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Simpson’s Paradox

P(recovery | drug) > P(recovery | no drug)

P(recovery | drug, male) < P(recovery | no drug, male)

P(recovery | drug, female) < P(recovery | no drug, female)

Recovery probability
drug no drug

male 180/300 = 60%  70/100 = 70%

female 20/100 =20%  90/300 = 30%

combined 200/400 =50% 160/400 = 40%



Simpson’s Paradox

recovery _ treatment
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gender



Simpson’s Paradox

P(recovery | do (drug)) # P(recovery | observe (drug) )
causation correlation



What formalism can we use to describe causal relations?

How do we come to have knowledge of causal relations?
“we” = children, scientists, machine learning systems)

How do we come to have knowledge of causal relations in
uncontrolled experiments?
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What is a Causal Model?
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Reichenbach’s principle
No correlation without causation!

If Xand Y are correlated, then either
(i) X causesY

(ii) Y causes X

(iii) X and Y have a common cause
(iv) both (i) and (iii)

(v) both (ii) and (iii)
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P(X|S,T,W,Y)
PY|T, W)

Parentless variables are independently distributed

Conditionals arise from autonomous mechanisms



Given a causal model, what sorts of correlations can arise?

P(W)
/\ P(s)
P(T)
T ‘\T P(X|S, T, W,Y)
PY|T, W)

P(X,Y,W,S, T) — P(X|S,T,W,Y)P(Y|T,W)P(W)P(S)P(T)

Causal inference algorithms seek to solve the inverse problem



Inferring facts about the causal structure from
statistical independences



Given a causal model, what sorts of correlations can arise?

P(W)
/ AV
P(T)
T \ T P(X|S, T, W,Y)
PY|T, W)
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Def’n: A and B are marginally independent
P(A|B) = P(A) Denote this
P(B|A) = P(B) (A L B)
P(A,B) = P(A)P(B)



Given a causal model, what sorts of correlations can arise?

P(W)
/\ P(S)
P(T)
T \T P(X|S, T, W,Y)
PY|T, W)

P(X,Y,W, 5, T) = P(X|S,T,W,Y)P(Y|T,W)P(W)P(S)P(T)

Def’n: A and B are conditionally independent given C
P(A|B,C) = P(A|C) Denote this
P(BJ|A, C) = P(B|C) (A L B|C)
P(4, B|C) = P(A[C)P(B|C)



AJC

chain A—> B—>C > (AL C|B)
A C AYC

fork \B Vol :> (A L C|B)

confounded A—» C

ALC

cause \B/ :> (A 7‘[ C|B)
collider A ) /C :> ALC

B (AL C|B)
D ALC

Pair of forks A/ \C :> (Ajié C|B)

Ny (A L C|B, D)



Markov condition: The joint distribution induced by a causal
model is such that every variable X is conditionally independent
of its nondescendants given its parents,

(X | Nondescendants(X) | Parents( X))
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\ (Xa L {X1,X4})
/ / (X3 Lﬁm {X1, X2}
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Semi-graphoid axioms

Symmetry: (X LY |Z)< (Y LX|Z2)
Decomposition: (X LYW |Z)= (X LY|Z)
Weak Union: (X LYW |Z)= (X LY |ZW)
Contraction: (X LY |Z) and (X LW |ZY)

= (X LYW |Z)

X1 1 X9)

(
(Xo L {X1.X4})
/ / (Xg L Xy | {Xq1, X2}
(X, L {Xa, X3} | X1)
(X5 L {X1,Xo} | {X3,Xs})

\4 / The semi-graphoid axioms then imply

[X4 1 X'E. | le
({ X4, X5} L Xo | {X1.X3})



The values of the causal-statistical parameters can imply
further Cl relations

Suppose:
/ \ / X3 = (X1 + Xo)mod2
P(Xy=0) = P(Xy=1) = %
\ / Then:

X3 1 X4
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AlB A B P(A)
and no other jl> b c/ P(B) \/

independence P(ClA. B)
relations A < B P(C)
\ A PBO)
C P(A|B,C)

No Fine-tuning!



