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• independently transcribed ncRNAs
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protein-coding gene

• cis-regulatory elements within protein-coding genes and ncRNAs
• ncRNAs excised from longer transcripts

Such as:

Definition:  Any RNA sequence that folds into a structure of functional importance
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Families of structural RNA

Genome

Family members share ancestry

• Duplications may be local or far apart

• Cis-regulatory families often reflect protein-coding gene families

For simple structures convergent evolution may be possible 
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Evolution constrained 
by structure
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EvoFold structure prediction

Pedersen et al., 2006, PLoS Computational Biology. 
Knudsen & Hein, 1999, Bioinformatics.

!"#$%&&&'(')**')***'')(')*())
+!,#-.&&'(')**')***'')(')*())
#/"01&&&'('***()***)'*(')*(*)
2$3&&&&&((')**()**(''*(')*(*)
4/5&&&&&'(')(*()*((''*'')*())
/-/00"#&)'')**()')*''*''))(')
+!,+61%&''')**()()**'*''))'')
-.&7,0!&''')**()()(*'*''))''(
&&&&&&&&.888.888....999999...

!!
!

! !

!

Human genome:
Conserved elements:

Genomic alignment
segment:

fold:
SCFG generated
secondary structure:

Phylogenetic evaluation:

single-nucleotide
model

di-nucleotide
model

a)

b)

c)

e)

d)



EvoFold structure prediction

Pedersen et al., 2006, PLoS Computational Biology. 
Knudsen & Hein, 1999, Bioinformatics.

!"#$%&&&'(')**')***'')(')*())
+!,#-.&&'(')**')***'')(')*())
#/"01&&&'('***()***)'*(')*(*)
2$3&&&&&((')**()**(''*(')*(*)
4/5&&&&&'(')(*()*((''*'')*())
/-/00"#&)'')**()')*''*''))(')
+!,+61%&''')**()()**'*''))'')
-.&7,0!&''')**()()(*'*''))''(
&&&&&&&&.888.888....999999...

!!
!

! !

!

Human genome:
Conserved elements:

Genomic alignment
segment:

fold:
SCFG generated
secondary structure:

Phylogenetic evaluation:

single-nucleotide
model

di-nucleotide
model

a)

b)

c)

e)

d)



EvoFold structure prediction

Pedersen et al., 2006, PLoS Computational Biology. 
Knudsen & Hein, 1999, Bioinformatics.

!"#$%&&&'(')**')***'')(')*())
+!,#-.&&'(')**')***'')(')*())
#/"01&&&'('***()***)'*(')*(*)
2$3&&&&&((')**()**(''*(')*(*)
4/5&&&&&'(')(*()*((''*'')*())
/-/00"#&)'')**()')*''*''))(')
+!,+61%&''')**()()**'*''))'')
-.&7,0!&''')**()()(*'*''))''(
&&&&&&&&.888.888....999999...

!!
!

! !

!

Human genome:
Conserved elements:

Genomic alignment
segment:

fold:
SCFG generated
secondary structure:

Phylogenetic evaluation:

single-nucleotide
model

di-nucleotide
model

a)

b)

c)

e)

d)



EvoFold structure prediction

Pedersen et al., 2006, PLoS Computational Biology. 
Knudsen & Hein, 1999, Bioinformatics.

!"#$%&&&'(')**')***'')(')*())
+!,#-.&&'(')**')***'')(')*())
#/"01&&&'('***()***)'*(')*(*)
2$3&&&&&((')**()**(''*(')*(*)
4/5&&&&&'(')(*()*((''*'')*())
/-/00"#&)'')**()')*''*''))(')
+!,+61%&''')**()()**'*''))'')
-.&7,0!&''')**()()(*'*''))''(
&&&&&&&&.888.888....999999...

!!
!

! !

!

Human genome:
Conserved elements:

Genomic alignment
segment:

fold:
SCFG generated
secondary structure:

Phylogenetic evaluation:

single-nucleotide
model

di-nucleotide
model

a)

b)

c)

e)

d)



EvoFold structure prediction

Pedersen et al., 2006, PLoS Computational Biology. 
Knudsen & Hein, 1999, Bioinformatics.

!"#$%&&&'(')**')***'')(')*())
+!,#-.&&'(')**')***'')(')*())
#/"01&&&'('***()***)'*(')*(*)
2$3&&&&&((')**()**(''*(')*(*)
4/5&&&&&'(')(*()*((''*'')*())
/-/00"#&)'')**()')*''*''))(')
+!,+61%&''')**()()**'*''))'')
-.&7,0!&''')**()()(*'*''))''(
&&&&&&&&.888.888....999999...

!!
!

! !

!

Human genome:
Conserved elements:

Genomic alignment
segment:

fold:
SCFG generated
secondary structure:

Phylogenetic evaluation:

single-nucleotide
model

di-nucleotide
model

a)

b)

c)

e)

d)



Screen of 31-way vertebrate alignments

Phylogenetic tree of input species

Data from 29 mammals sequencing and analysis consortium: Kerstin Lindblad-Toh. A high-resolution map of human evolutionary constraint using 29 mammals. Nature (2011).
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Input: conserved alignment segments (5.6% of genome)

Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).
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Input: conserved alignment segments (5.6% of genome)

Output: 37,381 predictions (0.05% of genome) 

Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).
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Output: 37,381 predictions (0.05% of genome) 

Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).
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- Simulate iid substitutions across columns on 
phylogeny.

- Count double substitutions given structure.

