Microsoft ${ }^{-}$

Research

Three-sublattice order in the SU(3) Heisenberg model

Bela Bauer (Station Q, Santa Barbara) Philippe Corboz (ETH Zurich)
Andreas Läuchli, Laura Messio, Karlo Penc, Matthias Troyer, Frédéric Mila

$$
\text { Phys. Rev. B 85, I } 25 \text { I } 16 \text { (20|2) }
$$

Microsoft ${ }^{-}$

Research

Three-sublattice order in the SU(3) Heisenberg model
 Bela Bauer (Station Q, Santa Barbara) Philippe Corboz (ETH Zurich) Andreas Läuchli, Laura Messio, Karlo Penc, Matthias Troyer, Frédéric Mila

 Phys. Rev. B 85, 125 | 16 (20|2)

Multi-Grid approach for matrix product states

Michele Dolfi \& Matthias Troyer (ETH Zurich)
Bela Bauer (Station Q)

Research

Challenges for numerics

Fermionic lattice models

- Phase diagrams of even simple models such as the $t-J$ or Hubbard model are still disputed

Realistic systems

- Materials, quantum chemistry
- Structure factors of quasi-Id frustrated magnets for neutron scattering
- Fraction Quantum Hall systems

Frustrated spin systems

- Existence of exotic phases, in particular without local order as $T \rightarrow 0$
- Topological spin liquids
- Gapless spin liquids: Fermi sea of fractionalized excitations
- $\operatorname{SU}(\mathrm{N})$ models, orbital models, Kondo models

Time evolution

- Equilibration/relaxation/thermalization
- Preparation of states in an optical lattice

Research

Tensor networks in 2d

PEPS, MERA, EPS,TTN, ...

- Polynomial scaling for $2 d$ systems, or even thermodynamic limit immediately
- Small bond dimension and little numerical experience

Elegant, but somewhat uncontrolled

The dark side: DMRG

- DMRG scales exponentially in 2d!
- System sizes much larger than ED
- Several recent successes

Brute force, but wellcontrolled

Maybe we should combine approaches?

Multi-flavor Hubbard models

- Multi-flavor Hubbard models can be realized in cold atomic gases

$$
H=-t \sum_{\langle i, j\rangle} \sum_{\alpha}\left(c_{i \alpha}^{\dagger} c_{j \alpha}+\text { h.c. }\right)+U \sum_{i} \sum_{\alpha \neq \beta} n_{i \alpha} n_{i \beta}
$$

- Lots of cooling and commensurable filling: Mott insulator
- Even more cooling: spin order

SU(2)

- Square lattice: antiferromagnet
- Triangular lattice: 120° order
- Fix one particle per site

SU(3)

- Spin order unknown for both triangular and square lattice

SU(3) Heisenberg model

- We concentrate on three-flavor case with one particle per site and derive an effective model in t / U

$$
\begin{gathered}
H=J \sum_{\langle i, j\rangle} \sum_{\alpha, \beta}\left|\alpha_{i} \beta_{j}\right\rangle\left\langle\beta_{i} \alpha_{j}\right| \\
-\phi-\phi-\leftrightarrow-\phi-\phi-
\end{gathered}
$$

- We study the square and triangular lattice

Research

Spin-I bilinear-biquadratic model

$$
H=\sum_{\langle i, j\rangle}\left[\cos \theta\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)+\sin \theta\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{2}\right]
$$

- Mean-field phase diagram for the square lattice (Papanicolaou, 1988):
- $\operatorname{SU}(3)$ point at transition from antiferromagnet to "semi-ordered phase"
- Square lattice does not give enough constraints to uniquely fix ordering in that phase
- Triangular lattice:
- Enough constraints at the $S U(3)$ point: threesublattice order

Research

Mean-field phases

Square lattice

- Semi-ordered phase is characterized by infinitely many degenerate ground states between 2 - and 3 -sublattice order

Do quantum fluctuations select some type of order, or does a completely different phase emerge?

Previous work: Tóth et al, PRL 2010

Triangular lattice

- $\operatorname{SU}(3)$ point has three-sublattice order

Is this stable under quantum fluctuations?

