry and driven new theoretical developments

» Objects which are “large”: high-dimensional, many points, but
with many symmetries
» These often stabilize in some sense for large n.

Jason Morton (Penn State) Tensor Networks in Algebraic Geometry 5/10/2012 3/27



Tensor Networks

B

1]
]

( ( ( ( @,
Xl R ad Ak %
QI A o
)Ty g
A NN
VYo YX

Quantum Information

Complexity Theory

ML and Statistics

OOE_/
s
(o] ~ e}
Wi o < |
= =
S El ©
O73«0

Jason Morton (Penn State)

4 /21

5/10/2012

Tensor Networks in Algebraic Geometry



Approximate Dictionary?

Tensor Networks in Physics | Graphical Models in Stats/ML

MPS HMM
TTN GMM
PEPS CRF/MRF
MERA 7DBM?
DMRG 7

In Algebraic Statistics we have been studying the right-hand column
e often determining the ideal / variety / manifold (invariants)
@ characteristics of the parameterization map
» e.g. is it generically injective? Singular locus?
@ generally work in complex projective space
» so pure states are more natural than probabilities
@ related optimization, contraction, approximation problems
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Algebraic description of MPS

Fix parameter matrices Ay, ..., Aq.
V= E tr i ,n |1112 ) >
i15eesin

What are the polynomial relations that hold among the coefficients

v, I JEI’(A,‘1 e A,‘n)?

My

That is, the set of polynomials f in the coefficients such that
f(V;. i) =0. Organize these invariants into an ideal.

[ ={f:f(V, ;)=0}

the space of representable states is the variety V/(/) cut out by the
invariants. See [Bray M- 2006] for some of them.
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Possible applications of invariants of TNS?

@ Simplify the computation of quantities of interest
» e.g. Renyi entropy
@ Representability and approximation error

» which states/systems can be represented and which cannot?
» bounds on approximation error

@ Paths of optimization or time evolution on the manifold of
representable states
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Some of the things we think about
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Naive Bayes / Secant Segre / Tensor Rank
Look at one hiden node in such a network, binary variables

° P!

P! x P! x P! x P! — P1°
Segre variety defined by
2 x 2 minors of flattenings
of 2 x 2 x 2 x 2 tensor

o2(Pt x P x P! x P1)

//X\ First secant of Segre variety
[ ]

. 3 x 3 minors of flattenings
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Dimension of secant varieties

@ Recently [Catalisano, Geramita, Gimigliano 2011] showed
ox(P')" has the expected dimension

min(kn+k —1,2" — 1)

except a3(P')* where it is 13 not 14.

@ Progress in Palatini 1909, ..., Alexander Hirschowitz 1995,
2000, CGG 2002,03,05, Abo Ottaviani Peterson 2006, Draisma
2008, others.

@ Classically studied, revived by applications to statistics, quantum
information, and complexity; shift to higher secants, solution.

. . n
@ So a generic tensor of (C?)®" can be written as a sum of [;25]
decomposable tensors, no fewer.
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Representation theory of secant varieties

Raicu (2011) proved the ideal-theoretic GSS [Garcia Stillman
Sturmfels 05] conjecture using representation theory of ideal of
oa(PR x -+ x Pk} as a GLy, x - - - GLy,-module (progress in
[Landsberg Manivel 04, Landsberg Weyman 07, Allman Rhodes 08]).

1,6]1
o 231 [peEE L
4,5]2 [1]4]4] 3

7,813
2,3[4
o T3] arapaa) 2
A6 1 [3]2]2] 1
452

Let’s write down the action of the map 7, on the tableaux pictured above
. o) _ e .
"\ [1l4]4] [1]2]2] [1]2]2]
2] 1] 2]
. o2
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Representation theory
@ Which tensor products C* ® --- ® C9 have finitely many orbits
under GL(d;,C) x --- x GL(d,,C)?
@ Related to SLOCC-equivalent entanglement classification
e Kac (1980), Parfenov (1998, 2001): up to C?> @ C3 ® C°, orbit
representatives and abutment graph

The number
Case (2,m,n) of orbits of deg f
GL2 X GLy, X GL,,
(2,2,2) 7 4
(2,2,3) 9 6
(2,2,4) 10 4
(2,2,n), n>=5 10 0
(2,3,3) 18 12
(2,3,4) 24 12
(2,3,5) 26 0
(2,3,6) 27 6
(2,3,n), n>7 27 0
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Computational Algebraic Geometry

@ There are computational tools for algebraic geometry, and many

advances mix computational experiments and theory.
@ Grobner basis methods power general purpose software:
Singular, Macaulay 2, CoCoA, (Mathematica, Maple)
» Symbolic term rewriting
@ Numerical Algebraic Geometry: Numerical methods for
approximating complex solutions of polynomial systems.

» Homotopy continuation (numerical path following).

» Can be used to find isolated solutions or points on each
positive-dimensional irreducible component.

» Can scale to thousands of variables for certain problems.
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|dentifiability: uniqueness of parameter estimates

@ A parameterization of a set of probability distributions is
identifiable if it is injective.

@ A parameterization of a set of probability distributions is
generically identifiable if it is injective except on a proper
algebraic subvariety of parameter space.

o ldentifiability questions can be answered with algebraic geometry
(e.g. many recent results in phylogenetics)

@ A weaker question: What conditions guarantee generic
identifiability up to known symmetries?

