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Pseudoknotted RNA Structure
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Folding of Pseudoknotted RNA Structures

The general problem can be see as a Maximum Matching
Problem.
not very useful since

1 incompatible with 3D structures (too many crossing contacts)
2 energy should depend on base pairing and loops

The Stacking-based problem is NP hard

Dynamic Programming algorithms have been devised for a large
number of special classes of structures that have been chosen
because of computational simplicity rather only

1 Lygsø-Pedersen = Dirks-Pierce
2 Akutsu-Uemura
3 Uemura et al.
4 Rivas-Eddy
5 Cao-Chen
6 Chen-Condon-Jabbari

Mutual relations studied by Condon (2004), Nebel (2011).
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Classification of Pseudoknotted Structures

1 k-book-embeddable structure (Haslinger & Stadler)
The structure is a superposition of at most k secondary structures.
Non-recursive, no algorithms known.

2 k-non-crossing structures (Reidys)
There is no subset of k base pairs in which each pair of pairs is
crossing.
Folding via enumeration of prototype structures, exponential in
time and space

3 k-structures composed of irreducible components of topological
genus at most k .
Vernizzi, Orland, Bon and collaborators
Nebel, Reidys, PFS, and collaborators
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Secondary Structure → Fat Graphs

Inflation of edges and vertices to ribbons and disks

a

b

c d e

Computing the number of boundary components: v = 10 vertices, e = 5 + 9 edges; paths

alternating between arc and backbone: r = 2 “boundary components”.

Topological genus

g = 1 −
1
2

(v − e + r) = 1 − (10 − 14 + 2)/2 = 2

Orland et al: energy penalty proportional to g.
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Shadows and γ-structures

shadowdiagram

shadow: collaps nested arcs ⇔ Robert Giegerich’s shapes

(1) (2)

γ = 1, g = 2 γ = 2, g = 2
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Classification Theorem

(the results for γ = 1 have been obtained by Orland and co-workers
using a very different approach)

A structure is a 0-structure if and only if it is (simple) secondary
structure

A structure is a 1-structure if and only if its shadow can be
decomposed by iteratively removing one of the four shadows

(A) (B) (C) (D)

A structure is a γ structure if and only if its shadow can be
decomposed by iteratively removing shadows of genus at most γ.

This set of distinct shadows is always finite for given γ.
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Known Pseudoknots

With a single exception (HDV genome) all known RNA structures are
1-structures.
The genus is the sum of the genera of the irreducible components.
Biological sequences my have large genus, e.g., when they contain
multiple pseudoknots.
The classification theorem suggests an dynamic programming
approach.
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Fragment Pairs

... are in essence the “gap matrices” of Rivas&Eddy

i1 r1 s1 j1

i2 r2 s2 j2

A1 AI IB B

} } }}

1 2 2

Rule I → IA1IB1IA2IB2S induces the fragment-pairs [i1, r1], [s1, j1] and [i2, r2], [s2, j2].
Arcs connecting the two fragments of a pair are non-crossing, while arcs with both endpoints
within the same fragment may be crossing

... such as those within [s2, j2].
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Naı̈ve Algorithm

Multi-Context-Free Grammar
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II I I I I
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=

useless in this form: O(n18) time and O(n4) space
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Naı̈ve Algorithm: MCFG Form

I → S | T

S → (S)S | :S | ǫ

T → I(T )S

T → IA1IB1IA2IB2S

T → IA1IB1IA2IC1IB2IC2S

T → IA1IB1IC1IA2IB2IC2S

T → IA1IB1IC1IA2ID1IB2IC2ID2S
~X → [(X IX1, X2I)X ] | [(X , )X ] ,

where X ∈ {A, B, C, D} distinguishes the four types of pseudoknots.
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More efficiency

An O(n6) and O(n4) space algorithm is obtainable by tabulating
intermediate results, i.e., introducing additional non-terminals

~U → [IX1, IX2]

~V → [U1U ′

1, U2U ′

2]

~W → [U1, U ′

1U2U ′

2] | [V1, U1V2U2]

where (U ′

1, U ′

2) is a marked copy of (U1, U2) used to identify the
components which must later be expanded in a coupled way.

T → I(T )S | I′S

I′ → V1V2 | U1V1U2V2 | U1W1U2W2
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Energy Model?

Multi-loop-like approach depending on the numbers #B of base
pairs and #U of unpaired bases forming the pseudoknot.

Gpseudo
i ,j = βX + (#B + 1) · β2 + #U · β3,

Pseudoknots in multiloop components or nested within other
pseudoknots can get different energy parameters values

Nice side effect: we can make βX dependent on the type of
pseudoknot.
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More efficiency ... in diagrams
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Decomposition for 4-dimensional matrices G, Gu, Gv , and Gw .
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Implementation

Variations:
MFE folding
partition function
stochastic backtracing

Energy model: Different penalties for the four topological types of
pseudoknots, optimized from known pseudoknots

Available:
http://www.combinatorics.cn/cbpc/gfold.tar.gz

Important: Pseudoknot penalty dependent on the irreducible diagrams
rather than linear dependence on the genus g.
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Performance
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▽ MFE ◦ paritition function
Feasible for most RFam families.
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Comparison with other pseudoknot classes

4- -non crossing

1-structure

L&P, D&P

A&U

R&ESS
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Performance
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Comparison of the average sensitivity and PPV of different prediction algorithms on a sample of
32 structures from Pseudobase.
The PPV increases signficantly if only base pairs with larger pairing probabilities as predicted by
the partition function version of gfold are included in the predicted structure.

Fewer false positive pseudoknots for pseudoknot-free benchmark structures.
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Beyond 1-structures

3472 shadows with γ = 2.

All shapes with 4 arcs, including the reducible ones with γ = 1.

P.F. Stadler (Leipzig) gfold Benasque, Aug 01 2012 19 / 20



Algorithms for 2-structures?

The HDV structure is in Rivas&Eddy and hence computable in O(n6)
time and O(n4) space.
This following 2-structure, however, cannot be dealt with in terms of
gap matrices.

i j k l m n p q

decompose

O(n8) time and O(n6) space
Unknow if this suffices for all 2-structures
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