Comparative identification of novel human structural RNA families

Jakob Skou Pedersen Department of Molecular Medicine Aarhus University, Denmark

Benasque 2012

Definition: Any RNA sequence that folds into a structure of functional importance

Definition: Any RNA sequence that folds into a structure of functional importance

Such as:

Definition: Any RNA sequence that folds into a structure of functional importance

Such as:

• independently transcribed ncRNAs

Definition: Any RNA sequence that folds into a structure of functional importance

Such as:

- independently transcribed ncRNAs
- ncRNAs excised from longer transcripts

Definition: Any RNA sequence that folds into a structure of functional importance

Such as:

- independently transcribed ncRNAs
- ncRNAs excised from longer transcripts
- cis-regulatory elements within protein-coding genes and ncRNAs

ഹി

 $\mathbf{\hat{n}}$

 $\mathbf{\hat{n}}$

Family members share ancestry

• Duplications may be local or far apart

с Гр

Family members share ancestry

• Duplications may be local or far apart

ഹി

 $\mathbf{\hat{n}}$

 $\mathbf{\hat{n}}$

 $\mathbf{\hat{n}}$

 $\mathbf{\hat{n}}$

Genome

• Duplications may be local or far apart

Family members share ancestry

- Duplications may be local or far apart
- Cis-regulatory families often reflect protein-coding gene families

Family members share ancestry

- Duplications may be local or far apart
- Cis-regulatory families often reflect protein-coding gene families

Family members share ancestry

- Duplications may be local or far apart
- Cis-regulatory families often reflect protein-coding gene families For simple structures convergent evolution may be possible

Genomic structure screen

Evolution constrained by structure

Characteristic substitution pattern

a) Human genome: Conserved elements:

rved elements:	 ••	-	—	—	

- a) Human genome: Conserved elements:
- **b**) Genomic alignment segment:

human	GAGCUUGCUUUGGCAGCUACC
chimp.	GAGCUUGCUUUGGCAGCUACC
mousē	GAGUUUACUUUCGUAGCUAUC
rat	AAGCUUACUUAGGUAGCUAUC
dog	GAGCAUACUAAGGUGGCUACC
opossum	CGGCUUACGCUGGUGGCCAGC
chicken	GGGCUUACACUUGUGGCCGGC
p. fish	GGGCUUACACAUGUGGCCGGA

- a) Human genome: Conserved elements:
- **b**) Genomic alignment segment:

c) SCFG generated secondary structure:

- **a**) Human genome: **Conserved elements:**
- **b**) Genomic alignment segment:

- c) SCFG generated secondary structure:
- e) Phylogenetic evaluation:

Screen of 31-way vertebrate alignments

Input: conserved alignment segments (5.6% of genome)

Phylogenetic tree of input species

Data from 29 mammals sequencing and analysis consortium: Kerstin Lindblad-Toh. A high-resolution map of human evolutionary constraint using 29 mammals. Nature (2011). Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).

Screen of 31-way vertebrate alignments

Input: conserved alignment segments (5.6% of genome)

Output: 37,381 predictions (0.05% of genome)

Phylogenetic tree of input species

Data from 29 mammals sequencing and analysis consortium: Kerstin Lindblad-Toh.A high-resolution map of human evolutionary constraint using 29 mammals. Nature (2011). Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).

Screen of 31-way vertebrate alignments

Input: conserved alignment segments (5.6% of genome)

Output: 37,381 predictions (0.05% of genome)

Data from 29 mammals sequencing and analysis consortium: Kerstin Lindblad-Toh.A high-resolution map of human evolutionary constraint using 29 mammals. Nature (2011). Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).

EvoP method

- Question: how surprising is the observed number of double substitutions?
- Monte Carlo approach:
 - Simulate iid substitutions across columns on phylogeny.
 - Count double substitutions given structure.
 - Estimate P-value as fraction simulations with at least as many double substitutions.

Ten vertebrates genomes not used for structure inference

EvoP method

- Question: how surprising is the observed number of double substitutions?
- $D \ge d \mid N = n, B = b, T = t) = \sum f(x) p_{null}(x)$
- Monte Carlo approach:∈.
 - Simulate iid substitutions across columns on phylogeny.
- $N = n B = b T = t) = \sum_{x \in D} f(x) p_{x}(x) = E_{x}(f(X))$ - Count double substitutions given structure.
 - Estimate P-value as fraction simulations with at least as many double substitutions.

Ten vertebrates genomes not used for structure inference

EvoP method

- Question: how surprising is the observed number of double substitutions?
- $D \ge d | N = n, B = b, T = t) = \sum f(x) p_{null}(x)$
- Monte Carlo approach:∈.
 - Simulate iid substitutions across columns on phylogeny.
- $N = n B = b T = t) = \sum_{x \in D} f(x) p_{x}(x) = E_{x}(f(X))$ - Count double substitutions given structure.
 - Estimate P-value as fraction simulations with at least as many double substitutions.

