A partition function algorithm for RNA-RNA interaction

Hamidreza Chitsaz

Raheleh Salari, Cenk Sahinalp, Rolf Backofen

Wayne State University chitsaz@wayne.edu

Benasque RNA Meeting

July 27th, 2012

 $\textbf{Robotics} \rightarrow \textbf{RNA} \rightarrow \textbf{Genome Assembly}$

- University of Illinois, Urbana-Champaign (Steven M. LaValle): PhD, Computer Science, 2008
- Simon Fraser University, Vancouver (Cenk Sahinalp): Postdoc, RNA algorithms, 2009
- University of California, San Diego (Pavel Pevzner): Postdoc, genome assembly, 2011
- Wayne State University, Detroit: Assistant professor, 2011-

 $\textbf{Robotics} \rightarrow \textbf{RNA} \rightarrow \textbf{Genome Assembly}$

- University of Illinois, Urbana-Champaign (Steven M. LaValle): PhD, Computer Science, 2008
- Simon Fraser University, Vancouver (Cenk Sahinalp): Postdoc, RNA algorithms, 2009
- University of California, San Diego (Pavel Pevzner): Postdoc, genome assembly, 2011
- Wayne State University, Detroit: Assistant professor, 2011-

 $\textbf{Robotics} \rightarrow \textbf{RNA} \rightarrow \textbf{Genome Assembly}$

- University of Illinois, Urbana-Champaign (Steven M. LaValle): PhD, Computer Science, 2008
- Simon Fraser University, Vancouver (Cenk Sahinalp): Postdoc, RNA algorithms, 2009
- University of California, San Diego (Pavel Pevzner): Postdoc, genome assembly, 2011
- Wayne State University, Detroit: Assistant professor, 2011-

 $\textbf{Robotics} \rightarrow \textbf{RNA} \rightarrow \textbf{Genome Assembly}$

- University of Illinois, Urbana-Champaign (Steven M. LaValle): PhD, Computer Science, 2008
- Simon Fraser University, Vancouver (Cenk Sahinalp): Postdoc, RNA algorithms, 2009
- University of California, San Diego (Pavel Pevzner): Postdoc, genome assembly, 2011
- Wayne State University, Detroit: Assistant professor, 2011-

ヘロト 人間 とくほとくほと

Single-cell bacterial genome and transcriptome assembly

ARTICLES

nature biotechnology

Efficient *de novo* assembly of single-cell bacterial genomes from short-read data sets

Hamidreza Chitszt^{J,6}, Joychyn L Yee-Greenbaum^{2,6}, Glenn Tesler³, Mary-Jane Lombardo³, Christopher L Dupont², Jonathan H Badger², Mark Novotny², Douglas B Rusch⁴, Louise J Fraser⁵, Niall A Gormley⁵, Ole Schulz-Trieglaff⁶, Geoffrey P Smith⁵, Dirk J Evers⁵, Pavel A Pevzner¹ & Roger S Lasken²

Whole genome amplification by the multiple displacement amplification (MDA) method allows sequencing of DNA from single cells of bacteria that cannot be cultured. Assembling a genome is challenging, however, because MDA generates highly

BIOINFORMATICS

Vol. 28 ISMB 2012, pages i188-i196 doi:10.1093/bioinformatics/bts219

イロト イポト イヨト イヨト

SEQuel: improving the accuracy of genome assemblies

Roy Ronen^{1,†}, Christina Boucher^{2,†}, Hamidreza Chitsaz³ and Pavel Pevzner^{2,*} ¹Bioinformatics Graduate Program, ²Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 20203 and ³Department of Computer Science, Wave State University, Detroit, MI 48202, USA

ABSTRACT

Motivation: Assemblies of next-generation sequencing (NGS) data,

finished genomes assembled using the previous technologies (Alkan, et al., 2011). Earlier assembly algorithms developed for Sanger

Algorithmic Biology Laboratory

Wayne State University

http://compbio.cs.wayne.edu

イロト イポト イヨト イヨト

Central dogma

 $\mathsf{DNA} \to \mathsf{RNA} \to \mathsf{Protein}$

3

イロト イポト イヨト イヨト

5/76.

Motivation

Post-transcriptional regulation of gene expression

イロト イポト イヨト イヨト

6/76.

Regulatory RNA

Repression example (Argaman and Altuvia, J. Mol. Biol. 2000)

프 🕨 🛛 프

イロト 人間 トイヨトイ

7/76,

Regulatory RNA

Activation example (Repoila, Majdalani, and Gottesman, Mol. Microbiol. 2003)

RNA-RNA MFE structure prediction

Avoid intramolecular base pairing RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et al. 2008) No internal structure

- Concatenate input sequences as a single strand; no pseudoknots PairFold (Andronescu et al. 2005), RNAcofold (Bernhart et al. 2006) No kissing hairpins
- Predict binding sites
 RNAup (Mückstein *et al.* 2008), intaRNA (Busch *et al.* 2008)
 Just one binding site not complete structure
- Concatenate input sequences; consider special pseudoknots NUPACK (Dirks et al. 2003,2007)

Still no kissing hairpins!

