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What is it?

Does it work on “real” problems?
Is it efficient?

Does it run on a Mac?

Is it difficult to learn?
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What is it?

Bellman’s GAP supports dynamic programming over sequences.

It

m supports a programming method, not a specific
application domain

emphasizes abstractness and modularity
is quick and clean

achieves acceptable efficiency

is a 3rd-gen version of ADP — algebraic dynamic
programming

Our vision: Community creates libraries of re-usable modules
for different application domains.

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Pragmatics



Literature |

Enjoy
Dynamic
Programming
in Bellman’s

m Compiler optimization techniques: RG:P
R. Giegerich, G. Sauthoff: Yield grammar analysis in the Bellman'’s Gi(e}eirerigh,
GAP Compiler. Proc. of Languages, Tools and Applications, 2011 Sauthoff

m Formal semantics of GAP-L:

G. Sauthoff, S. Janssen, R. Giegerich: Bellman’'s GAP: a declarative Pragmatics

language for dynamic programming. Proc. of Principles and Practice
of Declarative Programming, pages 29—-40, 2011.

m Introduction to bioinformatics community:
G. Sauthoff, M. Méhl, R. Giegerich: Bellman's GAP for Dynamic

Programming in Sequence Analysis. In revision



Real world applications? e
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Established tools converted to Bellman’s GAP: S S
m PKNOTSRG, PKiss (Pseudoknots, Corinna Theis 2010) RG:Pt
m RNASHAPES (Abstract shape analysis, B. Voss S
2004/2006) Sauthoft
New applications done S—

m RAPIDSHAPES (most likely shapes only, S. Janssen)

m RNAFOLD emulated and extended with prob. shape
analysis (“Lost in Foldingspace?” Janssen, Steger et al.)

m Flowgram DENOISER a la Reeder/Knight

m G1FoLD (Group-l-intron thermodynamic matcher, A.
Topfer, MSc thesis)



Lost in folding space e
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5: UNAfold ~nodangle

Abstractness
+ Modularity

6: ANAfold -d1

prediction

7 MacroState Acknowledgeme
8 Microstate
9 UNAfold

10: RNAfold -d2

11: OverDangle
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m RNALISHAPES (Shape analysis of aligned RNAs, B. Voss) Giegerich,
m LoCcOMOTIF (Thermodynamic RNA motif matchers, Sauthoft
generated from graphical description, J. Reeder 2007/A.
Wittkopf) Pragmatis
m RNAHYBRID (miRNA target prediction, M. Rehmsmeier)
New applications ongoing:
m Ambivalent covariance models (Stefan Janssen)
m Statistical minisatellite alignment (Benedikt Loewes)



Efficient?

There will always be an abstraction charge, but ...

ntme nseconds

Competent code due to substantial optimizations
Space-efficient due to automated table design and
dimension analysis

Sheetz

0
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Yes. Open source.
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Available? |
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Yes. Open source. Seorg
m Available under GNU public licencse

m official release paper under revision Pragmatics

Developed under LINUX, (Ubuntu package)
but also runs on Solaris, MacOS (well ....)
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m easy to follow on simple examples
m scales well to real world
Pragmatics

m we develop ideas rather than debug code
m but ...

. it breaks with traditional mindset on dynamic programming



The classical view
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The algebraic view

struct — open(struct, base) |
split(struct, closed)
closed — . ..

open(s, b) ='s
split(s,c) =sx*c
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42.0
AAAS~ Abstractness
& /@\ + Modularity
input
seﬂuence m Acknowledgeme
result score
search space (+ solution)
generalor .
candidate choice
search space of candidates evalution search space of candidate scores
New:
m perfect separation of search space, scoring, choice

= a data structure for the candidates (!)



The basis: Bellman's Principle of Optimality

Richard Bellman (1964): “An optimal solution can be
composed solely from optimal solutions to sub-problems.”
That’s a requirement, not a theorem!!

Alternative formulations:

m (strict) monotonicity of scoring wrto maxi/minimization:

x <y=f(x)<f(y)
m distributivity of choice over scoring:
h(F(X,Y)) = h(F(h(X), h(Y))

m semiring framework (e.g. Pachter/Sturmfels)
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The basis: Bellman's Principle of Optimality ]
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composed solely from optimal solutions to sub-problems. eliman's

That’s a requirement, not a theorem!! Robert

Alternative formulations: S
. . . . . e . Sauthoff

m (strict) monotonicity of scoring wrto maxi/minimization:
x <y=f(x)<f(y)

. . .. . . Abstractness
m distributivity of choice over scoring: + Modularity

h(F(X,Y)) = h(F(h(X), h(Y))

m semiring framework (e.g. Pachter/Sturmfels)

In some fixed frameworks, Bellman's Principle is guaranteed to
hold, e.g. with SCFGs.

A property of the scoring scheme, not of “the algorithm”.



A third-generation implementation of ADP:

Bellman’s Principle
+ Grammars
+ Algebras
+ Products

Bellman's GAP
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ADP master equation

We design
m an abstract data type X representing candidates (as trees
resp. formulas)
m tree grammar G defining the problem decomposition and
candidate space
m evaluation algebras A, B,C, ... describing objectives
ha, hg, he...

G(A, x) = ha([A(t)|t € L(G), yield(t) = x])

We compile and call for input x

G(A,x), G(B,x), G(C,x), ...
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ADP master equation

We design
m an abstract data type X representing candidates (as trees
resp. formulas)
m tree grammar G defining the problem decomposition and
candidate space
m evaluation algebras A, B,C, ... describing objectives
ha, hg, he...

G(A, x) = ha([A(t)|t € L(G), yield(t) = x])

We compile and call for input x
G(A,x), G(B,x), G(C,x), ..