- Estimate P-value as fraction simulations with at 
least as many double substitutions.
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Implementation 

Counting substitutions on a tree: To count substitutions on a tree we first use the algorithm of 

Pupko et al. (2000) to infer the most likely ancestral nucleotide sequence in each node in the 

tree. We then simply count the number of substitutions on each branch by counting the 

number of differences between the nucleotide sequences in the two nodes that the branch 

connects.  

 

We use the implementation of Pupko’s algorithm that is available in the software package 

PAML (Yang 2007) and Jukes Cantor as the underlying mutation model. 

 

Estimating the p-value: Unfortunately even for the simple null model we use, the exact p-

values are very time-consuming to calculate. We therefore estimate them using a Monte Carlo 

approach instead. Per definition the p-value of a predicted structure s given a multi-species 

alignment a of the b stem bases of s and a phylogenetic tree t is equal to: 
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where d is the number of double substitutions in a and n is the total number of substitutions in 

a. If we let X be the set of all possible substitution patterns given n, b and t and let f be an 

indicator function that returns 1 if a pattern x has d or more double substitutions and 0 

otherwise this can be rewritten as  
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Hence if we let X be a stochastic variable that can take values in X and that is distributed 

according to the null model then the p-value can be formulated as the expectation: 
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Thus we can estimate the p-value by a standard Monte Carlo approach for estimating 

expectations: sample m substitution patterns, x1,x2,x3,...,xm from the null model and then use 
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This estimator is unbiased and its variance is Var(f(X))/m. Hence the larger m is the more 

accurate the estimate will be. We use an m value of 10,000,000. However, we do the sampling 

in batches of 10,000 and stop sampling if we reach 50 samples that are more extreme than the 

one we are testing.  In this way we avoid wasting time on estimating large p-values, but still 

achieve high accuracy on low p-values; the p-value we are interested in.  

 

Alignment filtering 

The 2x mammalian genome assemblies contain regions covered by only single reads, which 

therefore have elevated error rates. Since EvoFold identifies conserved RNA structures based 

on their characteristic substitution pattern, it is sensitive to such errors. Therefore, we filter 

sequences that are likely to be misaligned away from the alignments before making any 

predictions. For each alignment, we first identify every outer branch in the underlying 

phylogenetic tree on which there are significantly more substitutions than expected given its 

length and the substitution rate in the rest of the tree. More specifically, every outer branch 

with at least 2 mutations that has a substitution rate which is more than five times larger than 

! 
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Initially, we wanted to use Kullback-Liebler divergence (KL):
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! 

P
M
1

and 

! 

P
M

2

of sequences generated by models 

! 

M
1
 and 

! 

M
2
 

respectively, 

! 

D
KL

M1 ||M2( ) = P
M 1
(i)log

P
M 1
(i)

P
M 2
(i)

i

"
              (1)

 

summed over the set of all 

! 

i " #
*
sequences generated by model 

! 

M
1
, with 

! 

P
M 1,2{ }

(i)  the 

probability of the respective models generating that sequence. 
 

This divergence can be estimated by a Monte Carlo approach (Juang and Rabiner 1985), 

comparing sequences emitted from the generative model 

! 

M
1
 with the probability that they 

were produced by model 

! 

M
2
 using eq. 1.  

! 

˜ D 
KL

M1 || M2( ) =1/n 1/ l(s1,i) " log P
M 1

(s1,i)( ) # log P
M 2

(s1,i)( )( )
i=1

n

$            (2)
 

for

! 

n  Monte Carlo samples, where 

! 

s
1,i
 is the ith sequence generated by model 1. In the limit 

of many samples 

! 

n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
. 

This sample consisted of the human sequence used to train model 

! 

M
1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 

! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " log P

M 1
(s1,human

)( ) # log P
M 2

(s1,human
)( )( )          (3)

 

, where 

! 

s
1,human

 is the human sequence used to train model 1, and normalized by the length 

! 

l  

of
 

! 

s
1,human

. 

The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
M
(s)

P
null
(s)

.     (4) 

giving 

Initially, we wanted to use Kullback-Liebler divergence (KL):
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The similarity measure used is derived from the Kullback-Leibler divergence 
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This divergence can be estimated by a Monte Carlo approach (Juang and Rabiner 1985), 

comparing sequences emitted from the generative model 

! 

M
1
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for

! 

n  Monte Carlo samples, where 

! 

s
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 is the ith sequence generated by model 1. In the limit 

of many samples 

! 

n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
. 

This sample consisted of the human sequence used to train model 

! 

M
1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 
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, where 

! 

s
1,human

 is the human sequence used to train model 1, and normalized by the length 

! 

l  

of
 

! 

s
1,human
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The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
M
(s)

P
null
(s)
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giving 

We couldn’t compute and resorted to sampling:
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The similarity measure used is derived from the Kullback-Leibler divergence 
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D
KL

 between 

probability distributions, which defines a fundamental measure of similarity between the 
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 is the ith sequence generated by model 1. In the limit 
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n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
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This sample consisted of the human sequence used to train model 
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1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 
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, where 
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 is the human sequence used to train model 1, and normalized by the length 

! 
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of
 

! 

s
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The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
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null
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.     (4) 

giving 

Initially, we wanted to use Kullback-Liebler divergence (KL):
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The similarity measure used is derived from the Kullback-Leibler divergence 

! 

D
KL

 between 

probability distributions, which defines a fundamental measure of similarity between the 

probability distributions 
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P
M
1

and 

! 

P
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respectively, 
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(i)log
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summed over the set of all 
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i " #
*
sequences generated by model 

! 