RNA-RNA MFE structure prediction

 Avoid intramolecular base pairing RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et al. 2008) No internal structure

 Concatenate input sequences as a single strand; no pseudoknots PairFold (Andronescu et al. 2005), RNAcofold (Bernhart et al. 2006) No kissing hairpins

Predict binding sites
 RNAup (Mückstein *et al.* 2008), intaRNA (Busch *et al.* 2008)
 Just one binding site not complete structure

 Concatenate input sequences; consider special pseudoknots NUPACK (Dirks et al. 2003,2007)

Still no kissing hairpins!

RNA-RNA MFE structure prediction

 Avoid intramolecular base pairing RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et al. 2008) No internal structure

イロト イポト イヨト イヨト

- Concatenate input sequences as a single strand; no pseudoknots PairFold (Andronescu et al. 2005), RNAcofold (Bernhart et al. 2006) No kissing hairpins
- Predict binding sites RNAup (Mückstein et al. 2008), intaRNA (Busch et al. 2008) Just one binding site not complete structure
- Concatenate input sequences; consider special pseudoknots NUPACK (Dirks et al. 2003,2007)

Still no kissing hairpins!

9/76

RNA-RNA MFE structure prediction

 Avoid intramolecular base pairing RNAhybrid (Rehmsmeier et al. 2004), RNAduplex (Bernhart et al. 2006), UNAFold (Markham et al. 2008) No internal structure

・ロト ・四ト ・ヨト ・ヨト

- Concatenate input sequences as a single strand; no pseudoknots PairFold (Andronescu et al. 2005), RNAcofold (Bernhart et al. 2006) No kissing hairpins
- Predict binding sites
 RNAup (Mückstein *et al.* 2008), intaRNA (Busch *et al.* 2008)
 Just one binding site not complete structure
- Concatenate input sequences; consider special pseudoknots NUPACK (Dirks et al. 2003,2007)

Still no kissing hairpins!

9/76

Background (continued)

RNA-RNA MFE structure prediction

Consider inter- and intramolecular base pairing

IRIS (Pervouchine 2004), **inteRNA** (Alkan *et al.* 2005), **Grammatical Approach** (Kato *et al.* 2009) Voilà, now we are talking business.

The problem is NP-Hard (Alkan *et al.* 2005); no surprise as pseudoknots are NP-Hard. Exclude *zigzags* and crossing interactions to lift the curse of complexity and obtain an exact $O(n^6)$ -time $O(n^4)$ -space DP algorithm (albeit for simple base-pair counting).

First order zigzag. A general zigzag involves an arbitrary number of kissing hairpins.

ヘロト ヘロト ヘヨト ヘヨト

Question: how about

1. computing base pairing probabilities,

- 2. sampling from the Boltzmann ensemble of interaction structures, clustering, centroids, etc.,
- 3. and computing equilibrium concentrations and melting temperature for RNA-RNA compounds?

Question: how about

- 1. computing base pairing probabilities,
- 2. sampling from the Boltzmann ensemble of interaction structures, clustering, centroids, etc.,
- 3. and computing equilibrium concentrations and melting temperature for RNA-RNA compounds?

Question: how about

- 1. computing base pairing probabilities,
- 2. sampling from the Boltzmann ensemble of interaction structures, clustering, centroids, etc.,
- 3. and computing equilibrium concentrations and melting temperature for RNA-RNA compounds?

イロト イポト イヨト イヨト

Question: how about

- 1. computing base pairing probabilities,
- 2. sampling from the Boltzmann ensemble of interaction structures, clustering, centroids, etc.,
- 3. and computing equilibrium concentrations and melting temperature for RNA-RNA compounds?

・ロン ・御 とくほどくほど

3

Partition function

$$Q(T) = \sum_{s \in S} e^{-G_s/RT},$$

S = All considered interaction structures,

$$p(s) \propto e^{-G_s/RT}$$
,

and Q is the normalizing factor. Also other thermodynamic quantities can be derived from Q.

Partition function

$$\label{eq:Q} \begin{split} \mathsf{Q}(\mathcal{T}) = \sum_{s \in S} \mathsf{e}^{-G_s/\mathcal{R}\mathcal{T}},\\ \mathsf{S} = \mathsf{All} \text{ considered interaction structures}, \end{split}$$

$$p(s) \propto e^{-G_s/RT}$$
,

and Q is the normalizing factor. Also other thermodynamic quantities can be derived from Q.