@ A still weaker question: is the dimension of the space of
representable distributions (states) equal to the expected
dimension (number of parameters)? Or are parameters wasted?
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Graphical model on a bipartite graph

k variables
binary h e o * C |
rea
state w parameters
vectors
v b
n variables

Unnormalized potential is built from node and edge parameters
(v,h) = exp(h" Wv+bTv+cTh).

The probability distribution on the binary random variables is

pv.B) = Z vk Z=3u(v.h)
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Restricted Boltzmann machines

k hidde&varia bles

binary h < ot o ¢ |
state rea .
vectors 1% parameters
v b

N J/
-~

n visible variables

Unnormalized fully-observed potential is
Y(v,h) = exp(h' Wv+b"v+clh).
The probability distribution on the visible random variables is

) = 23wk, 2= u(vh)

he{0,1}k
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Restricted Boltzmann machines

k hiddenAvariabIes

Ve

binary h 9 9 o ¢ |
state rea .
vectors w parameters
v b

N J/

-~

n observed variables

@ The restricted Boltzmann machine (RBM) is the undirected
graphical model for binary random variables thus specified.
@ Denote by MX the set of joint distributions as
beR" c € R W € R vary.
@ M¥ is a subset of the probability simplex Agn_;.
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Hadamard Products of Varieties

Given two projective varieties X and Y in P, their Hadamard
product XxY is the closure of the image of

X XY -—+P", (x,y) = (Xo¥o : Xay1: - XmYm)-

We also define Hadamard powers XK = X s X[k=1I.

If M is a subset of the simplex A,,_; then Ml is also defined by
componentwise multiplication followed by rescaling so that the
coordinates sum to one. This is compatible with taking Zariski
closure: M = i7"

Lemma
RBM variety and RBM model factor as

V, = (V)M and My = (M),
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RBM as Hadamard product of naive Bayes

A
B] C| D
L
Bl C| D
E
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Representational power of RBMs

Conjecture

The restricted Boltzmann machine has the expected dimension: M¥
is a semialgebraic set of dimension min{nk + n+ k,2" — 1} in Aon_;.

We can show many special cases and the following general result:

Theorem (Cueto M- Sturmfels)

The restricted Boltzmann machine has the expected dimension
@ nk + n—+ k when k < 2n—llog2(n+1)]
e min{nk + n+ k,2" — 1} when k = 2"~Tlo&(r+11 apd
@ 2" — 1 when k > 21~ lloga(n+1)]

o’

@ Covers most cases of restricted Boltzmann machines in practice,
as those generally satisfy k < 27~ [log2(n+1)1,

@ Proof uses tropical geometry, coding theory
Jason Morton (Penn State) Tensor Networks in Algebraic Geometry 5/10/2012 20 / 27



Computational complexity and efficient contraction
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Secant varieties in algebraic complexity theory

A multilinear operator vV

T:UpV-—>W

is a tensor

w
The tensor rank min{r: T =5, u; ® v; ® w;} of

A*BB*C
\ |

\ M:(AA@B)x(B*®C) = A*®C
\\GB gives the exponent of matrix multiplication.
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Satisfiability and #CSP problems

Given a problem P in conjunctive normal form:
@ a collection of Boolean variables x; . .. x,,
@ subject to clauses ¢ ... ¢, (all must hold, each true or false),
e.g. OR(i) =1if i € {001,010,100,011,101,110,111}
Does there exist a satisfying assignment to the variables?

@ Counting the number of satisfying assignments is computing a
partition function, #P-complete in general.

@ In [Landsberg, M-, Norine 2012] and [M- 2010], geometric
interpretation and geometrically-motivated generalization of the
holographic circuits of Valiant 04.

@ Generates new families of efficiently contractable tensor networks

@ Beyond noninteracting fermionic linear optics
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Binary Variables and NAE clauses

Binary Variable —— Q

Not-All-Equal Clause — @E—Q
O

As a tensor, a Boolean predicate is the formal sum of the rows of its
truth table as bitstrings.

OR; = (|0) + [1))** — [000)
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Pfaffian circuit/kernel counting example

10 9
(O)—{NAE
11 2 8
(NAE] (O [NAE]
12 4 7
NAE
O 5 6

# of satisfying assignments =

(all possible assignments, all restrictions) = a3/ det(x + y)

4096-dimensional space (C?)®12 12 x 12 matrix
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Efficient contraction with Pfaffian circuits

0 1 -1 1 0 0 0 0 0 0 -1/3  —-1/3
-1 0 1 -1 0 0 0 0 -1/3  —-1/3 0 0
1 -1 o0 1 0 0 -1/3 —-1/3 0 0 0 0
-1 1 -1 0 -1/3  —-1/3 0 0 0 0 0 0
0 0 0 1/3 0 —-1/3 0 0 0 0 0 1
o o o 1/3 13 0 1 0 0 0 0 0
0 0 1/3 0 0 -1 0 —-1/3 0 0 0 0
0 0 1/3 0 0 0 1/3 0 1 0 0 0
0 1/3 0 0 0 0 0 -1 0 —-1/3 0 0
0 1/3 0 0 0 0 0 0 1/3 0 1 0
1/3 0 0 0 0 0 0 0 0 -1 0 —-1/3
1/3 0 0 0 -1 0 0 0 0 0 1/3 0
2% (%)* - Pfaff(z + y) = 14 satisfying assignments.
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