M
1
, with 
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P
M 1,2{ }

(i)  the 

probability of the respective models generating that sequence. 
 

This divergence can be estimated by a Monte Carlo approach (Juang and Rabiner 1985), 

comparing sequences emitted from the generative model 
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M
1
 with the probability that they 

were produced by model 
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M
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 using eq. 1.  
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M1 || M2( ) =1/n 1/ l(s1,i) " log P
M 1

(s1,i)( ) # log P
M 2

(s1,i)( )( )
i=1
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for

! 

n  Monte Carlo samples, where 

! 

s
1,i
 is the ith sequence generated by model 1. In the limit 

of many samples 

! 

n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
. 

This sample consisted of the human sequence used to train model 

! 

M
1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 

! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " log P

M 1
(s1,human

)( ) # log P
M 2

(s1,human
)( )( )          (3)

 

, where 

! 

s
1,human

 is the human sequence used to train model 1, and normalized by the length 

! 

l  

of
 

! 

s
1,human

. 

The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
M
(s)

P
null
(s)

.     (4) 

giving 

We couldn’t compute and resorted to sampling:
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! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " S(s1,human

, M1) # S(s1,human
, M2)( ).  (5) 

However, model complexity varies greatly between RNA structures and in genome-wide 

studies the rate of false positives would be larger for smaller and less complex models (i.e. 

simple unstructured sequences versus complex looped structures). We desire a similarity 

measure that is normalized for the expected false positive rate. The length normalization 

incorporated in 

! 

˜ D 
KL,human

 above is not sufficient to fully correct for these differences in model 

complexity. Therefore we use a (dis)similarity measure based on E-value i.e. the expected 

number of false positives with the same or greater score when searching with model 

! 

M  

against a database of sequences of total length approximately equal to the combined sequence 

length searched in performing the all-against-all cluster analysis: 

! 

E
M
(S)  denotes the 

estimation of the E-value corresponding to a given score 

! 

S  when searching using a model 

! 

M

.  This transformation of scores 

! 

S  to E-value is computed empirically (using the Infernal 

toolkit), separately for each model 

! 

M , by generating a histogram of scores by searching 

randomly generated sequences, and then fitting a smooth exponential curve to the tails. 

! 

E  is 

highly correlated with 

! 

S  but is normalized for differing lengths and complexities of models. 

This is due to its being based on statistical significance, with the database size 

! 

E  it is 

computed relative to being identical for all models. Using 

! 

E  rather than length to normalize 

in the above, the (dis)similarity score used is: 

 

! 

˜ D E ,human M1 || M2( ) = EM 2
S(seq1,human ,M2)( ) " EM 1

S(seq1,human , M1)( ) .  (6) 

 

The Kullback-Leibler divergence is an information theoretic measure giving the expected 

number of extra bits required to code samples from 

! 

M
1
 when using a code based on 

! 

M
2
, 

rather than using the ideal code based on 

! 

M
1
 . In comparison with this definition of KL 

divergence, this new divergence measures the expected number of extra false positives over a 

database of sequences generated from 

! 

M
1
 when searching using model 

! 

M
2
, rather than using 

the ideal model 

! 

M
1
, and can be considered a normalized derivative of the KL divergence. 

Identical models will have a value of 0, and more dissimilar models will have larger values, 

as for the KL divergence (note that for the single sample approximation described in eq. 6, 

! 

˜ D 
E ,human

M
1

|| M
2( ) will similarly tend to be positive, with smaller values for more similar 

models; values < 0 are set to 0).   

 

These measures are not symmetric: 

! 

˜ D 
E ,human

M
1

|| M
2( ) is, in general, 

! 

" ˜ D 
E ,human

M
2

|| M
1( ). 

By applying this measure reciprocally, we get an estimate of how likely the two models are to 

generate the same sequences i.e. how similar the models are. To generate a final symmetric 

measure we use: 

! 

D M
1

|| M
2( ) = max ˜ D 

E ,human
M

1
|| M

2( ), ˜ D 
E ,human

M
2

|| M
1( )( ) .  (7) 

This gives a conservative lower bound on the divergences between the two models. Note that 

when searching with a model 

! 

M  in this study we use a global alignment of 

! 

M  to the 

sequence (using cmsearch -g from the Infernal package) to tradeoff sensitivity versus 

specificity. The most significant hit from searching both strands is used in the above, as the 

predicted strand from EvoFold is known to have a high error rate. Note that while the search 

is global relative to the model, it is effectively local relative to the sequence itself. This could 

lead to e.g. a small hairpin model matching with good score a small part of a larger structure 

in the sequence, but the maximum symmetrization of 

! 

D M
1
||M

2( ) will correctly penalize 

this case. 

Still slow.  Approximated by one sample only - human sequence from training alignment.
Also replaced probabilities with (Infernal) normalized scores:
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The similarity measure used is derived from the Kullback-Leibler divergence 

! 

D
KL

 between 

probability distributions, which defines a fundamental measure of similarity between the 

probability distributions 

! 

P
M
1

and 

! 

P
M

2

of sequences generated by models 

! 

M
1
 and 

! 

M
2
 

respectively, 

! 

D
KL

M1 ||M2( ) = P
M 1
(i)log

P
M 1
(i)

P
M 2
(i)

i

"
              (1)

 

summed over the set of all 

! 

i " #
*
sequences generated by model 

! 

M
1
, with 

! 

P
M 1,2{ }

(i)  the 

probability of the respective models generating that sequence. 
 