Partition function hardness \geq MFE hardness

Partition function

$$\sum_{s\in S} e^{-G_s/RT}.$$

MFE secondary structure

$\operatorname{argmin}_{s\in S}G_s.$

Transform a partition function algorithm to an MFE algorithm by

 $e^{-G_s}
ightarrow G_s \ imes
ightarrow + \ \Sigma
ightarrow {
m min}$

Partition function hardness > MFE hardness

Partition function

$$\sum_{s\in S} e^{-G_s/RT}.$$

MFE secondary structure

 $\operatorname{argmin}_{s\in S}G_s.$

Transform a partition function algorithm to an MFE algorithm by

 $e^{-G_s}
ightarrow G_s \ imes
ightarrow + \ \Sigma
ightarrow \min$

Turner energy model

Mathews et al. 1999

Our extension of the Turner model

Chitsaz et al., Bioinformatics 25(12): i365-i373

Hybrid component: as if intramolecular, with penalties. Kissing loop: like multibranch loop.

イロト イポト イヨト イヨト

15/76.

Interaction partition function How?

Divide and conquer using dynamic programming:

$$Q(T) = \sum_{s \in S} e^{-G_s/RT}$$

=
$$\sum_{s=s_a \cup s_b} e^{-(G_{s_a} + G_{s_b})/RT}$$

=
$$[\sum_{s_a \in S_a} e^{-G_{s_a}/RT}][\sum_{s_b \in S_b} e^{-G_{s_b}/RT}$$

=
$$Q_a(T)Q_b(T).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Partition function for single strand (McCaskill 1990)

straight horizontal line: nucleotides indexed from 1 to n
solid arc: a base pair
dashed arc: can be base pair or not

white region: open to more recursions blue region: finalized in the recursion, compute its energy contribution green region: open to more recursions with multibranch loop energy

► < Ξ</p>

Partition function for two strands

straight vertical line: intermolecular bond solid: a base pair dotted: not a base pair dashed: either of those two

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Partition function for two strands

straight vertical line: intermolecular bond solid: a base pair dotted: not a base pair dashed: either of those two

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Partition function for two strands

straight vertical line: intermolecular bond solid: a base pair dotted: not a base pair dashed: either of those two

$$\begin{aligned} Q_{i_{R},j_{R},i_{S},j_{S}}^{I} = & Q_{i_{R},j_{R}} Q_{i_{S},j_{S}} + \sum_{\substack{i_{R} \leq k_{1} \leq i_{R} \\ i_{S} \leq k_{2} \leq j_{S}}} Q_{i_{R},k_{1}-1} Q_{k_{2}+1,j_{S}} Q_{k_{1},j_{R},i_{S},k_{2}}^{Ib} + \\ & \sum_{\substack{i_{R} \leq k_{1} \leq i_{R} \\ i_{S} < k_{S} \leq i_{S}}} Q_{i_{R},k_{1}-1} Q_{k_{2}+1,j_{S}} Q_{k_{1},j_{R},i_{S},k_{2}}^{Ia} . \end{aligned}$$

(4日)

 Q^{lb}

Q^{la}

- a: stands for arc
- s: stands for subsume
- e: stands for equivalent

Э

< • • • **•**

20/76.

Q^{ls} and Q^{le}

21/76.

All tables

All tables

< ∃→

• • • • • • • • • • •

23/76.

・ロト ・四ト ・ヨト ・ヨト

Ι

 k_2

Is'

◆□ > ◆□ > ◆臣 > ◆臣 >

◆□ > ◆□ > ◆臣 > ◆臣 >

31/76,

(日)

36/76,

◆□ > ◆□ > ◆豆 > ◆豆 >

37/76,

43/76,

 I_{nn}

 k_2

◆□ > ◆□ > ◆臣 > ◆臣 >

51/76,

・ロト ・四ト ・ヨト ・ヨト

57/76,

Equilibrium concentrations

For two RNAs R and S

Assume five types of chemical compounds: **R**, **S**, **RR**, **SS**, **RS**. Solve

