Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,

Enjoy Dynamic Programming in Bellman's = :
GAP Sauthoff

Enjoy Dynamic Programming in Bellman's GAP [v

Enjoy
Dynamic
Programming
in Bellman's
GAP

Robert
Giegerich,
Georg
Sauthoff

Introduction

Part 1: Pragmatics

Part 2: Abstractness and modularity in Bellman's GAP
Part 3: Discussion

Part 4: Acknowledgement

«O>» «(Fr «ZE» « E

2L N G4

What is it?

Does it work on “real” problems?
Is it efficient?

Does it run on a Mac?

Is it difficult to learn?

«O> «Fr « =)

<4

2L N G4

What is it?

Bellman’s GAP supports dynamic programming over sequences.

It

m supports a programming method, not a specific
application domain

emphasizes abstractness and modularity
is quick and clean

achieves acceptable efficiency

is a 3rd-gen version of ADP — algebraic dynamic
programming

Our vision: Community creates libraries of re-usable modules
for different application domains.

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Pragmatics

Literature |

Enjoy
Dynamic
Programming
in Bellman’s

m Compiler optimization techniques: RG:P
R. Giegerich, G. Sauthoff: Yield grammar analysis in the Bellman'’s Gi(e}eirerigh,
GAP Compiler. Proc. of Languages, Tools and Applications, 2011 Sauthoff

m Formal semantics of GAP-L:

G. Sauthoff, S. Janssen, R. Giegerich: Bellman’'s GAP: a declarative Pragmatics

language for dynamic programming. Proc. of Principles and Practice
of Declarative Programming, pages 29—-40, 2011.

m Introduction to bioinformatics community:
G. Sauthoff, M. Méhl, R. Giegerich: Bellman's GAP for Dynamic

Programming in Sequence Analysis. In revision

Real world applications? e

Enjoy
Dynamic
Established tools converted to Bellman’s GAP: S S
m PKNOTSRG, PKiss (Pseudoknots, Corinna Theis 2010) RG:Pt
m RNASHAPES (Abstract shape analysis, B. Voss S
2004/2006) Sauthoft
New applications done S—

m RAPIDSHAPES (most likely shapes only, S. Janssen)

m RNAFOLD emulated and extended with prob. shape
analysis (“Lost in Foldingspace?” Janssen, Steger et al.)

m Flowgram DENOISER a la Reeder/Knight

m G1FoLD (Group-l-intron thermodynamic matcher, A.
Topfer, MSc thesis)

Lost in folding space e

Enjoy
Janssen, Schudoma, Steger, Giegerich, BMC Bioinformatics 12(1), 2011 Dynamic
Programming
in Bellman’s
reference GAP
Robert
Giegerich,
Georg
2 gold sructure 30 o ot

1: pdb structure o "

Introduction
4 NoDangle

Pragmatics

5: UNAfold ~nodangle

Abstractness
+ Modularity

6: ANAfold -d1

prediction

7 MacroState Acknowledgeme
8 Microstate
9 UNAfold

10: RNAfold -d2

11: OverDangle

Real world applications? (ctd.) [e

Enjoy
Dynamic
Programming
in Bellman’s
H GAP
Planned tool conversions
Robert

m RNALISHAPES (Shape analysis of aligned RNAs, B. Voss) Giegerich,
m LoCcOMOTIF (Thermodynamic RNA motif matchers, Sauthoft
generated from graphical description, J. Reeder 2007/A.
Wittkopf) Pragmatis
m RNAHYBRID (miRNA target prediction, M. Rehmsmeier)
New applications ongoing:
m Ambivalent covariance models (Stefan Janssen)
m Statistical minisatellite alignment (Benedikt Loewes)

Efficient?

There will always be an abstraction charge, but ...

ntme nseconds

Competent code due to substantial optimizations
Space-efficient due to automated table design and
dimension analysis

Sheetz

0

Page 1

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Pragmatics

Yes. Open source.

<o <@ o«

v

Available? |

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,

Georg
Yes. Open source. Seorg
m Available under GNU public licencse

m official release paper under revision Pragmatics

Developed under LINUX, (Ubuntu package)
but also runs on Solaris, MacOS (well)

Is it fun? e

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert

YESI Giegerich,

Georg
Sauthoff

m easy to follow on simple examples
m scales well to real world
Pragmatics

m we develop ideas rather than debug code
m but ...