Ten vertebrates genomes not used for structure inference

Vertebrates

EvoP method

- Question: how surprising is the observed number of double substitutions?
- $D \ge d | N = n, B = b, T = t) = \sum f(x) p_{null}(x)$
- Monte Carlo approach:∈.
 - Simulate iid substitutions across columns on phylogeny.
- $N = n B = b T = t) = \sum_{x \in D} f(x) p_{x}(x) = E_{x}(f(X))$ - Count double substitutions given structure.
 - Estimate P-value as fraction simulations with at least as many double substitutions.

Ten vertebrates genomes not used for structure inference

EvoP method

- Question: how surprising is the observed number of double substitutions?
- $D \ge d | N = n, B = b, T = t) = \sum f(x) p_{null}(x)$
- Monte Carlo approach:∈.
 - Simulate iid substitutions across columns on phylogeny.
- $N = n B = b T = t) = \sum_{x \in D} f(x) p_{x}(x) = E_{x}(f(X))$ - Count double substitutions given structure.
 - Estimate P-value as fraction simulations with at least as many double substitutions.

Ten vertebrates genomes not used for structure inference

EvoP method

- Question: how surprising is the observed number of double substitutions?
- $D \ge d | N = n, B = b, T = t) = \sum f(x) p_{null}(x)$
- Monte Carlo approach:∈.

 $\tilde{p} = \frac{1}{m} \sum_{i=1}^{m} f(x_i)$

- Simulate iid substitutions across columns on phylogeny.
- $N = n B = b T = t) = \sum_{x \in D} f(x) p_{x}(x) = E_{x}(f(X))$ - Count double substitutions given structure.
 - Estimate P-value as fraction simulations with at least as many double substitutions.

Ten vertebrates genomes not used for structure inference

Vertebrates

EvoP method

- Question: how surprising is the observed number of double substitutions?
- $D \ge d \mid N = n, B = b, T = t) = \sum f(x) p_{null}(x)$
- Monte Carlo approach:=.
 - Simulate iid substitutions across columns on phylogeny.
- $N = n B = b T = t) = \sum_{x \in D} f(x) p_{x}(x) = E_{x}(f(X))$ - Count double substitutions given structure.
 - Estimate P-value as fraction simulations with at least as many double substitutions.

Ten vertebrates genomes not used for structure inference

EvoP method

- Question: how surprising is the observed number of double substitutions?
- $D \ge d \mid N = n, B = b, T = t) = \sum f(x) p_{null}(x)$
- Monte Carlo approach:∈.
 - Simulate iid substitutions across columns on phylogeny.
- $N = n B = b T = t) = \sum_{x \in D} f(x) p_{x}(x) = E_{x}(f(X))$ - Count double substitutions given structure.
 - Estimate P-value as fraction simulations with at least as many double substitutions.

Ten vertebrates genomes not used for structure inference

EvoP method

- Question: how surprising is the observed number of double substitutions?
- $D \ge d \mid N = n, B = b, T = t) = \sum f(x) p_{null}(x)$
- Monte Carlo approach:∈.
 - Simulate iid substitutions across columns on phylogeny.
- $N = n B = b T = t) = \sum_{x \in D} f(x) p_{x}(x) = E_{x}(f(X))$ - Count double substitutions given structure.
 - Estimate P-value as fraction simulations with at least as many double substitutions.

Ten vertebrates genomes not used for structure inference

EvoP method

- Question: how surprising is the observed number of double substitutions?
- $D \ge d | N = n, B = b, T = t) = \sum f(x) p_{null}(x)$
- Monte Carlo approach:∈.
 - Simulate iid substitutions across columns on phylogeny.
- $N = n B = b T = t) = \sum_{x \in D} f(x) p_{x}(x) = E_{x}(f(X))$ - Count double substitutions given structure.
 - Estimate P-value as fraction simulations with at least as many double substitutions.

Ten vertebrates genomes not used for structure inference

Vertebrates

 $\tilde{p} = \frac{1}{m} \sum_{i=1}^{m} f(x_i)$

New structure in XIST

XIST Chromatin regulation

Ng et al. EMBO reports 8, 1, 34–39 (2007).

Scale	9	20 kb	
UCSC genes	TSIX	XIST	
EvoFold predictions		ID=36870 (minus strand)	

New structure in XIST

XIST Chromatin regulation

Ng et al. EMBO reports 8, 1, 34–39 (2007).

New structure in XIST

XIST Chromatin regulation

Ng et al. EMBO reports 8, 1, 34–39 (2007).

Family classification
Similarity measure

Build profile -SCFGs / co-variance models for every prediction

Models made with Infernal tools from Sean Eddy's group.