A key assumption of causal discovery algorithms

No fine-tuning (a.k.a. stability, a.k.a. faithfulness):
A causal model M is not fine-tuned relative to a probability
distribution P if the conditional independences that hold in P
continue to hold for any variation of the parameters in M
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Allowing latent variables in the causal structure

What's given: probability distribution over observed variables

What we must infer: a causal structure over a set of variables
that includes the observed variables and may include one or
more latent variables

Notational Convention
Observed variables: A, B, C,...
Latent variables: A, u, v, ...



Does smoking cause lung cancer?

S/ C :> S —»c ?

S C

N A7

Y

Suppose you also observe
SLC|T

and no other independences



(SLCIT)

Latent common cause for S, Cand T?




(SLCIT)

Latent common cause or direct causal relation
(or both) between S and C?




(SLCIT)

So the causal structure
must be of the form

7 A S

& ©



(SLCIT)

Marginal independence between remaining pairs?




(SLCIT)

So the causal structure
must be of the form
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(SLCIT)
Assume one extra piece of data: S always precedes T

T

Q@
®

o
-/

f‘@\
) \C




Inferring facts about the causal structure from
the strength of correlations



Strength of Correlations

4
! P(X,Y,Z) can have perfect
A
« x \Y three-way correlation
V4
AT Ny P(X,Y,Z) is bounded away
\ { jl> from perfect three-way
X % ) Y correlation

Janzing and Beth, arXiv:quant-ph/0208006
Steudel and Ay, arXiv:1010:5720

Fritz, New J. Phys. 14, 103001 (2012)
Branciard, Rosset, Gisin, Pironio, arXiv:1112.4502



Strength of Correlations

A B Inequalities on P(A,B[X,Y)
T T _> P(A=B|0,0)+ P(A= BJ|0,1)
+P(A=BJ1,0)+ P(A+ BJ1,1) - 3
X Y where
A P(A=B|X,Y):=Y._, P(A=a,B=b|X,Y)
P(A+B|X,)Y):=Y ,P(A=a,B=0b|X,Y)

a#b



Testing candidate causal structures
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Assumptions
about causal
structure

:> Inequalities on P(X,Y,Z)

> Inequalities on P(A,B,X,Y)

:> “Instrumental inequalities”
(Chap. 8 of Pearl)



The lesson of causal inference
for Bell-inequality-violating correlations

Joint work with Christopher Wood

See: arXiv:1208.4119



Q: For the observed correlations P(A,B,X.Y)
what are the independences?

A: The set generated by

(XLY),(ALY|X),(BLX|Y)










X1lY

X L B|Y
Al Y\X
+ strength of
correlation




X1lY
X L BlY
AlY|X

+ strength of
correlation

No causal
explanation
without
fine-tuning!




What are the key assumptions of Bell’s theorem?

A “standard” response: What is proposed here:

* Realism  Reichenbach’s principle

* Local causality * No fine-tuning

* No superdeterminism * A causal modelis a directed
* No retrocausation acyclic graph supplemented

with conditional probabilities

i My



Distinguishing X 2 Y from Y =2 X
under assumption of additive noise



Linear functional model with additive noise

distinguish
Y Y=aX+N
™Y P(X)
X N P(N)
from
X X=dY+N

L

Y N P(N')



Linear functional model with additive noise

Y Y=aX+N
e
X N P(N)

Hoyer et al. NIPS 21, Vancouver (2009)
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Nonlinear functional model with additive noise

distinguish
Y = f(X) +
™ Pix
X N P(N)
from
X X=f(Y)+N



Nonlinear functional model with additive noise

Y Y=fX)+N
N
X N P(N)

Hoyer et al. NIPS 21, Vancouver (2009)
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Causal inference
from correlations on a pair of binary variables

Joint work with Ciaran Lee



Functional Causal Models where A and B have
at most two binary variables as parents