. it breaks with traditional mindset on dynamic programming

The classical view

j=o-1

K
Zlkijoxy)= 3 D D Z(K ir—1xu) Z" (k=K rjyv.y)
3

=

©)
+ 3 Z(k =04 ki~ 1xu)
—
1 = |
R
P ~
23 [T —I=
AN e v |
. 98 23. |
input ; T
sequence [5¢ I p25
[56 419)
— Iny
PN
Ry
TN ——{ 424
398

matrix recurrence

41.9
result score

[T

-2 Ngz K =) 14z
7

backtrace through matrix

«
1
— 23
34
P31 98
= solution
27 56 .
419 | 56 (pretty—print)
=]
| p2.12
14207 7.1
398

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

The algebraic view

struct — open(struct, base) |
split(struct, closed)
closed — . ..

open(s, b) ='s
split(s,c) =sx*c

Enjoy
choice = max Dynamic
é & ™

Programming
in Bellman’s

GAP
Robert
Giegerich,
Georg
Sauthoff
m Introduction
/&\ Pragmatics
42.0
AAAS~ Abstractness
& /@\ + Modularity
input
seﬂuence m Acknowledgeme
result score
search space (+ solution)
generalor .
candidate choice
search space of candidates evalution search space of candidate scores
New:
m perfect separation of search space, scoring, choice

= a data structure for the candidates (!)

The basis: Bellman's Principle of Optimality

Richard Bellman (1964): “An optimal solution can be
composed solely from optimal solutions to sub-problems.”
That’s a requirement, not a theorem!!

Alternative formulations:

m (strict) monotonicity of scoring wrto maxi/minimization:

x <y=f(x)<f(y)
m distributivity of choice over scoring:
h(F(X,Y)) = h(F(h(X), h(Y))

m semiring framework (e.g. Pachter/Sturmfels)

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

The basis: Bellman's Principle of Optimality]

Enjoy

Richard Bellman (1964): “An optimal solution can be e
rogramming

[[_ ” in Bellman’
composed solely from optimal solutions to sub-problems. eliman's

That’s a requirement, not a theorem!! Robert

Alternative formulations: S
. e . Sauthoff

m (strict) monotonicity of scoring wrto maxi/minimization:
x <y=f(x)<f(y)

. Abstractness
m distributivity of choice over scoring: + Modularity

h(F(X,Y)) = h(F(h(X), h(Y))

m semiring framework (e.g. Pachter/Sturmfels)

In some fixed frameworks, Bellman's Principle is guaranteed to
hold, e.g. with SCFGs.

A property of the scoring scheme, not of “the algorithm”.

A third-generation implementation of ADP:

Bellman’s Principle
+ Grammars
+ Algebras
+ Products

Bellman's GAP

«O> «Fr «=)Hr <

2L N G4

ADP master equation

We design
m an abstract data type X representing candidates (as trees
resp. formulas)
m tree grammar G defining the problem decomposition and
candidate space
m evaluation algebras A, B,C, ... describing objectives
ha, hg, he...

G(A, x) = ha([A(t)|t € L(G), yield(t) = x])

We compile and call for input x

G(A,x), G(B,x), G(C,x), ...

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

ADP master equation

We design
m an abstract data type X representing candidates (as trees
resp. formulas)
m tree grammar G defining the problem decomposition and
candidate space
m evaluation algebras A, B,C, ... describing objectives
ha, hg, he...

G(A, x) = ha([A(t)|t € L(G), yield(t) = x])

We compile and call for input x
G(A,x), G(B,x), G(C,x), ..

G(A = B, x)
GA®BxC,x)

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

Cartesian (x) and lexicographic (x) product

faxs((a,b),2) = (fa(a,2),fa(b,2))) (1)
haxg(as, bs) = (ha(as), hg(bs)) (2)
fase = faxB (3)

hA*B[(al, bl), ey (am, bm)] = [(/, r) ‘
| < set(hala1, ..., am]),

r« hg[r' | (I',r') < [(a1, b1),- .., (am, bm)], /' =1]]
(4)

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

Cartesian (x) and lexicographic (x) product

faxs((a, b), 2) (fa(a, 2), fa(b, 2))) (1)
haxs(as, bs) (ha(as), hg(bs)) (2)
fase = faxB (3)

hA*B[(al, bl), ey (am, bm)] = [(/, r) ‘
| < set(hala1, ..., am]),
r<« hg[r" | (I',r) < [(a1,b1),---,(@m, bm)], ' =1]]

rnafold(mfe * print, x)

rnafold(mfe x count, x)

rnafold(bpmax * mfe * print, x)
rnafold(shape * pf, x)

rnafold((mfe s print) X (probs * print), x)

and why not

(4)
—42.0, “((((C-(C-)N-((C- NN, (42.0,..), -]
—42.0,3)]

11, =413, *((((C-(C-00)-(CCC00)]
{10, 0.73), ({001 0-21), ...]

your guess?

(
(
(
(

rnafold((shape * (mfe . print) X (probs . print)), x) ?

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

What was this?