$$\begin{split} \mathcal{K}_{\mathbf{R}} &= \frac{Q_{\mathbf{RR}}^{\prime}}{Q_{\mathbf{R}}^{2}} = \frac{N_{\mathbf{RR}}}{N_{\mathbf{R}}^{2}}, \\ \mathcal{K}_{\mathbf{S}} &= \frac{Q_{\mathbf{SS}}^{\prime}}{Q_{\mathbf{S}}^{2}} = \frac{N_{\mathbf{SS}}}{N_{\mathbf{S}}^{2}}, \\ \mathcal{K}_{\mathbf{RS}} &= \frac{Q_{\mathbf{RS}}^{\prime}}{Q_{\mathbf{R}}Q_{\mathbf{S}}} = \frac{N_{\mathbf{RS}}}{N_{\mathbf{R}}N_{\mathbf{S}}}, \\ \mathcal{N}_{\mathbf{RS}} &= \mathcal{N}_{\mathbf{R}}^{0} - 2\mathcal{N}_{\mathbf{RR}} - \mathcal{N}_{\mathbf{R}} = \mathcal{N}_{\mathbf{S}}^{0} - 2\mathcal{N}_{\mathbf{SS}} - \mathcal{N}_{\mathbf{S}}, \end{split}$$

to obtain the equilibrium concentrations N. N^0 are the initial concentrations of single strands.

・ロン ・日本 ・日本 ・日本

э

Equilibrium concentration of OxyS with wild type fhIA

A (1) > A (2)
Equilibrium concentration of OxyS with fhIA mutants

Melting temperature prediction

Comparison of piRNA results over three data sets

Set	Size	Length	Avg error		
			piRNA	RNAcofold	UNAFold
I	9 short pairs	5-7nt	1.48 °C	9.35°C	8.55°C
Ш	12 pairs	\sim 20nt	4.86 °C	22.97°C	9.12°C
	62 pairs	22 – 40nt	1.91° C	14.34°C	26.53°C

Set	Size	Length	Spearman rank correlation		
			piRNA	RNAcofold	UNAFold
I	9 short pairs	5-7nt	0.97	0.97	0.57
II	12 pairs	\sim 20nt	0.41	-0.03	0.1
	62 pairs	22 - 40nt	0.3	-0.04	0.24

э

Promised base pairing probabilities

 P^{l} and P^{la} examples

$$P_{i_{R},j_{R},i_{S},j_{S}}^{I} = \sum_{\substack{1 \le k_{1} < i_{R} \\ i_{S} < k_{2} \le L_{S}}} P_{k_{1},j_{R},i_{S},k_{2}}^{Ia} \frac{(Q_{k_{1},i_{R},j_{S},k_{2}}^{Is} + Q_{k_{1},i_{R},j_{S},k_{2}}^{Is'} + Q_{k_{1},j_{R},j_{S},k_{2}}^{Ie})Q_{i_{R},j_{R},i_{S},j_{S}}^{I}}{Q_{k_{1},j_{R},i_{S},k_{2}}^{Ia}},$$

$$P_{i_R,j_R,i_S,j_S}^{la} = \sum_{\substack{1 \le k_1 \le i_R \\ j_S \le k_2 \le L_S}} P_{k_1,j_R,i_S,k_2}^{l} \frac{Q_{k_1,i_R-1}Q_{j_S+1,k_2}Q_{i_R,j_R,i_S,j_S}^{la}}{Q_{k_1,j_R,i_S,k_2}^{l}} + \sum_{\substack{1 \le k_1 \le i_R \\ j_S \le k_2 \le L_S}} P_{k_1,j_R,i_S,k_2}^{lb} \frac{Q_{k_1,i_R,j_S,k_2}^{lh}Q_{i_R,j_R,i_S,j_S}^{la}}{Q_{k_1,j_R,i_S,k_2}^{lb}}.$$

More on this part will be presented by Peter Stadler.

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Push I(1, n, 1, m) onto the stack.

- Iterate until the stack is empty, i.e. reaching a leaf (structure) in the recursions.
 - In each iteration, sample $0 \le \alpha \le 1$ uniformly at random.
 - Pop from the stack $top(i_R, j_R, i_S, j_S)$.
 - Pick a case of top according to α. For simplicity, we assume there is only one case here, i.e.

$$Q^{top} = \sum_{\substack{l \in S_{k_1} \leq l_R \\ l_S < k_2 \leq S}} Q^{loft}_{l_R, k_1, k_2, j_S} Q^{loft}_{k_1+1, j_R, l_S, k_2+1}$$

Find k_1^*, k_2^* such that

$$\sum_{\substack{l_R \leq k_1 < k_1^* \\ l_S < k_2 \leq k_2^*}} \cdots \simeq \alpha \sum_{\substack{l_R \leq k_1 < l_R \\ l_S < k_2 \leq l_S}} \cdots .$$

▶ Push left (i_R, k_1^*, k_2^*, j_S) and right $(k_1 + 1, j_R, i_S, k_2 + 1)$ onto the stace