This divergence can be estimated by a Monte Carlo approach (Juang and Rabiner 1985), 

comparing sequences emitted from the generative model 

! 

M
1
 with the probability that they 

were produced by model 

! 

M
2
 using eq. 1.  

! 

˜ D 
KL

M1 || M2( ) =1/n 1/ l(s1,i) " log P
M 1

(s1,i)( ) # log P
M 2

(s1,i)( )( )
i=1

n

$            (2)
 

for

! 

n  Monte Carlo samples, where 

! 

s
1,i
 is the ith sequence generated by model 1. In the limit 

of many samples 

! 

n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
. 

This sample consisted of the human sequence used to train model 

! 

M
1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 

! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " log P

M 1
(s1,human

)( ) # log P
M 2

(s1,human
)( )( )          (3)

 

, where 

! 

s
1,human

 is the human sequence used to train model 1, and normalized by the length 

! 

l  

of
 

! 

s
1,human

. 

The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
M
(s)

P
null
(s)

.     (4) 

giving 



(Dis)similarity measure
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The similarity measure used is derived from the Kullback-Leibler divergence 
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D
KL

 between 

probability distributions, which defines a fundamental measure of similarity between the 
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This divergence can be estimated by a Monte Carlo approach (Juang and Rabiner 1985), 

comparing sequences emitted from the generative model 
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were produced by model 
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for
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n  Monte Carlo samples, where 
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s
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 is the ith sequence generated by model 1. In the limit 

of many samples 

! 

n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
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This sample consisted of the human sequence used to train model 
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M
1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 
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)( ) # log P
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, where 

! 

s
1,human

 is the human sequence used to train model 1, and normalized by the length 

! 

l  

of
 

! 

s
1,human

. 

The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
M
(s)

P
null
(s)

.     (4) 

giving 

Initially, we wanted to use Kullback-Liebler divergence (KL):
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The similarity measure used is derived from the Kullback-Leibler divergence 
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D
KL

 between 

probability distributions, which defines a fundamental measure of similarity between the 

probability distributions 
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respectively, 
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summed over the set of all 

! 

i " #
*
sequences generated by model 

! 

M
1
, with 
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P
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(i)  the 

probability of the respective models generating that sequence. 
 

This divergence can be estimated by a Monte Carlo approach (Juang and Rabiner 1985), 

comparing sequences emitted from the generative model 

! 

M
1
 with the probability that they 

were produced by model 

! 

M
2
 using eq. 1.  
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for

! 

n  Monte Carlo samples, where 

! 

s
1,i
 is the ith sequence generated by model 1. In the limit 

of many samples 

! 

n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
. 

This sample consisted of the human sequence used to train model 
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M
1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 
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KL,human

M1 || M2( ) =1/ l(s1,human
) " log P
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(s1,human

)( ) # log P
M 2
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, where 

! 

s
1,human

 is the human sequence used to train model 1, and normalized by the length 

! 

l  

of
 

! 

s
1,human
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The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
M
(s)

P
null
(s)

.     (4) 

giving 

We couldn’t compute and resorted to sampling:
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! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " S(s1,human

, M1) # S(s1,human
, M2)( ).  (5) 

However, model complexity varies greatly between RNA structures and in genome-wide 

studies the rate of false positives would be larger for smaller and less complex models (i.e. 

simple unstructured sequences versus complex looped structures). We desire a similarity 

measure that is normalized for the expected false positive rate. The length normalization 

incorporated in 

! 

˜ D 
KL,human

 above is not sufficient to fully correct for these differences in model 

complexity. Therefore we use a (dis)similarity measure based on E-value i.e. the expected 

number of false positives with the same or greater score when searching with model 

! 

M  

against a database of sequences of total length approximately equal to the combined sequence 

length searched in performing the all-against-all cluster analysis: 

! 

E
M
(S)  denotes the 

estimation of the E-value corresponding to a given score 

! 

S  when searching using a model 

! 

M

.  This transformation of scores 

! 

S  to E-value is computed empirically (using the Infernal 

toolkit), separately for each model 

! 

M , by generating a histogram of scores by searching 

randomly generated sequences, and then fitting a smooth exponential curve to the tails. 

! 

E  is 

highly correlated with 

! 

S  but is normalized for differing lengths and complexities of models. 

This is due to its being based on statistical significance, with the database size 

! 

E  it is 

computed relative to being identical for all models. Using 

! 

E  rather than length to normalize 

in the above, the (dis)similarity score used is: 

 

! 

˜ D E ,human M1 || M2( ) = EM 2
S(seq1,human ,M2)( ) " EM 1

S(seq1,human , M1)( ) .  (6) 

 

The Kullback-Leibler divergence is an information theoretic measure giving the expected 

number of extra bits required to code samples from 

! 

M
1
 when using a code based on 

! 

M
2
, 

rather than using the ideal code based on 

! 

M
1
 . In comparison with this definition of KL 

divergence, this new divergence measures the expected number of extra false positives over a 

database of sequences generated from 

! 

M
1
 when searching using model 

! 

M
2
, rather than using 

the ideal model 

! 

M
1
, and can be considered a normalized derivative of the KL divergence. 

Identical models will have a value of 0, and more dissimilar models will have larger values, 

as for the KL divergence (note that for the single sample approximation described in eq. 6, 

! 

˜ D 
E ,human

M
1

|| M
2( ) will similarly tend to be positive, with smaller values for more similar 

models; values < 0 are set to 0).   

 

These measures are not symmetric: 

! 

˜ D 
E ,human

M
1

|| M
2( ) is, in general, 

! 

