

Networking tensor networks: many-body systems and simulations

Outline

Glen Evenbly

• Introduction

Quantum circuits, simulatability and entanglement

MPS and TTN

• MERA

• branching MERA

• Introduction

Quantum circuits, simulatability and entanglement

• MPS and TTN

• MERA

• branching MERA

Quantum Circuit

Quantum Circuit

Can be used to *efficiently* encode many-body states:

Quantum Circuit as a many-body variational ansatz

Questions:

- 1) Cost of computing a local reduced density matrix
- 2) Entropy of a block of contiguous sites

time

time

Example I:

 $w \approx 2aN$

inefficient

Example II:

$w \approx 2a \log(N)$

• Entanglement entropy of a block of contiguous sites

 $\left| 0 \right\rangle \left| 0 \right\rangle \left|$

• Entanglement entropy of a block of contiguous sites

 $\left| 0 \right\rangle \left| 0 \right\rangle \left|$

• Entanglement entropy of a block of contiguous sites

• Entanglement entropy of a block of contiguous sites

Example II:

Summary:

Quantum Circuit as a many-body variational ansatz

Questions:

time

- Cost of computing a local reduced density matrix
- Entropy of a block of contiguous sites

• Introduction

Quantum circuits, simulatability and entanglement

• MPS and TTN

• MERA

• branching MERA

matrix product state MPS

tree tensor network

MPS: computational cost

scaling of entropy:

 $S(A) \approx const$

TTN: computational cost

$$c \approx \exp(N)$$

 $S(A) \approx N$

 $c \approx \log(N)$ $S(A) \approx const$

cost

• Introduction

Quantum circuits, simulatability and entanglement

• MPS and TTN

• MERA

• branching MERA

MERA (multi-scale entanglement renormalization ansatz)

MERA (multi-scale entanglement renormalization ansatz)

MERA (multi-scale entanglement renormalization ansatz)

MERA: entanglement entropy

 $n(A) \approx \log(L)$

scaling of entropy:

$$S(A) \approx \log(L)$$

cost

• Introduction

Quantum circuits, simulatability and entanglement

• MPS and TTN

• MERA

• branching MERA

MERA

branching MERA

 $|\Psi^{(3,b)}\rangle$ $|\Psi^{(3,a)}\rangle$ $|\Psi^{(2,b)}\rangle$ $\Psi^{(2,a)}$ 1 7 $\Psi^{(1)}$ $\Psi^{(0)}$

branching MERA: computational cost past causal cone width: w' = 2w

MERA: entanglement entropy

 $n(A) \approx \log(L)$

scaling of entropy:

 $S(A) \approx \log(L)$

ranching MERA: entanglement entropy

 $n(A) \approx 2\log(L)$

scaling of entropy:

$$S(A) \approx 2\log(L)$$

branching MERA

branching MERA

branching MERA: computational cost past causal cone width: w' = qw

cost of computingho(A) :

 $c \approx q \exp(w)$

 $c \approx O(N)$

branching MERA: entanglement entropy

$$n(A) \approx O(L)$$

scaling of entropy:

$$S(A) \approx L$$

Conclusions

 quantum circuits can be used to encode many-body states

Conclusions

 quantum circuits can be used to encode many-body states

let us add translation (+scale) invariance

Glen Evenbly

Conclusions

 quantum circuits can be used to encode many-body states
let us add translation (+scale) invariance