イロト 不良 とくほ とくほう

- Push I(1, n, 1, m) onto the stack.
- Iterate until the stack is empty, i.e. reaching a leaf (structure) in the recursions.
 - In each iteration, sample $0 \le \alpha \le 1$ uniformly at random.
 - Pop from the stack $top(i_R, j_R, i_S, j_S)$.
 - Pick a case of *top* according to α. For simplicity, we assume there is only one case here, i.e.

$$\mathsf{Q}^{top} = \sum_{\substack{l_R \leq k_1 < l_R \\ l_S < k_2 \leq l_S}} \mathsf{Q}^{left}_{l_R, k_1, k_2, l_S} \mathsf{Q}^{light}_{k_1+1, j_R, l_S, k_2+1}$$

Find k_1^*, k_2^* such that

$$\sum_{\substack{i_R \leq k_1 < k_1^* \\ i_S < k_2 \leq k_2^*}} \cdots \simeq \alpha \sum_{\substack{i_R \leq k_1 < i_R \\ i_S < k_2 \leq I_S}} \cdots .$$

• Push $left(i_R, k_1^*, k_2^*, j_S)$ and $right(k_1 + 1, j_R, i_S, k_2 + 1)$ onto the stack.

イロト イロト イヨト イヨト

- Push I(1, n, 1, m) onto the stack.
- Iterate until the stack is empty, i.e. reaching a leaf (structure) in the recursions.
 - In each iteration, sample $0 \le \alpha \le 1$ uniformly at random.
 - Pop from the stack $top(i_R, j_R, i_S, j_S)$.
 - Pick a case of *top* according to α. For simplicity, we assume there is only one case here, i.e.

$$\mathsf{Q}^{top} = \sum_{\substack{i_R \leq k_1 < j_R \\ i_S < k_2 \leq j_S}} \mathsf{Q}^{left}_{i_R,k_1,k_2,j_S} \mathsf{Q}^{right}_{k_1+1,j_R,i_S,k_2+1}$$

Find k_1^*, k_2^* such that

$$\sum_{\substack{i_R \leq k_1 < k_1^* \\ i_S < k_2 \leq k_2^*}} \cdots \simeq \alpha \sum_{\substack{i_R \leq k_1 < i_R \\ i_S < k_2 \leq l_S}} \cdots .$$

• Push $left(i_R, k_1^*, k_2^*, j_S)$ and $right(k_1 + 1, j_R, i_S, k_2 + 1)$ onto the stack.

-

イロト 不良 とくほ とくほう

- Push I(1, n, 1, m) onto the stack.
- Iterate until the stack is empty, i.e. reaching a leaf (structure) in the recursions.
 - ► In each iteration, sample $0 \le \alpha \le 1$ uniformly at random.
 - Pop from the stack $top(i_R, j_R, i_S, j_S)$.
 - Pick a case of *top* according to α. For simplicity, we assume there is only one case here, i.e.

$$\mathsf{Q}^{top} = \sum_{\substack{i_R \leq k_1 < j_R \\ i_S < k_2 \leq j_S}} \mathsf{Q}^{left}_{i_R,k_1,k_2,j_S} \mathsf{Q}^{right}_{k_1+1,j_R,i_S,k_2+1}$$

Find k_1^*, k_2^* such that

$$\sum_{\substack{i_R \leq k_1 < k_1^* \\ i_S < k_2 \leq k_2^*}} \cdots \simeq \alpha \sum_{\substack{i_R \leq k_1 < i_R \\ i_S < k_2 \leq l_S}} \cdots .$$

• Push $left(i_R, k_1^*, k_2^*, j_S)$ and $right(k_1 + 1, j_R, i_S, k_2 + 1)$ onto the stack.

-

イロト イヨト イヨト イヨト

- Push I(1, n, 1, m) onto the stack.
- Iterate until the stack is empty, i.e. reaching a leaf (structure) in the recursions.
 - In each iteration, sample $0 \le \alpha \le 1$ uniformly at random.
 - Pop from the stack $top(i_R, j_R, i_S, j_S)$.
 - Pick a case of *top* according to α. For simplicity, we assume there is only one case here, i.e.

$$\mathsf{Q}^{top} = \sum_{\substack{i_R \leq k_1 < j_R \\ i_S < k_2 \leq j_S}} \mathsf{Q}^{left}_{i_R,k_1,k_2,j_S} \mathsf{Q}^{right}_{k_1+1,j_R,i_S,k_2+1}$$

Find k_1^*, k_2^* such that

• Push $left(i_R, k_1^*, k_2^*, j_S)$ and $right(k_1 + 1, j_R, i_S, k_2 + 1)$ onto the stack.