" ˜ D 
E ,human

M
2

|| M
1( ). 

By applying this measure reciprocally, we get an estimate of how likely the two models are to 

generate the same sequences i.e. how similar the models are. To generate a final symmetric 

measure we use: 

! 

D M
1

|| M
2( ) = max ˜ D 

E ,human
M

1
|| M

2( ), ˜ D 
E ,human

M
2

|| M
1( )( ) .  (7) 

This gives a conservative lower bound on the divergences between the two models. Note that 

when searching with a model 

! 

M  in this study we use a global alignment of 

! 

M  to the 

sequence (using cmsearch -g from the Infernal package) to tradeoff sensitivity versus 

specificity. The most significant hit from searching both strands is used in the above, as the 

predicted strand from EvoFold is known to have a high error rate. Note that while the search 

is global relative to the model, it is effectively local relative to the sequence itself. This could 

lead to e.g. a small hairpin model matching with good score a small part of a larger structure 

in the sequence, but the maximum symmetrization of 

! 

D M
1
||M

2( ) will correctly penalize 

this case. 

Still slow.  Approximated by one sample only - human sequence from training alignment.
Also replaced probabilities with (Infernal) normalized scores:
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The similarity measure used is derived from the Kullback-Leibler divergence 

! 

D
KL

 between 

probability distributions, which defines a fundamental measure of similarity between the 

probability distributions 

! 

P
M
1

and 

! 

P
M

2

of sequences generated by models 

! 

M
1
 and 

! 

M
2
 

respectively, 

! 

D
KL

M1 ||M2( ) = P
M 1
(i)log

P
M 1
(i)

P
M 2
(i)

i

"
              (1)

 

summed over the set of all 

! 

i " #
*
sequences generated by model 

! 

M
1
, with 

! 

P
M 1,2{ }

(i)  the 

probability of the respective models generating that sequence. 
 

This divergence can be estimated by a Monte Carlo approach (Juang and Rabiner 1985), 

comparing sequences emitted from the generative model 

! 

M
1
 with the probability that they 

were produced by model 

! 

M
2
 using eq. 1.  

! 

˜ D 
KL

M1 || M2( ) =1/n 1/ l(s1,i) " log P
M 1

(s1,i)( ) # log P
M 2

(s1,i)( )( )
i=1

n

$            (2)
 

for

! 

n  Monte Carlo samples, where 

! 

s
1,i
 is the ith sequence generated by model 1. In the limit 

of many samples 

! 

n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
. 

This sample consisted of the human sequence used to train model 

! 

M
1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 

! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " log P

M 1
(s1,human

)( ) # log P
M 2

(s1,human
)( )( )          (3)

 

, where 

! 

s
1,human

 is the human sequence used to train model 1, and normalized by the length 

! 

l  

of
 

! 

s
1,human

. 

The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
M
(s)

P
null
(s)

.     (4) 

giving 

Problem: Models of different complexities have different false positive rates. 
Hence replace score with E-score.



(Dis)similarity measure
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The similarity measure used is derived from the Kullback-Leibler divergence 

! 

D
KL

 between 

probability distributions, which defines a fundamental measure of similarity between the 

probability distributions 

! 

P
M
1

and 

! 

P
M

2

of sequences generated by models 

! 

M
1
 and 

! 

M
2
 

respectively, 

! 

D
KL

M1 ||M2( ) = P
M 1
(i)log

P
M 1
(i)

P
M 2
(i)

i

"
              (1)

 

summed over the set of all 

! 

i " #
*
sequences generated by model 

! 

M
1
, with 

! 

P
M 1,2{ }

(i)  the 

probability of the respective models generating that sequence. 
 

This divergence can be estimated by a Monte Carlo approach (Juang and Rabiner 1985), 

comparing sequences emitted from the generative model 

! 

M
1
 with the probability that they 

were produced by model 

! 

M
2
 using eq. 1.  

! 

˜ D 
KL

M1 || M2( ) =1/n 1/ l(s1,i) " log P
M 1

(s1,i)( ) # log P
M 2

(s1,i)( )( )
i=1

n

$            (2)
 

for

! 

n  Monte Carlo samples, where 

! 

s
1,i
 is the ith sequence generated by model 1. In the limit 

of many samples 

! 

n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
. 

This sample consisted of the human sequence used to train model 

! 

M
1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 

! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " log P

M 1
(s1,human

)( ) # log P
M 2

(s1,human
)( )( )          (3)

 

, where 

! 

s
1,human

 is the human sequence used to train model 1, and normalized by the length 

! 

l  

of
 

! 

s
1,human

. 

The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
M
(s)

P
null
(s)

.     (4) 

giving 

Initially, we wanted to use Kullback-Liebler divergence (KL):
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The similarity measure used is derived from the Kullback-Leibler divergence 

! 

D
KL

 between 

probability distributions, which defines a fundamental measure of similarity between the 

probability distributions 

! 

P
M
1

and 

! 

P
M

2

of sequences generated by models 

! 

M
1
 and 

! 

M
2
 

respectively, 

! 

D
KL

M1 ||M2( ) = P
M 1
(i)log

P
M 1
(i)

P
M 2
(i)

i

"
              (1)

 

summed over the set of all 

! 

i " #
*
sequences generated by model 

! 

M
1
, with 

! 

P
M 1,2{ }

(i)  the 

probability of the respective models generating that sequence. 
 

This divergence can be estimated by a Monte Carlo approach (Juang and Rabiner 1985), 

comparing sequences emitted from the generative model 

! 