Structure model figure: Durbin et al, Biological Sequence Analysis, Cambridge University Press. Nawrocki EP, Kolbe DL, Eddy SR. 2009. Infernal 1.0: inference of RNA alignments. Bioinformatics 25: 1335–1337.

Initially, we wanted to use Kullback-Liebler divergence (KL):

$$D_{KL}(M_1 || M_2) = \sum_i P_{M_1}(i) \log \frac{P_{M_1}(i)}{P_{M_2}(i)}$$

 $M_1 \parallel M_2 = 1/n \sum_{i=1}^n 1/l(s_{1,i}) \cdot \left(\log(P_{M_1}(s_{1,i})) - \log(P_{M_2}(s_{1,i})) \right)$

 $S_{1,i}$

 M_1

€

 $S_{1,i}$

 M_{2}

€

n

 M_1

Initially, we wanted to use Kullback-Liebler divergence (KL):

$$D_{KL} \begin{pmatrix} \boldsymbol{\in} \\ \boldsymbol{M}_1 \parallel \boldsymbol{M}_2 \end{pmatrix} = \sum_i P_{M_1}(i) \log \frac{P_{M_1}(i)}{P_{M_2}(i)}$$

We couldn't compute and resorted to sampling:

$$\tilde{D}_{KL}(M_1 \parallel M_2) = 1/n \sum_{i=1}^n 1/l(s_{1,i}) \cdot \left(\log(P_{M_1}(s_{1,i})) - \log(P_{M_2}(s_{1,i})) \right)$$

Initially, we wanted to use Kullback-Liebler divergence (KL):

We couldn't compute and resorted to sampling:

 $\tilde{D}_{KL}(M_1 \parallel M_2) = 1/n \sum_{i=1}^n 1/l(s_{1,i}) \cdot \left(\log(P_{M_1}(s_{1,i})) - \log(P_{M_2}(s_{1,i})) \right)^{\tilde{p}_k}$

 $M_1 \parallel M_2 = 1/l(s_{1,human}) \cdot \left(\log(P_{M_1}(s_{1,human})) - \log(P_{M_2}(s_{1,human})) \right)$

45

Still slow. Approximated by one sample only - human sequence from training alignment. Also replaced probabilities with (Infernal) normalized scores:

$$\underbrace{\tilde{D}_{KL,human}\left(M_{1} \parallel M_{2}\right) = 1/l(s_{1,human}) \cdot \left(S(s_{1,human},M_{1}) \in S(s_{1,human},M_{2})\right)}_{S_{1,i}} \qquad \underbrace{S(s,M) = \log_{2} \frac{T_{M}(S)}{P_{mull}(s)}}_{S_{mull}(s)}$$

$$\underbrace{\tilde{D}_{KL,human}}_{\tilde{D}_{KL,human}} \qquad \underbrace{M_{1}}_{M_{1}} \qquad M_{1}$$

$$\underbrace{\tilde{D}_{KL,human}}_{K_{L,human}}\left(M_{1} \parallel M_{2}\right) = 1/l(s_{1,human}) \cdot \left(\log\left(P_{M_{1}}(s_{1,human})\right) \in \operatorname{Sog}\left(P_{M_{2}}(s_{1,human})\right)\right)^{M}(S) \qquad M$$

$$\underbrace{S}_{M} \qquad \underbrace{M_{1}}_{M_{1}} \qquad I$$

Initially, we wanted to use Kullback-Liebler divergence (KL):

n

We couldn't compute and resorted to sampling:

 $\tilde{D}_{KL}(M_1 \parallel M_2) = 1/n \sum_{i=1}^n 1/l(s_{1,i}) \cdot \left(\log(P_{M_1}(s_{1,i})) - \log(P_{M_2}(s_{1,i})) \right)^{\tilde{D}_{KL}}$

 $(S_{1,i})))^{K_{2,MMMM}} (S_{1,i}) (S_{1,i}) (S_{1,i})^{K_{2,MMMM}} (S_{1,i})^{K_{2,MMMM}$

45

Still slow. Approximated by one sample only - human sequence from training alignment. Also replaced probabilities with (Infernal) normalized scores:

 $\tilde{D}_{KL,human}\left(M_1 \parallel M_2\right) = 1/l(s_{1,human}) \cdot \left(S(s_{1,human},M_1) \in S(s_{1,human},M_2)\right) = \log_2 \frac{P_M(s)}{P_{null}(s)}.$

Problem: Models of different complexities have different false positive rates. Hence replace score with E-score.

$$\tilde{D}(M_{1} || M_{2}) = E(S(seq_{1}^{human}, M_{2})) - E(S(seq_{1}^{human}, M_{1}))$$

$$\in M_{1} \qquad M_{1$$

Initially, we wanted to use Kullback-Liebler divergence (KL):