- Push I(1, n, 1, m) onto the stack.
- Iterate until the stack is empty, i.e. reaching a leaf (structure) in the recursions.
 - In each iteration, sample $0 \le \alpha \le 1$ uniformly at random.
 - Pop from the stack $top(i_R, j_R, i_S, j_S)$.
 - Pick a case of top according to α. For simplicity, we assume there is only one case here, i.e.

$$\mathsf{Q}^{top} = \sum_{\substack{i_R \leq k_1 < j_R \\ i_S < k_2 \leq j_S}} \mathsf{Q}^{left}_{i_R,k_1,k_2,j_S} \mathsf{Q}^{right}_{k_1+1,j_R,i_S,k_2+1}$$

▶ Find k₁^{*}, k₂^{*} such that

• Push $left(i_R, k_1^*, k_2^*, j_S)$ and $right(k_1 + 1, j_R, i_S, k_2 + 1)$ onto the stack.

- Push I(1, n, 1, m) onto the stack.
- Iterate until the stack is empty, i.e. reaching a leaf (structure) in the recursions.
 - In each iteration, sample $0 \le \alpha \le 1$ uniformly at random.
 - Pop from the stack $top(i_R, j_R, i_S, j_S)$.
 - Pick a case of top according to α. For simplicity, we assume there is only one case here, i.e.

$$\mathsf{Q}^{top} = \sum_{\substack{i_R \leq k_1 < j_R \\ i_S < k_2 \leq j_S}} \mathsf{Q}^{left}_{i_R,k_1,k_2,j_S} \mathsf{Q}^{right}_{k_1+1,j_R,i_S,k_2+1}$$

▶ Find k₁^{*}, k₂^{*} such that

$$\sum_{\substack{R \leq k_1 < k_1^* \\ S < k_2 \leq k_2^*}} \cdots \simeq \alpha \sum_{\substack{i_R \leq k_1 < i_R \\ i_S < k_2 \leq i_S}} \cdots .$$

• Push $left(i_R, k_1^*, k_2^*, j_S)$ and $right(k_1 + 1, j_R, i_S, k_2 + 1)$ onto the stack.

イロト イポト イヨト イヨト

Fast Ponty-style sampling of the Boltzmann ensemble

< 🗇 >

Time and space complexity of piRNA

- $O(n^4m^2 + n^2m^4)$ time.
- ► O(n²m²) space.
- about 100 tables in the dynamic programming.
- takes about 1 day on 64 CPUs with 150GB RAM for two 110nt RNAs (OxyS-fhIA).

Therefore, a fast heuristic is on demand for high-throughput applications, possibly as a filtering step.

Time and space complexity of piRNA

- $O(n^4m^2 + n^2m^4)$ time.
- ► O(n²m²) space.
- about 100 tables in the dynamic programming.
- takes about 1 day on 64 CPUs with 150GB RAM for two 110nt RNAs (OxyS-fhIA).

Therefore, a fast heuristic is on demand for high-throughput applications, possibly as a filtering step.

Binding sites prediction

biRNA : a fast algorithm to predict simultaneous binding sites of two nucleic acids

Pros

- Predicts multiple simultaneous binding sites.
- Computes a more accurate local energy of binding.
- Considers zigzags and crossing interactions.
- Maintains tractability for existing cases in the literature.

Cons

- Approximates the intramolecular site accessibility energy.
- Its running time grows exponentially with the maximum number of simultaneous binding sites.

ヘロト 人間 トイヨト イヨト

Binding sites prediction

biRNA : a fast algorithm to predict simultaneous binding sites of two nucleic acids

Pros

- Predicts multiple simultaneous binding sites.
- Computes a more accurate local energy of binding.
- Considers zigzags and crossing interactions.
- Maintains tractability for existing cases in the literature.

Cons

- Approximates the intramolecular site accessibility energy.
- Its running time grows exponentially with the maximum number of simultaneous binding sites.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Steps of the algorithm for R and S

- 1. For all short subsequences W, compute $P_u(W)$, the prob. of being unpaired (Mückstein *et al.* 2008).
- 2. Obtain \mathcal{V} , a short list of candidate sites.
- 3. For all pairs W_1, W_2 , compute $P_u(W_1, W_2)$, the joint pairwise prob. of being simultaneously unpaired.
- 4. Build tree-structured Markov Random Fields (MRF) $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ to approximate the distribution of being simultaneously unpaired (Chow and Liu 1968).
- 5. Compute $Q'_{W^RW^S}$, the interaction partition functions restricted to subsequences W^R and W^S using piRNA.
- 6. Compute a matching between \mathcal{T}^R and \mathcal{T}^S that minimizes the binding energy or equivalently maximizes the binding probability.