M
1
 with the probability that they 

were produced by model 

! 

M
2
 using eq. 1.  

! 

˜ D 
KL

M1 || M2( ) =1/n 1/ l(s1,i) " log P
M 1

(s1,i)( ) # log P
M 2

(s1,i)( )( )
i=1

n

$            (2)
 

for

! 

n  Monte Carlo samples, where 

! 

s
1,i
 is the ith sequence generated by model 1. In the limit 

of many samples 

! 

n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
. 

This sample consisted of the human sequence used to train model 

! 

M
1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 

! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " log P

M 1
(s1,human

)( ) # log P
M 2

(s1,human
)( )( )          (3)

 

, where 

! 

s
1,human

 is the human sequence used to train model 1, and normalized by the length 

! 

l  

of
 

! 

s
1,human

. 

The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
M
(s)

P
null
(s)

.     (4) 

giving 

We couldn’t compute and resorted to sampling:
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! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " S(s1,human

, M1) # S(s1,human
, M2)( ).  (5) 

However, model complexity varies greatly between RNA structures and in genome-wide 

studies the rate of false positives would be larger for smaller and less complex models (i.e. 

simple unstructured sequences versus complex looped structures). We desire a similarity 

measure that is normalized for the expected false positive rate. The length normalization 

incorporated in 

! 

˜ D 
KL,human

 above is not sufficient to fully correct for these differences in model 

complexity. Therefore we use a (dis)similarity measure based on E-value i.e. the expected 

number of false positives with the same or greater score when searching with model 

! 

M  

against a database of sequences of total length approximately equal to the combined sequence 

length searched in performing the all-against-all cluster analysis: 

! 

E
M
(S)  denotes the 

estimation of the E-value corresponding to a given score 

! 

S  when searching using a model 

! 

M

.  This transformation of scores 

! 

S  to E-value is computed empirically (using the Infernal 

toolkit), separately for each model 

! 

M , by generating a histogram of scores by searching 

randomly generated sequences, and then fitting a smooth exponential curve to the tails. 

! 

E  is 

highly correlated with 

! 

S  but is normalized for differing lengths and complexities of models. 

This is due to its being based on statistical significance, with the database size 

! 

E  it is 

computed relative to being identical for all models. Using 

! 

E  rather than length to normalize 

in the above, the (dis)similarity score used is: 

 

! 

˜ D E ,human M1 || M2( ) = EM 2
S(seq1,human ,M2)( ) " EM 1

S(seq1,human , M1)( ) .  (6) 

 

The Kullback-Leibler divergence is an information theoretic measure giving the expected 

number of extra bits required to code samples from 

! 

M
1
 when using a code based on 

! 

M
2
, 

rather than using the ideal code based on 

! 

M
1
 . In comparison with this definition of KL 

divergence, this new divergence measures the expected number of extra false positives over a 

database of sequences generated from 

! 

M
1
 when searching using model 

! 

M
2
, rather than using 

the ideal model 

! 

M
1
, and can be considered a normalized derivative of the KL divergence. 

Identical models will have a value of 0, and more dissimilar models will have larger values, 

as for the KL divergence (note that for the single sample approximation described in eq. 6, 

! 

˜ D 
E ,human

M
1

|| M
2( ) will similarly tend to be positive, with smaller values for more similar 

models; values < 0 are set to 0).   

 

These measures are not symmetric: 

! 

˜ D 
E ,human

M
1

|| M
2( ) is, in general, 

! 

" ˜ D 
E ,human

M
2

|| M
1( ). 

By applying this measure reciprocally, we get an estimate of how likely the two models are to 

generate the same sequences i.e. how similar the models are. To generate a final symmetric 

measure we use: 

! 

D M
1

|| M
2( ) = max ˜ D 

E ,human
M

1
|| M

2( ), ˜ D 
E ,human

M
2

|| M
1( )( ) .  (7) 

This gives a conservative lower bound on the divergences between the two models. Note that 

when searching with a model 

! 

M  in this study we use a global alignment of 

! 

M  to the 

sequence (using cmsearch -g from the Infernal package) to tradeoff sensitivity versus 

specificity. The most significant hit from searching both strands is used in the above, as the 

predicted strand from EvoFold is known to have a high error rate. Note that while the search 

is global relative to the model, it is effectively local relative to the sequence itself. This could 

lead to e.g. a small hairpin model matching with good score a small part of a larger structure 

in the sequence, but the maximum symmetrization of 

! 

D M
1
||M

2( ) will correctly penalize 

this case. 

Still slow.  Approximated by one sample only - human sequence from training alignment.
Also replaced probabilities with (Infernal) normalized scores:
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The similarity measure used is derived from the Kullback-Leibler divergence 

! 

D
KL

 between 

probability distributions, which defines a fundamental measure of similarity between the 

probability distributions 

! 

P
M
1

and 

! 

P
M

2

of sequences generated by models 

! 

M
1
 and 

! 

M
2
 

respectively, 

! 

D
KL

M1 ||M2( ) = P
M 1
(i)log

P
M 1
(i)

P
M 2
(i)

i

"
              (1)

 

summed over the set of all 

! 

i " #
*
sequences generated by model 

! 

M
1
, with 

! 

P
M 1,2{ }

(i)  the 

probability of the respective models generating that sequence. 
 

This divergence can be estimated by a Monte Carlo approach (Juang and Rabiner 1985), 

comparing sequences emitted from the generative model 

! 

M
1
 with the probability that they 

were produced by model 

! 