Possible Causal structures
A

LN, N LN
Y N

A B B B

/ﬁ\
A B A = B A B
A B Note: all noise is assumed to come

from the root nodes



Possible functional dependences of A and B on their parents

fx/,u\)\
A B
A=vdu B=\®u
A=vooudl B=Adouadl
A=vpu B =y
A=vu®d1 B=\u&d1
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P(A, B) = poo|00] + po1(01] + p10[10] + p11|11]
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P(A, B) = (q19293 + §1G2G3)[00] + (q192G3 + G1G2q3)[01]
H 13293 + G19233)[10] + (§19293 + 13243 [11],
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Quantum Bayesian Inference
and Quantum Causal Models

joint work with Matt Leifer

See: arXiv:1107.5849, arXiv:1110.1085



Joint state

Marginalization

Conditional state

Belief propagation

Classical

P(R, S)
P(S) :ZRP(R7S)

P(S|R)
ZS P(S|R) =1

P(S) =2 g P(S|R)P(R)

Quantum
PAB

pB = Trapas

PB|A

Trp(ppja) = 1a

pB = Tra(pplapa)



0]

P(S|R) = P(R,S)/P(R)
P(5) =2 P(S|R)P(R)

P(S) — FR%S[P(R)]

P(R, S)

P(S|R) = P(R, S)/P(R) O

P(S) =Y, P(SIRP(R)  (A)

P(‘S) — FR%S[P(R)]

s| PR, S @---- PAB
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0]

s| P(R,S)

P(S|R) = P(R,S)/P(R)
P(5) =2 P(S|R)P(R)

P(S) — FR%S[P(R)]

P(R, S)

P(S|R) = P(R,S)/P(R)

P(S) =>_r P(S|R)P(R)

P(‘S) — FR%S[P(R)]

O-@

—1/2 —1/2
PB|A — P4 PABPA

pB = Tra(pplapa)

P =¢4,5(pa)
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----- s| P(R,S)

P(S|R) = P(R,S)/P(R)
P(5) =2 P(S|R)P(R)

P(S) — FR%S[P(R)]

P(R, S)

P(S|R) = P(R,S)/P(R)

P(S) =>_r P(S|R)P(R)

P(S) — FR%S[P(R)]

O-@

—1/2
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PB|A = P4

PABP 4

pB = Tra(pplapa)

P =¢4,5(pa)
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pB = Tra(op|apa)

PB — EaB (,OA)
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P(R, S)

= P(R,S)/P(R)

= 2_r P(S|R)P(R)

= Iros|P(R))

P(R, S)

— P(R,S)/P(R)

= 2_r P(S|R)P(R)

= Iros|P(R))
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QB\A >0
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P(S|R) = P(R,S)/P(R) PBIA=Pa ' PABPA
P(S) =S, P(S|R)P(R) p = Tra(pp|apa)
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QB\A >0



Probability distribution for X

Set of states on A
POVM on A
Channel from Ato B

Instrument

Conventional
expression

In terms of conditional
states

PX

PA|X
PX|A
PB|A

PXB|A



Conventional In terms of

expression conditional states
Action of quantum channel

pp =E47E(pa) pB ="Tra(pp|apa)

Born’s rule

Ar—r\ P(Y =y) =Tra(El'pa)  py =Tra(py|apa)

Ensemble averaging
&ﬁ@ pa=>. P(X=uz)p pa =Trx(paxpx)

Composition of channels

(:>'—>© gA—>C — gB—>C’ o gA—>B IOC|A = TrB(:OC|BPB|A)

State ate rule
P(Y
(&) (B

— y)py =<, (,OA) PYB — TrA(pYB|ApA)



Quantum Causal Models

P(X) p
/A pe /A\ X

P()) pS
At /A P(A[X, X) ﬁ%& PAIXS

P(B[A,Y) PBIYS
P(A, B|X,Y) PAB|XY

= A P(ANX)P(BAYIP(Y) = Trs(paxspB|yspPs)



Deriving quantum correlations
A possible line of attack:

Principles about inference - Quantum Bayesian inference
+ Assumptions about causal structure

See: Coecke and RWS, Synthese 186, 651 (2012)



Understanding the subset of qubit channels induced by a single qubit
ancilla

pin = |U) (1| Pout
(Channel Input) (Channel QOutput) Q @
Ug
pe=(1-2)L+|0) (4| S
(1 qubit Mixed State) \ | /

See: Narang and Arvind, arXiv:quant-ph/0611058



Understanding multipartite entanglement SLOCC classes

(a)

* 1
N

A2 B

H

(a_w uj

See: Walter et al. arXiv:1208.0365
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