We couldn't compute and resorted to sampling:

 $\tilde{D}_{KL}(M_1 \parallel M_2) = 1/n \sum_{i=1}^n 1/l(s_{1,i}) \cdot \left(\log(P_{M_1}(s_{1,i})) - \log(P_{M_2}(s_{1,i})) \right)^{n}$

Still slow. Approximated by one sample only - human sequence from training alignment. Also replaced probabilities with (Infernal) normalized scores:

€

45

 $\tilde{D}_{KL,human}\left(M_1 \parallel M_2^{\varepsilon}\right) = 1/l(s_{1,human}) \cdot \left(S(s_{1,human},M_1) \in S(s_{1,human},M_2)\right). \qquad S(s,M) = \log_2 \frac{P_M(s)}{P_{mull}(s)}.$

 M_1

M

S_{1,human}

 $\in (M_1 \parallel \mathbb{I})$ Problem: Models of different complexities have different false positive rates. Hence replace score with E-score. $\tilde{D}(M_1 \| M_2) = E(S(seq_1^{human}, M_2)) - E(S(seq_1^{human}, M_1)) \xrightarrow{\neq} D_{E,human}(M_2 \| M_1)$ M_1 M Finally, be conservative and symmetrize by max: $D(M_1 \parallel M_2) = \max(\tilde{D}_{E,human}(M_1 \parallel M_2), \tilde{D}_{E,human}(M_2 \parallel M_1)) \overset{\in E_{M}(S)}{\underset{M_1}{\overset{M_1}{\overset{M_2}{\overset{M_1}{\overset{M_2}{\overset{M_1}{\overset{M_2}{\overset{M_1}{\overset{M_2}{\overset{M_1}{\overset{M_2}{\overset{M_1}{\overset{M_2}{\overset{M_1}{\overset{M_2}$ € M

All pairwise comparisons

Threshold on similarity significance

Threshold on similarity significance

Threshold on similarity significance

Identify highly connected subgraph (HCS)

RNA structure Similarity edge

Highly connected subgraph:

- edge connectivity < half number of vertices
- subgraph size two

Identify highly connected subgraph (HCS)

RNA structure
Similarity edge

Highly connected subgraph:

- edge connectivity < half number of vertices
- subgraph size two

Identify highly connected subsets (HCS)

Final family candidates

	No. of structures	No. of novel structures	No. of families	No. of novel families	EvoFold score	RNAz overlap enrichment (x)	DNAse hypersensitivity overlap (%)	Avg. correlation of tissue-specific expression within families	Intergenic expression enrichment (x)
EvoFold all (no CDS)	27,012	26,643	n/a	n/a	14	13.5	25 (<i>P</i> ≤ 5e–3)	n/a	1.20 (<i>P</i> ≤ 1e–3)
Unfiltered families	3293	3081	1254	1192	18	17.3	25 (<i>P</i> ≤ 7e–3)	$0.14 \ (P \le 1e-3)$	1.46 (<i>P</i> ≤ 1e–3)
Filtered families	725	526	220	172	18	29.0	$32 \ (P \leq 4\mathrm{e}{-3})$	$0.17 \ (P \le 1e-3)$	2.33 (<i>P</i> ≤ 1e–3)

Filtered families have either:

- EvoP test < 0.05
- Region enrichment test < 0.005
- GO enrichment test relative to EvoFold background < 0.01
- Mean structure length > 11 base pairs

	No. of structures	No. of novel structures	No. of families	No. of novel families	EvoFold score	RNAz overlap enrichment (x)	DNAse hypersensitivity overlap (%)	Avg. correlation of tissue-specific expression within families	Intergenic expression enrichment (x)
EvoFold all (no CDS)	27,012	26,643	n/a	n/a	14	13.5	25 (<i>P</i> ≤ 5e–3)	n/a	1.20 (<i>P</i> ≤ 1e–3)
Unfiltered families	3293	3081	1254	1192	18	17.3	25 (<i>P</i> ≤ 7e–3)	0.14 (<i>P</i> ≤ 1e–3)	1.46 (<i>P</i> ≤ 1e–3)
Filtered families	725	526	220	172	18	29.0	$32 \ (P \leq 4\mathrm{e}{-3})$	$0.17 \ (P \le 1e-3)$	2.33 (<i>P</i> ≤ 1e–3)

Filtered families have either:

- EvoP test < 0.05
- Region enrichment test < 0.005
- GO enrichment test relative to EvoFold background < 0.01
- Mean structure length > 11 base pairs