M
2
 using eq. 1.  

! 

˜ D 
KL

M1 || M2( ) =1/n 1/ l(s1,i) " log P
M 1

(s1,i)( ) # log P
M 2

(s1,i)( )( )
i=1

n

$            (2)
 

for

! 

n  Monte Carlo samples, where 

! 

s
1,i
 is the ith sequence generated by model 1. In the limit 

of many samples 

! 

n  this will approach the true Kullback-Leibler divergence.   

(Juang and Rabiner 1985) examined hidden Markov models of simple sequences and to make 

the divergences comparable normalized by the length l of each 

! 

s
1,i

. 

However, there are two limitations of this approach for this study: (1) For a large genome-

wide study, such sampling many times over the full probability space is computationally 

intractable. and (2) the simple length normalization is insufficient for more complex SCFG 

models of varying structural complexity but perhaps similar length. 

To limit computational costs in this genome-wide study, we used an approximation based on 

using only a single sample from the probability distribution of sequences from model 

! 

M
1
. 

This sample consisted of the human sequence used to train model 

! 

M
1
 (which is at the 

approximate mode of the distribution and the sequence of major interest) to give 

! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " log P

M 1
(s1,human

)( ) # log P
M 2

(s1,human
)( )( )          (3)

 

, where 

! 

s
1,human

 is the human sequence used to train model 1, and normalized by the length 

! 

l  

of
 

! 

s
1,human

. 

The score 

! 

S  calculated for each alignment by the Infernal tools is returned as the log odds 

relative to a null model of a random unstructured sequence with 

! 

S s,M( ) = log2
P
M
(s)

P
null
(s)

.     (4) 

giving 

Problem: Models of different complexities have different false positive rates. 
Hence replace score with E-score.
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! 

˜ D 
KL,human

M1 || M2( ) =1/ l(s1,human
) " S(s1,human

,M1) # S(s1,human
,M2)( ).  (5) 

However, model complexity varies greatly between RNA structures and in genome-wide 

studies the rate of false positives would be larger for smaller and less complex models (i.e. 

simple unstructured sequences versus complex looped structures). We desire a similarity 

measure that is normalized for the expected false positive rate. The length normalization 

incorporated in 

! 

˜ D 
KL,human

 above is not sufficient to fully correct for these differences in model 

complexity. Therefore we use a (dis)similarity measure based on E-value i.e. the expected 

number of false positives with the same or greater score when searching with model 

! 

M  

against a database of sequences of total length approximately equal to the combined sequence 

length searched in performing the all-against-all cluster analysis: 

! 

E
M
(S)  denotes the 

estimation of the E-value corresponding to a given score 

! 

S  when searching using a model 

! 

M

.  This transformation of scores 

! 

S  to E-value is computed empirically (using the Infernal 

toolkit), separately for each model 

! 

M , by generating a histogram of scores by searching 

randomly generated sequences, and then fitting a smooth exponential curve to the tails. 

! 

E  is 

highly correlated with 

! 

S  but is normalized for differing lengths and complexities of models. 

This is due to its being based on statistical significance, with the database size 

! 

E  it is 

computed relative to being identical for all models. Using 

! 

E  rather than length to normalize 

in the above, the (dis)similarity score used is: 

 

! 

˜ D E ,human M1 || M2( ) = EM 2
S(seq1,human ,M2)( ) " EM 1

S(seq1,human ,M1)( ) .  (6) 

 

The Kullback-Leibler divergence is an information theoretic measure giving the expected 

number of extra bits required to code samples from 

! 

M
1
 when using a code based on 

! 

M
2
, 

rather than using the ideal code based on 

! 

M
1
 . In comparison with this definition of KL 

divergence, this new divergence measures the expected number of extra false positives over a 

database of sequences generated from 

! 

M
1
 when searching using model 

! 

M
2
, rather than using 

the ideal model 

! 

M
1
, and can be considered a normalized derivative of the KL divergence. 

Identical models will have a value of 0, and more dissimilar models will have larger values, 

as for the KL divergence (note that for the single sample approximation described in eq. 6, 

! 

˜ D 
E ,human

M
1

|| M
2( ) will similarly tend to be positive, with smaller values for more similar 

models; values < 0 are set to 0).   

 

These measures are not symmetric: 

! 

˜ D 
E ,human

M
1

|| M
2( ) is, in general, 

! 

" ˜ D 
E ,human

M
2

|| M
1( ). 

By applying this measure reciprocally, we get an estimate of how likely the two models are to 

generate the same sequences i.e. how similar the models are. To generate a final symmetric 

measure we use: 

! 

D M
1

|| M
2( ) = max ˜ D 

E ,human
M

1
|| M

2( ), ˜ D 
E ,human

M
2

|| M
1( )( ) .  (7) 

This gives a conservative lower bound on the divergences between the two models. Note that 

when searching with a model 

! 

M  in this study we use a global alignment of 

! 

M  to the 

sequence (using cmsearch -g from the Infernal package) to tradeoff sensitivity versus 

specificity. The most significant hit from searching both strands is used in the above, as the 

predicted strand from EvoFold is known to have a high error rate. Note that while the search 

is global relative to the model, it is effectively local relative to the sequence itself. This could 

lead to e.g. a small hairpin model matching with good score a small part of a larger structure 

in the sequence, but the maximum symmetrization of 

! 

D M
1
||M

2( ) will correctly penalize 

this case. 

