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Introduction

Overview

Causal structure - mathematically modelled as a partial order -
can be taken to be the fundamental structure of spacetime.

The topology can be derived from this.
Ordered topological spaces (domains) were used by Dana Scott
to model computation as information processing.
Spacetime carries a natural domain structure.
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Introduction

Background

Scott’s vision: computability should be continuity in some topology.

A finite piece of information about the output should only require a
finite piece of information about the input.
This is just what the ε− δ definition says.
Data types are domains (ordered topological spaces) and
computable functions are continuous.
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Introduction

Summary of Results

The causal order alone determines the topology of globally
hyperbolic spacetimes. [CMP Nov’06]

A (globally hyperbolic) spacetime can be given domain structure:
approximate points. [CMP Nov’06]
The space of causal curves in the Vietoris topology is compact (cf.
Sorkin-Woolgar) [GRG ’06]
The geometry can be captured by a Martin “measurement.” [AMS
Symposia in Pure and Appliedd Math 2012]
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Causal Structure

The layers of spacetime structure

Set of events: no structure

Topology: 4 dimensional real manifold, Hausdorff, paracompact,...
Differentiable structure: tangent spaces
Causal structure: light cones, defines metric up to conformal
transformations. This is 9

10 of the metric.
Parallel transport: affine structure.
Lorentzian metric: gives a length scale.

Panangaden (McGill) Causality, Order, Information and Topology Benasque June 2013 6 / 37



Causal Structure

The layers of spacetime structure

Set of events: no structure
Topology: 4 dimensional real manifold, Hausdorff, paracompact,...

Differentiable structure: tangent spaces
Causal structure: light cones, defines metric up to conformal
transformations. This is 9

10 of the metric.
Parallel transport: affine structure.
Lorentzian metric: gives a length scale.

Panangaden (McGill) Causality, Order, Information and Topology Benasque June 2013 6 / 37



Causal Structure

The layers of spacetime structure

Set of events: no structure
Topology: 4 dimensional real manifold, Hausdorff, paracompact,...
Differentiable structure: tangent spaces

Causal structure: light cones, defines metric up to conformal
transformations. This is 9

10 of the metric.
Parallel transport: affine structure.
Lorentzian metric: gives a length scale.

Panangaden (McGill) Causality, Order, Information and Topology Benasque June 2013 6 / 37



Causal Structure

The layers of spacetime structure

Set of events: no structure
Topology: 4 dimensional real manifold, Hausdorff, paracompact,...
Differentiable structure: tangent spaces
Causal structure: light cones, defines metric up to conformal
transformations. This is 9

10 of the metric.

Parallel transport: affine structure.
Lorentzian metric: gives a length scale.

Panangaden (McGill) Causality, Order, Information and Topology Benasque June 2013 6 / 37



Causal Structure

The layers of spacetime structure

Set of events: no structure
Topology: 4 dimensional real manifold, Hausdorff, paracompact,...
Differentiable structure: tangent spaces
Causal structure: light cones, defines metric up to conformal
transformations. This is 9

10 of the metric.
Parallel transport: affine structure.

Lorentzian metric: gives a length scale.

Panangaden (McGill) Causality, Order, Information and Topology Benasque June 2013 6 / 37



Causal Structure

The layers of spacetime structure

Set of events: no structure
Topology: 4 dimensional real manifold, Hausdorff, paracompact,...
Differentiable structure: tangent spaces
Causal structure: light cones, defines metric up to conformal
transformations. This is 9

10 of the metric.
Parallel transport: affine structure.
Lorentzian metric: gives a length scale.

Panangaden (McGill) Causality, Order, Information and Topology Benasque June 2013 6 / 37



Causal Structure

The causal structure of spacetime

At every point a pair of “cones” is defined in the tangent space:
future and past light cone. A vector on the cone is called null or
lightlike and one inside the cone is called timelike.

We assume that spacetime is time-orientable: there is a global
notion of future and past.
A timelike curve from x to y has a tangent vector that is
everywhere timelike: we write x � y . (We avoid x � y for now.) A
causal curve has a tangent that, at every point, is either timelike or
null: we write x ≤ y .
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Causal Structure

Kronheimer - Penrose axioms

Penrose and Kronheimer axiomatize causal spaces as sets with
two orders, written < and ≺ (and a third relation derived from
them, the “horismos”).

A fundamental axiom is that < is a partial order.
Other axioms describe the interaction of < and ≺.
The ≤ and� orders satisfy all the axioms of a causal space.
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Causal Structure

Causal Structure of Spacetime II

I+(x) := {y ∈ M|x � y}; similarly I−

J+(x) := {y ∈ M|x ≤ y}; similarly J−.
I± are always open sets in the manifold topology; J± are not
always closed sets.
Chronology: x � y ⇒ y 6� x .
Causality: x ≤ y and y ≤ x implies x = y .
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Causal Structure

Causality Conditions

I±(p) = I±(q)⇒ p = q.