G(A = B, x)
GA®BxC,x)

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity



Cartesian ( x) and lexicographic (x) product

faxs((a,b),2) = (fa(a,2),fa(b,2))) (1)
haxg(as, bs) = (ha(as), hg(bs)) (2)
fase = faxB (3)

hA*B[(al, bl), ey (am, bm)] = [(/, r) ‘
| < set(hala1, ..., am]),

r« hg[r' | (I',r') < [(a1, b1),- .., (am, bm)], /' =1] ]
(4)
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Cartesian ( x) and lexicographic (x) product

faxs((a, b), 2) (fa(a, 2), fa(b, 2))) (1)
haxs(as, bs) (ha(as), hg(bs)) (2)
fase = faxB (3)

hA*B[(al, bl), ey (am, bm)] = [(/, r) ‘
| < set(hala1, ..., am]),
r<« hg[r" | (I',r) < [(a1,b1),---,(@m, bm)], ' =1] ]

rnafold(mfe * print, x)

rnafold(mfe x count, x)

rnafold(bpmax * mfe * print, x)
rnafold(shape * pf, x)

rnafold((mfe s print) X (probs * print), x)

and why not

(4)
—42.0, “((((C-(C-)N-((C- NN, (42.0,..), - ]
—42.0,3)]

11, =413, *((((C-(C-00)-(CCC00) ]
{10, 0.73), ({001 0-21), ...]

your guess?

(
(
(
(

rnafold((shape * (mfe . print) X (probs . print)), x) ?
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What was this?

Given some independent algebras over the same signature,

Bellman’s GAP contributes
m reporting candidates via backtracing
m counting co-optimals (and anything else)
m optimization under lexicographic orderings

m classified dynamic programming
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Interleaved (®) and overlay (|) product

fass = faxs
hiasy (a1, b1), - - -, (am, bm)] =
(L) [ (I,r)«U,p+ V,p=r1]
where
U= hA*B(l)[(al, bl), ey (am, bm)]
V =set(hgglv | (L v) < U])

A | Ap—ig = Ax Ap—ig  ( compile with --sample)

(5)

(6)

Enjoy
Dynamic
Programming
in Bellman’s
GAP

Robert
Giegerich,
Georg
Sauthoff

Abstractness
+ Modularity



Interleaved (®) and overlay (|) product

faws = faxs (5)

hiazByi (a1, b1), - - - s (am, bm)] =
[(r)|(hr) < Up< V,p=r]

where

(6)

U= hA*B(l)[(al, bl), ey (am, bm)]

V = set(hB(k)[ 14 ‘ (

v) < U])

—_—

A | Ap—ig = Ax Ap—ig  ( compile with --sample) (7)

rnafold(shape ® mfe(3), x)
rnafold(pf | pf_id * shape, x)

rnafold(print * count, x)

(101, —32.0,), ([1, —31.8), ({00, —31.1) ]
[(1000,2,01{11), (1000,4,[ ][ 1), (1000,4,[ ][ 1), (1000,3,[{](1]); ---- ]

your guess?
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Products allow for

m optimizing across a classification
m stochastic sampling

m simple ambiguity testing
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Bellman's Principle as a proof obligation

All algebras must satisfy Bellmans's Principle of Optimality
alias distributivity,
alias (strict) monotonicity.

Products are always defined, but they may not preserve
Bellman’s Principle.

This generates proof obligations ...
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Rewards from abstractness and modularity

With Bellman’s GAP,

m we focus on the creative part — designing signatures,
grammars, and algebras ...

m ... and generic alphabets, and multi-tape scenarios ...

m we combine them with products in practically unlimited
variety,

m obtain useful implementations without low-level coding
and debugging.

That's fun.

See you soon in Bellman's GAP Cafe at URL gapc.eu
(preliminary web site)
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gapc.eu

Limitations of ADP and Bellman's GAP

Types of problems that do not fit:

problems where recursion is trivial (and everything
interesting happens in the scoring scheme),

KNAPSACK or operations research-type DP problems,
evolving a complex state variable over time

problems on trees, graphs,

generalized grammars as in the O(n®) time, O(n*) space
algorithm pPkNOTS (Rivas & Eddy)

tricky tabulation schemes as in talks by Chitsaz, Stadler
on interaction
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http://www.brics.dk/grammar/

Limitations of ADP and Bellman's GAP

Types of problems that do not fit:
m problems where recursion is trivial (and everything
interesting happens in the scoring scheme),

m KNAPSACK or operations research-type DP problems,
evolving a complex state variable over time

m problems on trees, graphs,
m generalized grammars as in the O(n®) time, O(n*) space
algorithm pPkNOTS (Rivas & Eddy)
m tricky tabulation schemes as in talks by Chitsaz, Stadler
on interaction
Planned extension:

m Automated support for semantic ambiguity checking
(ACLA at http://www.brics.dk/grammar/)
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10 year Acknowledgement

Grammar W analyzes scientific meetings

Algebras  Reward maximizes over inspiration and impact
Ambiente evaluates site and surrounding
Orgs converts organizers to ASCII

Data bioinfo,y  all bioinformatics meetings (past 10 yrs)

W((Reward x Ambiente) x Orgs, bioinfo,;) =

((1.0, "Benasque RNA 2003"), (Elena Rivas, Eric Westhof))
((1.0, "Benasque RNA 2012"), (Elena Rivas, Eric Westhof))
((1.0, "Benasque RNA 2006"), (Elena Rivas, Eric Westhof))
((1.0, "Benasque RNA 2009"), (Elena Rivas, Eric Westhof))]

Thank you!
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