(日)、

Steps of the algorithm for R and S

- 1. For all short subsequences W, compute $P_u(W)$, the prob. of being unpaired (Mückstein *et al.* 2008).
- 2. Obtain \mathcal{V} , a short list of candidate sites.
- 3. For all pairs W_1, W_2 , compute $P_u(W_1, W_2)$, the joint pairwise prob. of being simultaneously unpaired.
- 4. Build tree-structured Markov Random Fields (MRF) $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ to approximate the distribution of being simultaneously unpaired (Chow and Liu 1968).
- 5. Compute $Q'_{W^RW^S}$, the interaction partition functions restricted to subsequences W^R and W^S using piRNA.
- 6. Compute a matching between \mathcal{T}^R and \mathcal{T}^S that minimizes the binding energy or equivalently maximizes the binding probability.

(日)、

Steps of the algorithm for R and S

- 1. For all short subsequences W, compute $P_u(W)$, the prob. of being unpaired (Mückstein *et al.* 2008).
- 2. Obtain \mathcal{V} , a short list of candidate sites.
- 3. For all pairs W_1, W_2 , compute $P_u(W_1, W_2)$, the joint pairwise prob. of being simultaneously unpaired.
- 4. Build tree-structured Markov Random Fields (MRF) $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ to approximate the distribution of being simultaneously unpaired (Chow and Liu 1968).
- 5. Compute $Q'_{W^RW^S}$, the interaction partition functions restricted to subsequences W^R and W^S using piRNA.
- 6. Compute a matching between \mathcal{T}^R and \mathcal{T}^S that minimizes the binding energy or equivalently maximizes the binding probability.

Steps of the algorithm for R and S

- 1. For all short subsequences W, compute $P_u(W)$, the prob. of being unpaired (Mückstein *et al.* 2008).
- 2. Obtain \mathcal{V} , a short list of candidate sites.
- 3. For all pairs W_1, W_2 , compute $P_u(W_1, W_2)$, the joint pairwise prob. of being simultaneously unpaired.
- 4. Build tree-structured Markov Random Fields (MRF) $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ to approximate the distribution of being simultaneously unpaired (Chow and Liu 1968).
- 5. Compute $Q'_{W^RW^S}$, the interaction partition functions restricted to subsequences W^R and W^S using piRNA.
- 6. Compute a matching between \mathcal{T}^R and \mathcal{T}^S that minimizes the binding energy or equivalently maximizes the binding probability.

ヘロト ヘロト ヘヨト ヘヨト

Steps of the algorithm for R and S

- 1. For all short subsequences W, compute $P_u(W)$, the prob. of being unpaired (Mückstein *et al.* 2008).
- 2. Obtain \mathcal{V} , a short list of candidate sites.
- 3. For all pairs W_1, W_2 , compute $P_u(W_1, W_2)$, the joint pairwise prob. of being simultaneously unpaired.
- 4. Build tree-structured Markov Random Fields (MRF) $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ to approximate the distribution of being simultaneously unpaired (Chow and Liu 1968).
- 5. Compute $Q'_{W^RW^S}$, the interaction partition functions restricted to subsequences W^R and W^S using piRNA.
- 6. Compute a matching between \mathcal{T}^R and \mathcal{T}^S that minimizes the binding energy or equivalently maximizes the binding probability.

Steps of the algorithm for R and S

- 1. For all short subsequences W, compute $P_u(W)$, the prob. of being unpaired (Mückstein *et al.* 2008).
- 2. Obtain \mathcal{V} , a short list of candidate sites.
- 3. For all pairs W_1, W_2 , compute $P_u(W_1, W_2)$, the joint pairwise prob. of being simultaneously unpaired.
- 4. Build tree-structured Markov Random Fields (MRF) $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ to approximate the distribution of being simultaneously unpaired (Chow and Liu 1968).
- 5. Compute $Q'_{W^RW^S}$, the interaction partition functions restricted to subsequences W^R and W^S using piRNA.
- 6. Compute a matching between \mathcal{T}^R and \mathcal{T}^S that minimizes the binding energy or equivalently maximizes the binding probability.

3

67/76

Binding energy minimization

Exhaustive search to find matching $M = \{ (W_1^R, W_1^S), (W_2^R, W_2^S), \dots, (W_k^R, W_k^S) \} \text{ that minimizes}$ $\Delta G(M) = ED_u^R(M) + ED_u^S(M) + \Delta G_b^{RS}(M),$

in which

$$ED_{u}^{R}(M) = -RT \log P_{u}^{R*}(W_{1}^{R}, W_{2}^{R}, \dots, W_{k}^{R})$$

$$ED_{u}^{S}(M) = -RT \log P_{u}^{S*}(W_{1}^{S}, W_{2}^{S}, \dots, W_{k}^{S})$$

$$\Delta G_{b}^{RS}(M) = -RT \sum_{1 \le i \le k} \log(Q_{W_{i}^{R}W_{i}^{S}}^{I} - Q_{W_{i}^{R}}Q_{W_{i}^{S}}).$$

イロト イタト イヨト イヨト

-

R is the universal gas constant and T is temperature.