	No. of structures	No. of novel structures	No. of families	No. of novel families	EvoFold score	RNAz overlap enrichment (x)	DNAse hypersensitivity overlap (%)	Avg. correlation of tissue-specific expression within families	Intergenic expression enrichment (x)
EvoFold all (no CDS)	27,012	26,643	n/a	n/a	14	13.5	25 (<i>P</i> ≤ 5e–3)	n/a	1.20 (<i>P</i> ≤ 1e–3)
Unfiltered families	3293	3081	1254	1192	18	17.3	25 (<i>P</i> ≤ 7e–3)	$0.14 \ (P \le 1e-3)$	1.46 (<i>P</i> ≤ 1e–3)
Filtered families	725	526	220	172	18	29.0	$32 \ (P \leq 4\mathrm{e}{-3})$	$0.17 \ (P \le 1e-3)$	2.33 (<i>P</i> ≤ 1e–3)

Filtered families have either:

- EvoP test < 0.05
- Region enrichment test < 0.005
- GO enrichment test relative to EvoFold background < 0.01
- Mean structure length > 11 base pairs

	No. of structures	No. of novel structures	No. of families	No. of novel families	EvoFold score	RNAz overlap enrichment (x)	DNAse hypersensitivity overlap (%)	Avg. correlation of tissue-specific expression within families	Intergenic expression enrichment (x)
EvoFold all (no CDS)	27,012	26,643	n/a	n/a	14	13.5	25 (<i>P</i> ≤ 5e–3)	n/a	1.20 (<i>P</i> ≤ 1e–3)
Unfiltered families	3293	3081	1254	1192	18	17.3	$25~(P \le 7\mathrm{e}{-3})$	$0.14 \ (P \le 1e-3)$	1.46 (<i>P</i> ≤ 1e–3)
Filtered families	725	526	220	172	18	29.0	$32 \ (P \leq 4\mathrm{e}{-3})$	$0.17 \ (P \le 1e-3)$	2.33 (<i>P</i> ≤ 1e–3)

Filtered families have either:

- EvoP test < 0.05
- Region enrichment test < 0.005
- GO enrichment test relative to EvoFold background < 0.01
- Mean structure length > 11 base pairs

	No. of structures	No. of novel structures	No. of families	No. of novel families	EvoFold score	RNAz overlap enrichment (x)	DNAse hypersensitivity overlap (%)	Avg. correlation of tissue-specific expression within families	Intergenic expression enrichment (x)
EvoFold all (no CDS)	27,012	26,643	n/a	n/a	14	13.5	25 (<i>P</i> ≤ 5e–3)	n/a	1.20 (<i>P</i> ≤ 1e–3)
Unfiltered families	3293	3081	1254	1192	18	17.3	25 (<i>P</i> ≤ 7e–3)	$0.14 \ (P \le 1e-3)$	1.46 (<i>P</i> ≤ 1e–3)
Filtered families	725	526	220	172	18	29.0	$32 \ (P \leq 4\mathrm{e}{-3})$	$0.17 \ (P \le 1e-3)$	2.33 (<i>P</i> ≤ 1e–3)

Filtered families have either:

- EvoP test < 0.05
- Region enrichment test < 0.005
- GO enrichment test relative to EvoFold background < 0.01
- Mean structure length > 11 base pairs

	No. of structures	No. of novel structures	No. of families	No. of novel families	EvoFold score	RNAz overlap enrichment (x)	DNAse hypersensitivity overlap (%)	Avg. correlation of tissue-specific expression within families	Intergenic expression enrichment (x)
EvoFold all (no CDS)	27,012	26,643	n/a	n/a	14	13.5	25 (<i>P</i> ≤ 5e–3)	n/a	1.20 (<i>P</i> ≤ 1e–3)
Unfiltered families	3293	3081	1254	1192	18	17.3	$25~(P \le 7\mathrm{e}{-3})$	0.14 (<i>P</i> ≤ 1e–3)	1.46 (<i>P</i> ≤ 1e–3)
Filtered families	725	526	220	172	18	29.0	$32 \ (P \leq 4e{-3})$	$0.17 \ (P \le 1e-3)$	2.33 (<i>P</i> ≤ 1e–3)

Filtered families have either:

- EvoP test < 0.05
- Region enrichment test < 0.005
- GO enrichment test relative to EvoFold background < 0.01
- Mean structure length > 11 base pairs

	No. of structures	No. of novel structures	No. of families	No. of novel families	EvoFold score	RNAz overlap enrichment (x)	DNAse hypersensitivity overlap (%)	Avg. correlation of tissue-specific expression within families	Intergenic expression enrichment (x)
EvoFold all (no CDS)	27,012	26,643	n/a	n/a	14	13.5	25 (<i>P</i> ≤ 5e–3)	n/a	1.20 (<i>P</i> ≤ 1e–3)
Unfiltered families	3293	3081	1254	1192	18	17.3	25 (<i>P</i> ≤ 7e–3)	$0.14 \ (P \le 1e-3)$	1.46 (<i>P</i> ≤ 1e–3)
Filtered families	725	526	220	172	18	29.0	$32 \ (P \leq 4\mathrm{e}{-3})$	$0.17 \ (P \le 1e-3)$	2.33 (<i>P</i> ≤ 1e–3)

