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Box-World Scenario 

ai = 1,…,r 

xi = 1,…,m 

… … 

N distant parties performing m different measurements of r outcomes. 



Physical Correlations 

Physical principles translate into limits on correlations. 

No-signalling correlations: correlations compatible with the no-signalling 
principle, i.e. the impossibility of instantaneous communication. 
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Physical Correlations 

 Classical correlations: correlations established by classical means. 

These are the standard “EPR” correlations. Independently of fundamental 
issues, these are the correlations achievable by classical resources.  Bell 
inequalities define the limits on these correlations. 

       


,,,,,, 1111 NNNN xaDxaDpxxaap  



Physical Correlations 
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Quantum correlations: correlations established by quantum means. 
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Why quantum correlations? 

L 

Q 

NS 
Q: Why are these correlations not 
possible in Nature? 
 
A: They are incompatible with 
quantum laws. That is, there is no 
quantum state and measurements 
able to reproduce them. 

What would their existence imply operationally? 

Information principles have been proposed as the mechanism to bound quantum 
correlations. Examples: non-trivial communication complexity, information 
causality, macroscopic locality. 



Guess Your Neighbour’s Input (GYNI) 

a = 0,1 

x = 0,1 

b = 0,1 

y = 0,1 

Alice and Bob receive two random bits, 𝑥 and 𝑦. Their goal is to compute the bit 
the other party received. Clearly, winning too often would imply signalling. 

𝑃𝑜𝑘 =
1

4
𝑝 00 00 + 𝑝 01 10 + 𝑝 10 01 + 𝑝 11 11  

Optimal classical strategy: the parties give their input as output → 𝑃𝑜𝑘 = 1/2.  
This value is “universal”, as violating it would imply signalling between the parties. 
That is, quantum and supra-quantum non-signalling correlations do not improve it. 



Guess Your Neighbour’s Input (GYNI) 

a = 0,1 

x = 0,1 

b = 0,1 

y = 0,1 

Alice has to guess the bit received by Bob, who has to guess the one received by 
Charlie, who has to guess Alice’s bit. 

𝑃𝑜𝑘 =
1

8
(𝑝 000 000 + 𝑝 010 001 + 𝑝 100 010 + 𝑝 110 011 + 

 𝑝 001 100 + 𝑝 011 101 + 𝑝 101 110 + 𝑝 111 111 ) 

Optimal classical strategy: the parties give their input as output → 𝑃𝑜𝑘 = 1/4.  
This value is “universal”, as violating it would imply signalling between the parties. 
That is, quantum and supra-quantum non-signalling correlations do not improve it. 

c = 0,1 

z = 0,1 



Guess Your Neighbour’s Input (GYNI) 

𝑃𝑜𝑘 =
1

8
(𝑝 000 000 + 𝑝 010 001 + 𝑝 100 010 + 𝑝 110 011 + 

 𝑝 001 100 + 𝑝 011 101 + 𝑝 101 110 + 𝑝 111 111 ) 

Optimal classical strategy: the parties give their input as output → 𝑃𝑜𝑘 = 1/4.  
This limit is again valid for parties having access to correlated quantum particles. 
Yet, it is possible to get a larger probability without violating the no-signalling 
principle! Why?! 

Promise: the sum of the inputs is zero, ie 𝑥 ⊕ 𝑦⊕ 𝑧 = 0. 

𝑃𝑜𝑘 =
1

4
(𝑝 000 000 + 𝑝 110 011 + 𝑝 011 101 + 𝑝 101 110 ) 

Intuition: it should be the same as Alice’s bit does not provide any information 
about Bob’s, and the same applies for all the parties. 



Guess Your Neighbour’s Input (GYNI) 

Almeida et al, PRL’10 
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First tight task with no 
quantum violation. 
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The no-signalling principle 
is intrinsically bipartite. 



Local orthogonality:  
a multipartite principle 



Local orthogonality 

Event Input Output 

𝑒1 𝑥1…𝒙𝒊…𝑥𝑁 𝑎1…𝒂𝒊…𝑎𝑁 

𝑒2 𝑥′1…𝒙𝒊…𝑥′𝑁 𝑎′1…𝒂 𝒊…𝑎′𝑁 

Local orthogonality: different outcomes of the same measurement by one of the 
observers define orthogonal events, independently of the rest of measurements. 

𝑁 events are orthogonal if they are pairwise orthogonal. 
 
Operationally: the sum of probabilities of pairwise orthogonal events is bounded by 1. 
 

 𝑝 𝑒𝑖
𝑒𝑖

≤ 1 



LO as a distributed guessing problem 

(a) In a standard guessing problem, a value       to be guessed is encoded by a 
function      and the goal is to make a guess       about the encoded value. 

(b) In a Distributed Guessing Problem (DGP) a string of bit is encoded on a string of 

N bits that are distributed among distant parties, who have to make a guess. 

a~

f a



LO as a distributed guessing problem 

• The figure of merit is the probability of making a right guess. 

• If the initial bit string can take S values, this probability is lower bounded by 1/ S.  
• There exist functions for which the optimal guessing probability for classically 

correlated players is equal to 1/ S. We call these functions maximally difficult. 
• In non-distributed problems, the only maximally difficult function is the trivial one 

in which the function maps all the values into one, it erases all the information. 
• In distributed versions, there exist other non-trivial maximally difficult functions. 
• Correlations violating LO turn maximally difficult functions for classical players into 

non-maximally difficult. 



LO and quantum correlations 

Quantum correlations satisfy LO.  