Strong causality at p: Every neighbourhood O of p contains a
neighbourhood U ⊂ O such that no causal curve can enter U ,
leave it and then re-enter it.
In such a spacetime a future directed causal curve cannot get
trapped in a compact set.
Stable causality: perturbations of the metric do not cause
violations of causality.
Causal simplicity: for all x ∈ M, J±(x) are closed.
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Causal Structure

Global Hyperbolicity

Spacetime has good initial data surfaces for global solutions to
hyperbolic partial differential equations (wave equations). [Leray]

Global hyperbolicity: M is strongly causal and for each p,q in M,
[p,q] := J+(p) ∩ J−(q) is compact.
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Causal Structure

The Alexandrov Topology

Define
〈x , y〉 := I+(x) ∩ I−(y).

The sets of the form 〈x , y〉 form a base for a topology on M called the
Alexandrov topology.
Theorem (Penrose): TFAE:

1 (M,g) is strongly causal.

2 The Alexandrov topology agrees with the manifold topology.
3 The Alexandrov topology is Hausdorff.
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Domain Theory

Scott’s “domain” theory

Order as (qualitative) information content

data types are organized into so-called “domains”:
directed-complete (directed sets have least upper bounds) posets
For “directed set” think “chain.”
computable functions are viewed as continuous with respect to a
suitable topology: the Scott topology.
ideal (infinite) elements are limits of their (finite) approximations.
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Domain Theory

Examples of domains

The integers with no relation between them and a special element
⊥ below all the integers: a flat domain.

Sequences of elements from {a,b} ordered by prefix: the domain
of streams.
Compact non-empty intervals of real numbers ordered by reverse
inclusion (with R thrown in).
X a locally compact space with K (X ) the collection of compact
subsets ordered by reverse inclusion.

Panangaden (McGill) Causality, Order, Information and Topology Benasque June 2013 14 / 37
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Domain Theory

The Way-below relation

In addition to ≤ there is an additional, (often) irreflexive, transitive
relation written�: x � y means that x has a “finite” piece of
information about y or x is a “finite approximation” to y . If x � x
we say that x is finite.

The relation x � y - pronounced x is “way below” y - is directly
defined from ≤.
Official definition of x � y : If X ⊂ D is directed and y ≤ (BB��� X )
then there exists u ∈ X such that x ≤ u. If a limit gets past y then
some finite stage of the limiting process already got past x .
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Domain Theory

Domain theory continued

A continuous domain D has a basis of elements B ⊂ D such that
for every x in D the set x ⇓:= {u ∈ B|u � x} is directed and
BB��� (x ⇓) = x .

A continuous function between domains is order monotone and
preserves lubs (sups) of directed sets.
Why are directed sets so important? They are collecting
consistent pieces of information.
Surely the words “continuous function” should have something to
do with topology?
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Surely the words “continuous function” should have something to
do with topology?
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Domain Theory

The dream

Find a topology so that Turing computability is precisely continuity.

Scott’s topology comes close.
All computable functions are Scott continuous but one still needs
some recursion theoretic machinery to pin down exactly what
computable means.
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Domain Theory

Topologies of Domains 1: The Scott topology

the open sets of D are upwards closed and if O is open, then if
X ⊂ D is directed and BB��� X ∈ O it must be the case that some
x ∈ X is in O.

The effectively checkable properties.
This topology is T0 but not T1.
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Domain Theory

Topologies of Domains 2: The Lawson topology

basis of the form
O \ [∪i(xi ↑)].

Says something about negative information.
This topology is metrizable.
It has the same Borel algebra as the Scott topology.
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Domain Theory

Topologies of Domains 3: The interval topology

Basis sets of the form [x , y ] := {u|x � u � y}.

The domain theoretic analogue of the Alexandrov topology.
Caveat: the “Alexandrov topology” means something else in the
theory of topological lattices.
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Domains and causal structure

The role of way below in spacetime structure

Theorem: Let (M,g) be a spacetime with Lorentzian signature.
Define x � y as the way-below relation of the causal order. If
(M,g) is globally hyperbolic then x � y iff y ∈ I+(x).

One can recover I from J without knowing what smooth or timelike
means.
Intuition: any way of approaching y must involve getting into the
timelike future of x .
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Domains and causal structure

We can stop being coy about notational clashes: henceforth� is
way-below and the timelike order.
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Domains and causal structure

Bicontinuity and Global Hyperbolicity

The definition of continuous domain - or poset - is biased towards
approximation from below. If we symmetrize the definitions we get
bicontinuity (details in the paper).

