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P(recovery | drug)  >  P(recovery | no drug) 

 

P(recovery | drug, male)  <  P(recovery | no drug, male) 

 

P(recovery | drug, female)  <  P(recovery | no drug, female) 

 

Simpson’s Paradox 

drug no drug 

male 180/300 = 60% 70/100 = 70% 

female 20/100 = 20% 90/300 = 30% 

combined 200/400 = 50% 160/400 = 40% 

Recovery probability 



gender 

treatment recovery 

Simpson’s Paradox 



P(recovery | do (drug))   ≠  P(recovery | observe (drug) ) 

Simpson’s Paradox 

correlation causation 



What formalism can we  use to describe causal relations? 
 

How do we come to have knowledge of causal relations?  
(“we” = children, scientists, machine learning systems) 

 
How do we come to have knowledge of causal relations in 

uncontrolled experiments? 
 





What is a Causal Model? 
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Reichenbach’s principle   
No correlation without causation! 
 
If X and Y are correlated, then either  
(i)  X causes Y 
(ii)  Y causes X 
(iii) X and Y have a common cause 
(iv) both (i) and (iii) 
(v) both (ii) and (iii) 

 
 



• Parentless variables are independently distributed 
 

• Conditionals arise from autonomous mechanisms 
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Given a causal model, what sorts of correlations can arise? 

X Y 

T S 

W 

Causal inference algorithms seek to solve the inverse problem 



Inferring facts about the causal structure from 
statistical independences 



Def’n: A and B are marginally independent 

Denote this 

Given a causal model, what sorts of correlations can arise? 
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Def’n: A and B are conditionally independent given C 

Denote this 

Given a causal model, what sorts of correlations can arise? 

X Y 

T S 

W 
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Markov condition: The joint distribution induced by a causal 
model is such that every variable X is conditionally independent 
of its nondescendants given its parents, 
   

X1 

X4 X3 

X5 

X2 



X1 

X4 X3 

X5 

X2 

The semi-graphoid axioms then imply 

Semi-graphoid axioms 



X3 ?X1

The values of the causal-statistical parameters can imply 
further  CI relations 

X1 

X4 X3 

X5 

X2 
Suppose: 

Then: 



A B 

C 

? A?B

and no other 
independence 

relations 



No Fine-tuning! 
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P (AjB; C)



No fine-tuning (a.k.a. stability, a.k.a. faithfulness): 
A causal model M is not fine-tuned relative  to a probability 
distribution P if the conditional independences that hold in P 
continue to hold for any variation of the parameters in M 

A key assumption of causal discovery algorithms 
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What’s given: probability distribution over observed variables 
 
What we must infer: a causal structure over a set of variables 
that includes the observed variables and may include one or 
more latent variables 
 
 
Notational Convention 
Observed variables: A, B, C,… 
Latent variables: ¸, ¹, º, … 

Allowing latent variables in the causal structure 
 



S C   ? 

Suppose you also observe 

S 6? C

S ? C j T

and no other independences 

S C 

° 
? 

Does smoking cause lung cancer?  



¸ 

Latent common cause for S, C and T? 

(S  C | T) 



Latent common cause or direct causal relation 
(or both) between S and C? 

(S  C | T) 

¸ 

¸ ¸ 



So the causal structure 
must be of the form 

(S  C | T) 



Marginal independence between remaining pairs? 

(S  C | T) 



means 

So the causal structure 
must be of the form 

(S  C | T) 



Assume one extra piece of data:  S always precedes T 

(S  C | T) 



Inferring facts about the causal structure from 
the strength of correlations 
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P(X,Y,Z) can have perfect 
three-way correlation 

P(X,Y,Z) is bounded away 
from perfect three-way 

correlation 

Strength of Correlations 

Janzing and Beth, arXiv:quant-ph/0208006 
Steudel and Ay, arXiv:1010:5720 
Fritz, New J. Phys. 14, 103001 (2012)  
Branciard, Rosset, Gisin, Pironio, arXiv:1112.4502 



Strength of Correlations 

A B 

X Y 

¸ 

P(A = Bj0;0) +P(A = Bj0;1)

Inequalities on P(A,B|X,Y) 

where 

+P(A = Bj1;0) +P(A 6= Bj1;1) · 3

P(A= BjX;Y ) :=
P
a=bP(A = a;B = bjX;Y )

P(A 6= BjX;Y ) :=
P
a6=bP(A = a;B = bjX;Y )
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A B 

X Y 
¸ 

Inequalities on P(X,Y,Z)  

Inequalities on P(A,B,X,Y)  

“Instrumental inequalities” 
(Chap. 8 of Pearl)  

Assumptions 
about causal 

structure 

Testing candidate causal structures 



The lesson of causal inference  
for Bell-inequality-violating correlations 

 
Joint work with Christopher Wood 

 
See: arXiv:1208.4119 
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X Y 

A B 

Q: For the observed correlations P(A,B,X,Y) 
what are the independences? 

(X  Y), (A  Y | X), (B  X | Y) 

A: The set generated by 
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What are the key assumptions of Bell’s theorem? 

A “standard” response: 
• Realism 
• Local causality 
• No superdeterminism 
• No retrocausation 

What is proposed here: 
• Reichenbach’s principle 
• No fine-tuning 
• A causal model is a directed 

acyclic graph supplemented 
with conditional probabilities 
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Distinguishing X  Y from Y  X  
under assumption of additive noise 
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Hoyer et al. NIPS 21, Vancouver (2009) 
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Hoyer et al. NIPS 21, Vancouver (2009) 



Causal inference 
from correlations on a pair of binary variables 

 
Joint work with Ciaran Lee 



Functional Causal Models where A and B have 
 at most two binary variables as parents 

Possible Causal structures 

Note: all noise is assumed to come 
from the root nodes 



Possible functional dependences of A and B on their parents 
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Quantum Bayesian Inference  

and Quantum Causal Models  
 

joint work with Matt Leifer 

 

See: arXiv:1107.5849, arXiv:1110.1085 
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Probability distribution for X 

Set of states on A 

POVM on A 

Channel from A to B 

Instrument 
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Deriving quantum correlations 

 

A possible line of attack: 

Principles about inference   Quantum Bayesian inference 

+ Assumptions about causal structure 

 

 

See: Coecke and RWS, Synthese 186, 651 (2012) 

 



Understanding the subset of qubit channels induced by a single qubit 

ancilla 

A B 

C 

See: Narang and Arvind, arXiv:quant-ph/0611058 



Understanding multipartite entanglement SLOCC classes 

See: Walter et al. arXiv:1208.0365 
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