Event Input Output 

𝑒1 𝑥1…𝒙𝒊…𝑥𝑁 𝑎1…𝒂𝒊…𝑎𝑁 

𝑒2 𝑥′1…𝒙𝒊…𝑥′𝑁 𝑎′1…𝒂 𝒊…𝑎′𝑁 

max 𝑝 𝑒1 +𝑝 𝑒2 = max 𝜓 Π
𝑥1,𝑎1⊗⋯⊗Π𝑥𝑖,𝑎𝑖⊗⋯⊗Π𝑥𝑁,𝑎𝑁 + 

 Π𝑥′1,𝑎′1⊗⋯⊗Π𝑥𝑖,𝑎 𝑖 ⊗⋯⊗Π𝑥′𝑁,𝑎′𝑁  𝜓 ≤ 𝜓 𝐼 𝜓 =1 

Local orthogonality is satisfied both by classical and quantum theory. 
Indeed, while quantum physics breaks the orthogonality of preparations, 
it keeps the orthogonality of measurement outcomes .  
Intuition: measurement outcomes are always of classical nature. 

Proof: 



LO and the no-signalling principle 

For two parties: compatibility with LO ↔ non-signalling correlations. 

Example: GYNI. 

For more parties: LO is strictly more restrictive than no-signalling. 
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All events in GYNI are pairwise orthogonal. 

Cabello, Severini and Winter 



LO and graph theory 

How to get LO inequalities in a general scenario consisting of N parties making 
M measurements of R possible outcomes? 
There are 𝑀𝑁possible combination of inputs. For each of them, there are 𝑅𝑁 
possible results. This makes 𝑀𝑅 𝑁different events. 

𝑒1 
𝑒𝑗 = 𝑎1…𝒂𝒊…𝑎𝑁 𝑥1…𝒙𝒊…𝑥𝑁 

𝑒𝑘 = 𝑎′1…𝒂 𝒊…𝑎′𝑁|𝑥′1…𝒙𝒊…𝑥′𝑁 
𝑒2 

𝑒 𝑀𝑅 𝑁  

We construct a graph of events: 
• Nodes: events. 
• Edges: orthogonality condition. Cabello, Severini and Winter 



LO and graph theory 

𝑒1 
𝑒𝑗 = 𝑎1…𝒂𝒊…𝑎𝑁 𝑥1…𝒙𝒊…𝑥𝑁 

𝑒𝑘 = 𝑎′1…𝒂 𝒊…𝑎′𝑁|𝑥′1…𝒙𝒊…𝑥′𝑁 
𝑒2 

𝑒 𝑀𝑅 𝑁  

Clique: fully connected subgraph → set of pairwise orthogonal events. 
Maximum clique → optimal LO inequality. 
There exist algorithm to find cliques of a graph. Recall that finding the maximum 
clique of an arbitrary graph is an NP-hard problem. These graphs are not arbitrary. 



LO and extremal tripartite correlations 

• All extremal non-signalling correlations for 3 observers performing 2 
measurements of 2 outcomes were listed in S. Pironio et al, JPA’11. 
They can be classified into 46 classes (one of them corresponding to 
local points).  
 

• All but one of the 45 classes of non-local  correlations can be ruled out 
by information causality (Tzyh Haur et al, NJP’12).  
 

• The remaining point, box 4, is an example of a point that cannot be 
falsified by bipartite principles. 
 

• All the tripartite boxes contradict LO and, thus, do not have a quantum 
realization. In particular, it rules out box 4 because of its intrinsically 
multipartite formulation. 



LO and bipartite correlations 
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Popescu-Rohrlich (PR)-box 

a = 0,1 

x = 0,1 

b = 0,1 

y = 0,1 
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LO and bipartite correlations 

Despite the equivalence with NS for two parties, LO can be used to rule out supra-
quantum bipartite correlations. How? Use networks.  

𝐴1 𝐴2 

𝐴3 𝐴4 

a1 = 0,1 

x1 = 0,1 

a2 = 0,1 

x2 = 0,1 

PR-box 

a1 = 0,1 

x1 = 0,1 

a2 = 0,1 

x2 = 0,1 

PR-box 

Check now for violation of LO inequalities for 4 parties. 



LO and bipartite correlations 

Two PR-boxes distributed among 4 observers violate the LO inequality: 

𝑝 0000 0000 + 𝑝 1110 0011 +𝑝 0011 0110 +𝑝 1101 1011 +𝑝 0111 1101 ≤ 1 

L 

Q 

NS 

All supra-quantum 
correlations in this 
region violate LO. 



Conjecture 

Conjecture: Local orthogonality defines the quantum set. 

Principle: there is always someone smarter than you! 

Navascués: there are supra-quantum 
correlations compatible with LO! 

In fact, the set of LO correlations is not even convex! 



LO and contextuality 

Our approach easily extends to non-contextuality scenario. This has been 
studied for instance in: 

T. Frizt, A. Leverrier and A.B. Sainz, arXiv:1212.4084 
 
A. Cabello, Phys. Rev. Lett. 110 (2013) 060402 
 
B. Yan, arXiv:1303.4357  



Conclusions 

• Multipartite principle are needed for our understanding of 
quantum correlations. 

• Local orthogonality is an intrinsically multipartite principle. 

• It captures the classical nature of measurement outcomes: 
outcomes of the same measurement define incompatible 
events. 

• It is a powerful method when combined with graph-theory 
concepts and network geometries. 

• It rules out supra-quantum correlations, both in the bipartite 
and multipartite case. 

• The principle alone does not give quantum correlations. 

• What else is needed to define quantum correlations? 