Filtered families have either:

- EvoP test < 0.05
- Region enrichment test < 0.005
- GO enrichment test relative to EvoFold background < 0.01
- Mean structure length > 11 base pairs

	No. of structures	No. of novel structures	No. of families	No. of novel families	EvoFold score	RNAz overlap enrichment (x)	DNAse hypersensitivity overlap (%)	Avg. correlation of tissue-specific expression within families	Intergenic expression enrichment (x)
EvoFold all (no CDS)	27,012	26,643	n/a	n/a	14	13.5	25 (<i>P</i> ≤ 5e–3)	n/a	1.20 (<i>P</i> ≤ 1e–3)
Unfiltered families	3293	3081	1254	1192	18	17.3	25 (<i>P</i> ≤ 7e–3)	0.14 (<i>P</i> ≤ 1e–3)	1.46 (<i>P</i> ≤ 1e–3)
Filtered families	725	526	220	172	18	29.0	32 (<i>P</i> ≤ 4e–3)	$0.17 \ (P \le 1e-3)$	2.33 (<i>P</i> ≤ 1e–3)

Filtered families have either:

- EvoP test < 0.05
- Region enrichment test < 0.005
- GO enrichment test relative to EvoFold background < 0.01
- Mean structure length > 11 base pairs

	No. of structures	No. of novel structures	No. of families	No. of novel families	EvoFold score	RNAz overlap enrichment (x)	DNAse hypersensitivity overlap (%)	Avg. correlation of tissue-specific expression within families	Intergenic expression enrichment (x)
EvoFold all (no CDS)	27,012	26,643	n/a	n/a	14	13.5	25 (<i>P</i> ≤ 5e–3)	n/a	1.20 (<i>P</i> ≤ 1e–3)
Unfiltered families	3293	3081	1254	1192	18	17.3	25 (<i>P</i> ≤ 7e–3)	$0.14 \ (P \le 1e-3)$	1.46 (<i>P</i> ≤ 1e–3)
Filtered families	725	526	220	172	18	29.0	$32 \ (P \leq 4\mathrm{e}{-3})$	$0.17 \ (P \le 1e-3)$	2.33 (<i>P</i> ≤ 1e–3)

Filtered families have either:

- EvoP test < 0.05
- Region enrichment test < 0.005
- GO enrichment test relative to EvoFold background < 0.01
- Mean structure length > 11 base pairs

	No. of structures	No. of novel structures	No. of families	No. of novel families	EvoFold score	RNAz overlap enrichment (x)	DNAse hypersensitivity overlap (%)	Avg. correlation of tissue-specific expression within families	Intergenic expression enrichment (x)
EvoFold all (no CDS)	27,012	26,643	n/a	n/a	14	13.5	25 (<i>P</i> ≤ 5e–3)	n/a	1.20 (<i>P</i> ≤ 1e–3)
Unfiltered families	3293	3081	1254	1192	18	17.3	25 (<i>P</i> ≤ 7e–3)	0.14 (<i>P</i> ≤ 1e–3)	1.46 (<i>P</i> ≤ 1e–3)
Filtered families	725	526	220	172	18	29.0	$32 \ (P \leq 4\mathrm{e}{-3})$	0.17 (<i>P</i> ≤ 1e–3)	2.33 (<i>P</i> ≤ 1e–3)

Filtered families have either:

- EvoP test < 0.05
- Region enrichment test < 0.005
- GO enrichment test relative to EvoFold background < 0.01
- Mean structure length > 11 base pairs

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

48 of 220 families contain known members (88% known)

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

mascRNA family in MALAT I and Men β

Wilusz 2008; Sunwoo et al. 2009; Wilusz and Spector 2010

48 of 220 families contain known members (88% known)

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

mascRNA family in MALAT 1 and Men β

48 of 220 families contain known members (88% known)

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

mascRNA family in MALAT I and Men β

MALAT1

fold

Wilusz 2008; Sunwoo et al. 2009; Wilusz and Spector 2010

MALAT1 paralog (Men β)

MALAT1 paralog (MEN)

GAUGCUGGUGGUUGGCACUCCUGGUUU--CCAGGACGGGGUUCAAAUCCCUGCGGCGUC GGCGCUGGUGGU-GGCACGUCCAGCACGGCUGGGCCGGGGUUCGAGUCCCCGCAGUGUU

48 of 220 families contain known members (88% known)

Name	Total count	Conserved input	EvoFold input	EvoFam filtered families	EvoFam filt. families with paralogs
miRNA	759	431	234	139	155
tRNA	473	392	13	2	2
C/D-box snoRNA	262	189	9	0	1
H/ACA-box snoRNA	208	142	25	2	6
Histone 3' SL	67	66	45	45	54
TFRC IRE	5	5	4	4	5
COL 5' SL	3	3	3	3	3
GRIA R/G edit	3	3	3	3	3
mascRNA type	2	2	1	0	2

Estimated false positive rate:

- 27 % for similarity edges
- 34 % for families of size three or larger
Immune related regulatory networks?