Finally, be conservative and symmetrize by max:
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Family prediction overview

Filtered families have either:

• EvoP test < 0.05

• Region enrichment test < 0.005

• GO enrichment test relative to 
EvoFold background < 0.01

• Mean structure length > 11 base pairs
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Figure S5: Genomic distribution of family members.  
The genomic distribution of the high-confidence GW set is compared with both the initial EvoFold set, 

conserved regions, and with a set of known functional RNAs (see Methods). The overall genomic 

region distribution is also shown. The family members are enriched for UTR, consistent with existence 

of many cis-regulatory families. 
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48 of 220 families contain known members (88% known)

mascRNA family in MALAT 1 and Men β

Wilusz 2008; Sunwoo et al. 2009; Wilusz and Spector 2010
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48 of 220 families contain known members (88% known)

Estimated false positive rate:
• 27 % for similarity edges
• 34 % for families of size three or larger
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Immune related regulatory networks?
Families of short hairpins enriched in 3‘UTRs of immunity related genes



Immune related regulatory networks?
Families of short hairpins enriched in 3‘UTRs of immunity related genes

Includes known destabilization hairpins
Constitutive Decay Element



Immune related regulatory networks?
Families of short hairpins enriched in 3‘UTRs of immunity related genes

Stem–Loop Destabilizing Element

Constitutive Decay Element

Includes known destabilization hairpins



Family of six hairpins all within 3‘UTR MAT2A

Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).
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Family of six hairpins all within 3‘UTR MAT2A

Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).
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Shared loop motif 

Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).

Loop motif shared between human 
members and down through vertebrates
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Post-transcriptional regulation of MAT2A

MAT2A: methionine adenosyltransferase II, alpha
MAT catalyzes the synthesis of SAM (adoMet)

SAM

(Martínez-Chantar et al. J Biol Chem (2003))
Half-life of MAT2A transcript depends on SAM concetration



Post-transcriptional regulation of MAT2A

MAT2A: methionine adenosyltransferase II, alpha
MAT catalyzes the synthesis of SAM (adoMet)

SAM

(Martínez-Chantar et al. J Biol Chem (2003))
Half-life of MAT2A transcript depends on SAM concetration

SAM riboswitches in bacteria

Wang and Breaker. Biochem Cell Biol (2008)!

Riboswitches 

SAM

SAM



Human riboswitches?
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Hairpin A No structure change shown by in-line probing

Experiments done by Adam Roth & Ronald Breaker (Yale).



Human riboswitches?
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Human riboswitches?
Apparently not...



Example of auto-regulation?

Parker et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. in revision.

POP1 is a ribonuclease, which is part of RNaseP that processes tRNAs.

tRNA-like structure in POP1 intron

Families involved in translational regulation

In some cases, cis-regulatory structures regulate the translational
process directly, such as in alternative translational initiation sites,
regulated frameshifts, selenocysteine insertions, etc. (Namy et al.
2004). In addition to a hairpin downstream from the TGA recoding
site of the SELK SECIS element (UTRP3), likely a new example of

a selenocysteine codon redefinition element (SRE) (Pedersen et al.
2006; Howard et al. 2007), we recover a known family of hairpins
overlapping the start codon of COL1A1, COL1A2, and COL3A1
(GW36) known to control translation (Stefanovic and Brenner
2003). This family is expanded by a previously undescribed
member overlapping the start codon of COL5A2 in the UTRP set
(UTRP5).

Figure 4. tRNA-like structure in intron of POP1. (A) Intronic location of the structure. The ENCODE CSHL small RNA-seq track (The ENCODE Project
Consortium 2007) for cell line K562 represents three uniquely mapped cytoplasmic reads with 59-ends aligned with the predicted RNase P cleavage site
(the cloning protocol generates directional libraries that are read from the 59-ends of the inserts, which should largely correspond to the 59-ends of the
mature RNA). Spliced reads suggest splicing activity and possible cassette exon in the region of the structure; mapped RefSeqs (TransMap) show cassette
exons frommouse and rat that overlap the structure position. (B) Alignment with a subset of species selected to show all observed substitutions (colors as in
Fig. 2). (C ) Alignment of human sequences of family. (D) Structures of family members with tRNA invariant (red) and semi-invariant (R or Y; orange)
nucleotides (Brown 2007) (RNA structure images generated with VARNA [Darty et al. 2009]).

New families of human regulatory RNA structures

Genome Research 9
www.genome.org

 Cold Spring Harbor Laboratory Press on October 12, 2011 - Published by genome.cshlp.orgDownloaded from 
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Struture resembles tRNAs

Parker et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. in revision.

POP1 structure groups together with tRNAs
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member overlapping the start codon of COL5A2 in the UTRP set
(UTRP5).

Figure 4. tRNA-like structure in intron of POP1. (A) Intronic location of the structure. The ENCODE CSHL small RNA-seq track (The ENCODE Project
Consortium 2007) for cell line K562 represents three uniquely mapped cytoplasmic reads with 59-ends aligned with the predicted RNase P cleavage site
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EvoFam pipeline overview

Predicted structural 
RNAs  (37,381)

multiple alignment
(31 vertebrates)

Pro!le structure models

Highly connected 
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Structural RNA family 
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Future directions

• Make extensive use of deep genomic alignments 
(10K vertebrates project, etc)

• Exploit structure genome-wide structure probing 
data 

• Integrate with expression data in cancer genomics 
settings

• Integrate with experimental evidence of binding 
sites of RNA binding proteins ( HITS-CLIP, etc)

http://en.wikipedia.org/wiki/HITS-CLIP
http://en.wikipedia.org/wiki/HITS-CLIP
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