Given some independent algebras over the same signature,

Bellman’s GAP contributes
m reporting candidates via backtracing
m counting co-optimals (and anything else)
m optimization under lexicographic orderings

m classified dynamic programming

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

Interleaved (®) and overlay (|) product

fass = faxs
hiasy (a1, b1), - - -, (am, bm)] =
(L) [(I,r)«U,p+ V,p=r1]
where
U= hA*B(l)[(al, bl), ey (am, bm)]
V =set(hgglv | (L v) < U])

A | Ap—ig = Ax Ap—ig (compile with --sample)

(5)

(6)

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

Interleaved (®) and overlay (|) product

faws = faxs (5)

hiazByi (a1, b1), - - - s (am, bm)] =
[(r)|(hr) < Up< V,p=r]

where

(6)

U= hA*B(l)[(al, bl), ey (am, bm)]

V = set(hB(k)[14 ‘ (

v) < U])

—_—

A | Ap—ig = Ax Ap—ig (compile with --sample) (7)

rnafold(shape ® mfe(3), x)
rnafold(pf | pf_id * shape, x)

rnafold(print * count, x)

(101, —32.0,), ([1, —31.8), ({00, —31.1)]
[(1000,2,01{11), (1000,4,[][1), (1000,4,[][1), (1000,3,[{](1]); ----]

your guess?

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

Products allow for

m optimizing across a classification
m stochastic sampling

m simple ambiguity testing

«O> «Fr «=>»

<4

2L N G4

Bellman's Principle as a proof obligation

All algebras must satisfy Bellmans's Principle of Optimality
alias distributivity,
alias (strict) monotonicity.

Products are always defined, but they may not preserve
Bellman’s Principle.

This generates proof obligations ...

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

Rewards from abstractness and modularity

With Bellman’s GAP,

m we focus on the creative part — designing signatures,
grammars, and algebras ...

m ... and generic alphabets, and multi-tape scenarios ...

m we combine them with products in practically unlimited
variety,

m obtain useful implementations without low-level coding
and debugging.

That's fun.

See you soon in Bellman's GAP Cafe at URL gapc.eu
(preliminary web site)

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

gapc.eu

Limitations of ADP and Bellman's GAP

Types of problems that do not fit:

problems where recursion is trivial (and everything
interesting happens in the scoring scheme),

KNAPSACK or operations research-type DP problems,
evolving a complex state variable over time

problems on trees, graphs,

generalized grammars as in the O(n®) time, O(n*) space
algorithm pPkNOTS (Rivas & Eddy)

tricky tabulation schemes as in talks by Chitsaz, Stadler
on interaction

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

http://www.brics.dk/grammar/

Limitations of ADP and Bellman's GAP

Types of problems that do not fit:
m problems where recursion is trivial (and everything
interesting happens in the scoring scheme),

m KNAPSACK or operations research-type DP problems,
evolving a complex state variable over time

m problems on trees, graphs,
m generalized grammars as in the O(n®) time, O(n*) space
algorithm pPkNOTS (Rivas & Eddy)
m tricky tabulation schemes as in talks by Chitsaz, Stadler
on interaction
Planned extension:

m Automated support for semantic ambiguity checking
(ACLA at http://www.brics.dk/grammar/)

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity

http://www.brics.dk/grammar/

Acknowledgement e

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Many have contributed to ADP in the past decade. JRabert
iegerich,

Georg
Sauthoff

Most recent contributors:
m Georg Sauthoff created Bellman's GAP-L and GAP-C

m Stefan Janssen creates applications

Acknowledgeme

m Mathias Moehl (Freiburg): teaching and extensions
m Christian Honer zu Siederdissen: Haskell-ADP

10 year Acknowledgement [e

Enjoy
Dynamic
Programming
Grammar W analyzes scientific meetings in Belman's
Algebras Reward maximizes over inspiration and impact -
. . . ober
Ambiente evaluates site and surrounding Giegerich,
. G
Orgs converts organizers to ASCII o
Data bioinfo,y all bioinformatics meetings (past 10 yrs)

W((Reward x Ambiente) x Orgs, bioinfo,;) =

Acknowledgeme

10 year Acknowledgement

Grammar W analyzes scientific meetings

Algebras Reward maximizes over inspiration and impact
Ambiente evaluates site and surrounding
Orgs converts organizers to ASCII

Data bioinfo,y all bioinformatics meetings (past 10 yrs)

W((Reward x Ambiente) x Orgs, bioinfo,;) =

((1.0, "Benasque RNA 2003"), (Elena Rivas, Eric Westhof))
((1.0, "Benasque RNA 2012"), (Elena Rivas, Eric Westhof))
((1.0, "Benasque RNA 2006"), (Elena Rivas, Eric Westhof))
((1.0, "Benasque RNA 2009"), (Elena Rivas, Eric Westhof))]

Thank you!

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Acknowledgeme

Enjoy
Dynamic
Programming
in Bellman's
GAP

Robert
Giegerich,
Georg
Sauthoff

Acknowledgeme

	Introduction
	Pragmatics
	Abstractness + Modularity
	Acknowledgements