Families of short hairpins enriched in 3'UTRs of immunity related genes

Immune related regulatory networks?

Families of short hairpins enriched in 3'UTRs of immunity related genes

Includes known destabilization hairpins

Immune related regulatory networks?

Families of short hairpins enriched in 3'UTRs of immunity related genes

Includes known destabilization hairpins

Family of six hairpins all within 3'UTR MAT2A

Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).

Family of six hairpins all within 3'UTR MAT2A

Vertebrate alignment for hairpin D

	abcdefghijklm mlkji hgfedcba
	((((((((((((((((((((((((((((((((((((
Human	UCUGGGGUAUGGCGUAAGUACAGAGAAGCCAUCACCUCAGA
Guinea Pig	UCUGGGGUAUGGCGUAAGUACAGAGAAGCCAUCGCCUCAGA
Squirrel	UCUGAGGUAUGGUGUAAGUACAGAGAAGCCAUCACCUCAGA
Rabbit	UCUGGGGGGAUGGCGUAAGUACAGAGAAGCCAUCUCCUCAGA
Hedgehog	UCUGAGGUAUGGCGUAAGUACAGAGAAGCCAUCACCUCAGA
Tenrec	U-GGGGGUAUGGCUUAAGUACAGAGAAGCCCUCACCUCAGA
Sloth	UCUGGGGUAUGGUGUAAGUACAGAGAAGCCGUCACCUCAGA
Opossum	UCUGGGGUGUGGCGUGAGUACAGAGAAGCUAUCACCUCAGA
Lizard	U-UGGGACCGGGUGUGAGUACAGAGAAGCCCUUGUCUCAAA
X. tropicalis	UCUAGGCUUGGGCGUAAGUACAGAGUAGCCUUUGCCUU
Tetraodon	UCUGAGGCCCGGCGUGGAUACAGAGAAGUCGGGCUUUCAGG
Fugu	UCUGAGGCCCGGCGUGGAUACAGAGAAGUCGGGCUGUCAGG
Stickleback	UCUGAGACGCAGCGUGGAUACAGAGAAGCUGUGGUUUCAGA
Medaka	UCUGGAACUCGGCGUGGAUACAGAGAAGCCGAUGUUUCAGA
Zebrafish	CUUGAGCCUUGGCGUCGGUACAGAAAAGCCGGGAUCUCAAG
	* *****

Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).

Shared loop motif

Loop motif shared between human members and down through vertebrates

Human F Human F Human G Human F Human F Human F		⁴ ² ¹ ³ UCUGGGGUAUGGCGU UCCCAGACUUGGCGU GCCUUGUGAUGU UCUGAAAGCUGGUGU GGCCAAGGUGU UGGUGU * **	AAGUACAGAGAA AGGUACAGAGAA CA-UACAGAGAA AGCUACAGAGAA CC-UACAGAAAA G-GUACAGAGAA *****	GCCAUCACCUCAGA GCCAAGCUCUGAGA GUCAC-AGGGC ACCAGCUUUUCAGA ACCUUGGGUU GCCA
		abcdefghijklm		mlkji hgfedcba
		(((((((((((((())))),)))))))))))))))))
Human		UCUGGGGUAUGGC GU	AAGUACAGAGAA	GCCAUCACCUCAGA
Guinea Pig		UCUGGGGUAUGGC GU	AAGUACAGAGAA	GCCAUCGCCUCAGA
Squirrel		UCUGAGGUAUGGUGU	AAGUACAGAGAA	GCCAUCACCUCAGA
Rabbit		UCUGGGGGGAUGGC GU	AAGUACAGAGAA	GCCAUCUCCUCAGA
Hedgehog		UCUGAGGUAUGGCGU	AAGUACAGAGAA	GCCAUCACCUCAGA
Tenrec		U-GGGGGUAUGGCUU	AAGUACAGAGAA	GCCCUCACCUCAGA
Sloth		UCUGGGGUAUGGUGU	AAGUACAGAGAA	GCCGUCACCUCAGA
Opossum		UCUGGGGUGUGGCGU	GAGUACAGAGAA	GCUAUCACCUCAGA
Lizard		U–UGGGACCGGGUGU	GAGUACAGAGAA	GCCCUUGUCUCAAA
X. tropicali	is	UCUAGGCUUGGGCGU	AAGUACAGAG U A	GCCUUUGCCUU
Tetraodon		UCUGAGGCCCGGCGU	GGAUACAGAGAA	GUCGGGCUUUCAGG
Fugu		UCUGAGGCCCGGCGU	GGAUACAGAGAA	GUCGGGCUGUCAGG
Stickleback		UCUGAGACGCAGCGU	GGAUACAGAGAA	GCUGUGGUUUCAGA
Medaka		UCUGGAACUCGGCGU	GGAUACAGAGAA	GCCGAUGUUUCAGA
Zebratish		CUUGAGCCUUGGCGU	CGGUACAGAAAA	GCCGGGAUCUCAAG
		*	*****	