Researt

The dark side: DMRG in 2d

Research

Some recent 2d DMRG results

- White \& Chernyshev, PRL 99, I 27004 (2007)
- $S U(2)$ Heisenberg model on square and triangular lattice
- Results for square lattice with similar accuracy as MC after careful extrapolation in truncated weight and system size
- Lots of prior knowledge from spin-wave theory

Research

Some recent $2 d$ DMRG results

- Yan, Huse \& White, Science 332, 6034 (20II)
- Spin liquid ground state on the Kagome lattice
- Previous best energy: Evenbly \& Vidal, PRL I 04, I 87203 (2010)
- See also Stefan Depenbrock's poster downstairs
- Jiang, Yao \& Balents 20 I I, arXiv: I | | 2.224 I
- Spin liquid ground state in the $J_{1} J_{2}$ model on the square lattice
- Previous work with PEPS: Murg, Verstraete \& Cirac, PRB 79, 195119 (2009)
- Current work with PEPS: Wang, Gu, Verstraete \& Wen, arXiv: I | 2.333 I

Research

Some recent $2 d$ DMRG results

- Jiang, Gu, Qi \& Trebst, PRB 83, 245104 (20II)
- Heisenberg-Kitaev model with magnetic field
- Interpolates between Kitaev's honeycomb model and Heisenberg model and describes certain Iridate compounds

The dark side: DMRG in 2d

DMRG in 2d: entanglement

- Bond dimension of the MPS:

$$
M \sim \exp S
$$

- Scaling of entanglement:

$$
\begin{aligned}
& S \sim W \\
& S \sim L
\end{aligned}
$$

- There is an easy (L) and a hard (W) direction!

Use long rectangles!

DMRG in 2d: boundaries

- Physically, periodic boundary conditions are often preferable
- In Id DMRG: $S \rightarrow 2 S$
- Naive approaches need the square of the bond dimension, better approaches exist but numerically not as robust and precise
- PBC in 2d DMRG:
- L direction: same problem as Id
- W direction: not as bad

Research

DMRG in 2d:boundaries

- Physically, periodic boundary conditions are often preferable
- In Id DMRG: $S \rightarrow 2 S$
- Naive approaches need the square of the bond dimension, better approaches exist but numerically not as robust and precise
- PBC in 2d DMRG:
- L direction: same problem as Id
- W direction: not as bad

Use cylinders, avoid the torus!

Scaling

MPO bond dimension: $D \sim W$
Computation: $\mathcal{O}\left(L W \cdot D \cdot M^{3}\right)+\mathcal{O}\left(L W \cdot D^{2} \cdot M^{2}\right)$
Memory: $\mathcal{O}\left(D \cdot M^{2}\right)$

$$
\text { Disk: } \mathcal{O}\left(L W \cdot D \cdot M^{2}\right)
$$

Without SU(2) symmetry: memory and disk space are limiting factors!

DMRG in 2d: local moments

"Pinned" order with flavor-
dependent chemical potential

- Long-range correlations are not reliable for 2d systems
- Break symmetries by hand at the boundary and watch the system far away!
- Reduces entanglement significantly

Research

DMRG in 2d: extrapolation

- Long-standing question: what's the correct way to extrapolate?
- Number of states: usually not very reliable
- Truncated weight: standard technique, but sometimes difficult with single-site update
- Energy variance: computationally difficult for large 2d system and complex Hamiltonians

The dark side: DMRG in 2d

iPEPS

- Square lattice ansatz for both square and triangular lattice: P. Corboz et al, PRB 82, 45 I I 9 (2010)
- Directional corner transfer matrix scheme for general unit cells: P. Corboz et al, PRB 84, 04। 08 (2011)
- 3×3 unit cell to stabilize three-sublattice state, 2×2 unit cell for antiferromagnet
- Z_{3} symmetry: Bauer et al, PRB 83, 125 | 06 (201 |)