Theorem: If (M,g) is globally hyperbolic then (M,≤) is a
bicontinuous poset. In this case the interval topology is the
manifold topology.
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Domains and causal structure

An “abstract” version of globally hyperbolic

We define a globally hyperbolic poset (X ,≤) to be
1 bicontinuous and,

2 all segments [a,b] := {x : a ≤ x ≤ b} are compact in the interval
topology on X .
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Interval Domains

An Important Example of a Domain: IR

The collection of compact intervals of the real line

IR = {[a,b] : a,b ∈ R & a ≤ b}

ordered under reverse inclusion

[a,b] v [c,d ]⇔ [c,d ] ⊆ [a,b]

is an ω-continuous dcpo.

For directed S ⊆ IR, BB��� S =
⋂

S.

Panangaden (McGill) Causality, Order, Information and Topology Benasque June 2013 25 / 37



Interval Domains

An Important Example of a Domain: IR

The collection of compact intervals of the real line

IR = {[a,b] : a,b ∈ R & a ≤ b}

ordered under reverse inclusion

[a,b] v [c,d ]⇔ [c,d ] ⊆ [a,b]

is an ω-continuous dcpo.
For directed S ⊆ IR, BB��� S =

⋂
S.

Panangaden (McGill) Causality, Order, Information and Topology Benasque June 2013 25 / 37



Interval Domains

IR continued.

I � J ⇔ J ⊆ int(I), and

{[p,q] : p,q ∈ Q & p ≤ q} is a countable basis for IR.
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Interval Domains

The domain IR is called the interval domain.

We have max(IR) ' R in the Scott topology.
The “classical” structure lives on top - ideal points,
there is now a substrate of “approximate” elements.
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Interval Domains

Generalizing IR

The closed segments of a globally hyperbolic poset X

IX := {[a,b] : a ≤ b & a,b ∈ X}

ordered by reverse inclusion form a continuous domain with

[a,b]� [c,d ] ≡ a� c & d � b.

X has a countable basis iff IX is ω-continuous.
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Interval Domains

max(IX ) ' X

where the set of maximal elements has the relative Scott topology from
IX .
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Reconstructing spacetime

Spacetime from a discrete ordered set

If we have a countable dense subset C ofM, a globally hyperbolic
spacetime, then we can view the induced causal order on C as
defining a discrete poset. An ideal completion construction in domain
theory, applied to a poset constructed from C yields a domain IC with

max(IC) 'M

where the set of maximal elements have the Scott topology. Thus from
a countable subset of the manifold we can reconstruct the whole
manifold.
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Reconstructing spacetime

Globally Hyperbolic Posets and Interval Domains

One can define categories of globally hyperbolic posets and an
abstract notion of “interval domain”: these can also be organized
into a category.

These two categories are equivalent.
Thus globally hyperbolic spacetimes are domains - not just posets
- but
not with the causal order but, rather, with the order coming from
the notion of intervals; i.e. from notions of approximation.
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Reconstructing spacetime

Spacetime as a domain

The domain consists of intervals [x , y ] = J+(x) ∩ J−(y).

For globally hyperbolic spacetimes these are all compact.
The order is inclusion.
The maximal elements are the usual points x = J+(x) ∩ J−(x).
The other elements are “approximate points.”
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Reconstructing spacetime

Other layers of structure

We would like to put differential structure on the domain and

metric structure as well.
There are derivative concepts for domains – not yet explored in
this context.
Keye Martin defined a concept called a “measurement.” This is
designed to capture quantitative notions on domains.
Metric notions can be related to these measurements.
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Reconstructing spacetime

Keye’s measurements

A measurement on D is a function µ : D → (∞,0] (reverse
ordered) that is Scott continuous and satisfies some extra
conditions.

We write ker(µ) for {x |µ(x) = 0} and
µε(x) = {y |y v x and |µ(x)− µ(y)| ≤ ε}.
For any Scott open set U and any x ∈ ker(µ)

x ∈ U ⇒ (∃ε > 0)x ∈ µε ⊆ U.
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Reconstructing spacetime

Idea: µ(x) measures the “uncertainty” in x .

Maximal elements have zero uncertainty.
On a suitable domain of probability distributions Shannon entropy
is a measurement.
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Reconstructing spacetime

Measurements and Geometry

Does the volume of an interval or the length of the longest
geodesic give a measurement on the domain of spacetime
intervals?

Unfortunately not! If a and b are null related then you get a
nontrivial interval with zero volume.
However, any globally hyperbolic spacetime (in fact any stably
causal one) has a global time function. The difference in the
global time function does give a measurement.
Knowing the global time function effectively gives the rest of the
metric.
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Reconstructing spacetime

Channel capacity as geometry?

Keye Martin and Bob Coecke showed that on a suitable domain of
quantum states the entropy is a measurement (also works for
classical states).

In spacetime I want to be able to view a path from p to q as a
“channel” and to measure its capacity.
If we transmit messages from p to q the Hawking radiation
produces noise and thus limits the capacity.
The same thing happens in the Rindler wedge and we can use
this to help with encrypting.
Details in Bradler, Hayden, P. CMP 2012.
Can we think of spacetime geometry in terms of its capacity to
convey information?
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