Human structures with conserved motif

Brian J. Parker, et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011).

Post-transcriptional regulation of MAT2A

MAT2A: methionine adenosyltransferase II, alpha MAT catalyzes the synthesis of SAM (adoMet)

Half-life of MAT2A transcript depends on SAM concetration (Martínez-Chantar et al. J Biol Chem (2003)) -0 + H_3 H_2 H_2 H_3 H_2 H_2 H_3 H_1 H_2 H_3 H_1 H_2 H_3 H_3 H

SAM

Post-transcriptional regulation of MAT2A

MAT2A: methionine adenosyltransferase II, alpha MAT catalyzes the synthesis of SAM (adoMet)

Half-life of MAT2A transcript depends on SAM concetration (Martínez-Chantar et al. J Biol Chem (2003)) SAM

SAM riboswitches in bacteria

Riboswitches

Wang and Breaker. Biochem Cell Biol (2008)

Human riboswitches?

No structure change shown by in-line probing

Experiments done by Adam Roth & Ronald Breaker (Yale).

Human riboswitches? Apparently not...

Hairpin A

Α

Experiments done by Adam Roth & Ronald Breaker (Yale).

Example of auto-regulation?

POPI is a ribonuclease, which is part of RNaseP that processes tRNAs.

tRNA-like structure in POP1 intron

Parker et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. in revision.

Struture resembles tRNAs

POPI structure groups together with tRNAs

Parker et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. in revision.

EvoFam pipeline overview

Future directions

- Make extensive use of deep genomic alignments (IOK vertebrates project, etc)
- Exploit structure genome-wide structure probing data
- Integrate with expression data in cancer genomics settings
- Integrate with experimental evidence of binding sites of RNA binding proteins (HITS-CLIP, etc)

Acknowledgements

Structure families

Brian Parker (University of Copenhagen) Ida Moltke (University of Copenhagen) Jiayu Wen (University of Copenhagen) Adam Roth (Yale) Ronald Breaker (Yale) Stefan Washietl (Broad) Manolis Kellis (Broad) Jakob Skou Pedersen (Aarhus University)

Holger Danske (left) & Brian Parker (right)

29 Mammals Sequencing and Analysis Consortium

Kerstin Lindblad-Toh Manuel Garber Or Zuk Michael F. Lin Brian J. Parker Stefan Washietl Pouya Kheradpour ason Ernst Gregory Jordan Evan Mauceli Lucas D.Ward Craig B. Lowe Alisha K. Holloway Michele Clamp Sante Gnerre lessica Alfoldi Kathryn Beal Jean Chang Hiram Clawson lames Cuff Federica Di Palma Stephen Fitzgerald Paul Flicek

Benasque 2009

Eric Westhof Zasha Weinberg

Support Novo Nordisk Foundation (BJP) The Danish Council for Independent Research | Medical Sciences (JSP) Lundbeckfonden (JSP)

Mitchell Guttman Melissa I. Hubisz David B. Jaffe Irwin Jungreis W. James Kent Dennis Kostka Marcia Lara Andre L. Martins **Tim Massingham** Ida Moltke Brian J. Raney Matthew D. Rasmussen lim Robinson Alexander Stark Albert J.Vilella Jiayu Wen Xiaohui Xie Michael C. Zody Broad Institute Sequencing Platform and Whole Genome Assembly Team

Kim C.Worley Christie L. Kovar Donna M. Muzny **Richard A. Gibbs** Baylor College of Medicine Human Genome Sequencing Center Sequencing Team Wesley C. Warren Elaine R. Mardis George M.Weinstock **Richard K.Wilson** Genome Institute at Washington University Ewan Birney Elliott H. Margulies avier Herrero Eric D. Green David Haussler Adam Siepel Nick Goldman Katherine S. Pollard lakob S. Pedersen Eric S. Lander Manolis Kellis

Brian J. Parker et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Research (2011). http://moma.ki.au.dk/prj/mammals/ Kerstin Lindblad-Toh, Manuel Garber, Or Zuk, Michael F. Lin, Brian J. Parker, et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature (2011).