Research

DMRG results

- Unknown finite-size scaling: stick to (almost) square systems
- Computational challenges:
- Large dimension of the MPO (\sim twice of $S U(2)$ case)
- Need to use large bond dimension already in early stages due to non-mean field nature of the order
- Very large entanglement
- Up to $M \sim 5000$ states, check for up to $M \sim 6400$ in some cases \rightarrow system size up to 8×8

DMRG results

6×8 square lattice, cylindrical BCs, $M=4800$

-0.13	-0.10	-0.10	-0.10	-0.10	-0.10	-0.13
-0.47	-0.55	-0.57	-0.57	-0.57	-0.57	-0.55
-0.13	-0.10	-0.10	-0.10	-0.10	-0.10	-0.13
-0.47	-0.55	-0.57	-0.57	-0.57	-0.57	-0.55
-0.13	-0.10	-0.10	-0.10	-0.10	-0.10	-0.13
-0.47	-0.55	-0.57	-0.57	-0.57	-0.57	-0.55
-0.13	-0.10	-0.10	-0.10	-0.10	-0.10	-0.13
-0.47	-0.55	-0.57	-0.57	-0.57	-0.57	-0.55
-0.13	-0.10	-0.10	-0.10	-0.10	-0.10	-0.47
-0.47	-0.55	-0.57	-0.57	-0.57	-0.57	-0.55
-0.13	-0.10	-0.10	-0.10	-0.10	-0.10	-0.13

Huge finite-size corrections for periodic chain \rightarrow use open boundaries after all

DMRG results

Research

Triangular lattice

- Energies of all methods match qualitatively
- iPEPS 3×3 is much lower than iPEPS 2×2
- DMRG has weak finite-size dependence
- Order parameters are consistent with $40-50 \%$ of saturation moment

Research

Square lattice

- Again, iPEPS 3×3 has much lower energy than iPEPS 2×2
- DMRG energies are comparable and consistent with ED
- Strong dependence of moment in iPEPS calculation leaves a large margin of error
- DMRG results seem consistent with magnetization in the range $30-40 \%$ of the saturation moment

Microsoft ${ }^{-}$

Research

Three-sublattice order in the SU(3) Heisenberg model
 Bela Bauer (Station Q, Santa Barbara) Philippe Corboz (ETH Zurich) Andreas Läuchli, Laura Messio, Karlo Penc, Matthias Troyer, Frédéric Mila

 Phys. Rev. B 85, 125 | 16 (20|2)

Multi-Grid approach for matrix product states

Michele Dolfi \& Matthias Troyer (ETH Zurich)
Bela Bauer (Station Q)

Systems with various scales

- Local optimization (DMRG) almost always works

Example: doped Hubbard ladder

- One class of exceptions: dilute systems
- Weakly doped systems (cf. Davide Rossini's talk last Monday)
- Discretized continuous systems
- These systems have various length scales:
- Doped systems: lattice spacing, size of a hole, global density modulation
- Discretized continuous systems: discretization dx , external potential
- Energy scales: hopping $\sim 1 / d x^{2}$, interaction $\sim 1 / d x$, potential ~ 1

Research

Multi-grid approaches

- Standard method for partial differential equations: solve the system on different length scales

- Example: bosons with contact interaction in a shallow optical lattice

Multi-grid \& MPS

Restriction:

Prolongation:

Research

Multi-grid \& MPS

Research

MG-DMRG: results

- Convergence often much more reliable than standard DMRG approaches
- Key difference to tree tensor network: the final result is only an MPS on one layer
- Extension to lattice models: how to construct Hamiltonians for coarser lattice?
- CORE? Applying isometries to the MPO?

Research

Conclusion

- Convincing numerical evidence for three-sublattice order on both the square and the triangular lattice
- Completely different ordering mechanisms:
- Unique order at mean-field level on triangular lattice
- Quantum fluctuations select the three-sublattice order over other states on the square lattice
- Combination of two tensor-network states builds more trust in results
- Both iPEPS and 2d DMRG are valuable tools for understanding 2d systems
- MG-DMRG provides a way to converge MPS ground states reliably when system has various length scales