Experimental results

Multi-sites

Pair	Binding Site(s)		biRNA		RNAup	
	Literature		Site(s)		Site	
OxyS-fhIA	[22,30]	[95,87]	(23,30)	(94,87)	-	-
	[98,104]	[45,39]	(96,104)	(48,39)	(96,104)	(48,39)
CopA-CopT	[22,33]	[70,59]	(22,31)	(70,61)	-	-
	[48,56]	[44,36]	(49,57)	(43,35)	(49,67)	(43,24)
	[62,67]	[29,24]	(58,67)	(33,24)	-	-

(日)

Experimental results

Uni-sites

Pair		
GcvB	gltl	
GcvB	argT	
GcvB	dppA	
GcvB	livJ	
GcvB	livK	
GcvB	oppA	
GcvB	STM4351	
MicA	lamB	
MicA	ompA	
DsrA	rpoS	
RprA	rpoS	
IstR	tisA	
MicC	ompC	
MicF	ompF	
RyhB	sdhD	
RyhB	sodB	
SgrS	ptsG	
IncRNA ₅₄	repZ	

Lengths: 71-253 nt

Running time: 10 min - 1 hour on 8 dual core CPUs and 20GB of RAM $_{\scriptscriptstyle <\ \Box\ }$,

< ∃>

- We presented piRNA an O(n⁴m² + n²m⁴)-time O(n²m²)-space complexity algorithm for interaction partition function, base-pair probabilities, minimum free energy secondary structure, equilibrium concentrations, melting temperature, and some other derivatives of the partition function.
- piRNA outperforms all other alternatives and is available at http://compbio.cs.wayne.edu/chitsaz/.
- ▶ We presented biRNA, a fast RNA-RNA binding sites prediction algorithm.
- biRNA 's tree-structured MRF approximation is accurate enough for predicting binding sites and may be used in other applications.

- We presented piRNA an O(n⁴m² + n²m⁴)-time O(n²m²)-space complexity algorithm for interaction partition function, base-pair probabilities, minimum free energy secondary structure, equilibrium concentrations, melting temperature, and some other derivatives of the partition function.
- piRNA outperforms all other alternatives and is available at http://compbio.cs.wayne.edu/chitsaz/.
- We presented biRNA, a fast RNA-RNA binding sites prediction algorithm.

・ロン ・ 日本 ・ 田子 ・ 田子

 biRNA 's tree-structured MRF approximation is accurate enough for predicting binding sites and may be used in other applications.

- We presented piRNA an O(n⁴m² + n²m⁴)-time O(n²m²)-space complexity algorithm for interaction partition function, base-pair probabilities, minimum free energy secondary structure, equilibrium concentrations, melting temperature, and some other derivatives of the partition function.
- piRNA outperforms all other alternatives and is available at http://compbio.cs.wayne.edu/chitsaz/.
- ► We presented biRNA, a fast RNA-RNA binding sites prediction algorithm.

・ロン ・ 御 と ・ ヨ と ・ ヨ と

 biRNA 's tree-structured MRF approximation is accurate enough for predicting binding sites and may be used in other applications.

- We presented piRNA an O(n⁴m² + n²m⁴)-time O(n²m²)-space complexity algorithm for interaction partition function, base-pair probabilities, minimum free energy secondary structure, equilibrium concentrations, melting temperature, and some other derivatives of the partition function.
- piRNA outperforms all other alternatives and is available at http://compbio.cs.wayne.edu/chitsaz/.
- ► We presented biRNA, a fast RNA-RNA binding sites prediction algorithm.
- biRNA 's tree-structured MRF approximation is accurate enough for predicting binding sites and may be used in other applications.

Future work

RNA design for positive and negative interactions.

- Better interaction energy model, which requires more data.
- Incorporation of non-canonical base pairs.

Future work

- RNA design for positive and negative interactions.
- Better interaction energy model, which requires more data.
- Incorporation of non-canonical base pairs.

Future work

- RNA design for positive and negative interactions.
- Better interaction energy model, which requires more data.
- Incorporation of non-canonical base pairs.

Acknowledgement

Collaborators

- Rolf Backofen, University of Freiburg, Germany
- Cenk Sahinalp, SFU, Canada
- Raheleh Salari

Funding

Deutsche Forschungsgemeinschaft

イロト イロト イヨト イヨト

Thanks for your attention!

Hybrid component

Kissing loop

Example

$$G^{\text{kissing}} = 4\beta_2 + 2\beta_3.$$

