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D. Sáez and N. Puchades

diego.saez@uv.es

Departamento de Astronomı́a y Astrofı́sica de la Universidad de Valencia

Benasque, 10-September-2012– p. 1/23



SATELLITE MOTIONS AND RPS (I)

GPS AND GALILEO SATELLITE CONSTELLATIONS ARE
SIMULATED.

Satellite trajectories are assumed to be circumferences in the Schwarzschild
space-time created by an ideal spherically symmetric Earth. Our almost inertial
reference is asymptotic to Schwarzschild, and our approach is first order in GM⊕/r;
then:

The angular velocity is Ω = (GM⊕/R3)1/2

Coordinate and proper times are related as follows: γ = dt
dτ

=
“

1 −
3GM⊕

R

”−1/2

.

angles θ and φ fixes the orbital plane ( see N. Puchades & D. Sáez, Astrophys. Space
Sci, 341, 2012, 631 for details), and the angle αA(τ) = αA0 − Ωγτ localizes the
satellite on its trajectory

This simple model is good enough to describe a background configuration. Deviations with
respect to the background satellite world lines will be necessary to develop our study about
positioning accuracy (see below). We could take elliptical trajectories to define another
background configuration, but the deviations with respect to these trajectories would not lead
to new significant results in our study of positioning errors
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SATELLITE MOTIONS AND RPS (II)

Relativistic positioning requires four satellites of some Global Navigation Satellite
System

Given the angles θ and φ, the third angle αA(τ) may be calculated for any τ . From
these three angles, the satellite inertial coordinates (x1, x2, x3, x4) may be easily
found (see N. Puchades & D. Sáez, Astrophys. Space Sci, 341, 2012, 631 ) for any
proper time (satellite world line). Uncertainties in this line –for one or various satellites–
are responsible for the most important positioning errors

In relativistic positioning, the four satellites must send codified signal which reach the
user (receptor) at the same time. These signals contain the proper times
(τ1, τ2, τ3, τ4) of the four satellites when they were emitted. These proper times are
called EMISSION COORDINATES

SATELLITE WORLD LINES IN THE ALMOST INERTIAL REFERENCE ⊕ EMISSION
COORDINATES =====> USER INERTIAL COORDINATES (POSITIONING)
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FROM INERTIAL TO EMISSION COORDINATES

FROM xα
≡ (x, y, z, t) TO (τA

≡ τ1, τ2, τ3, τ4)
It is assumed that photons move in the Minkowski space-time, whose metric has the
covariant components ηαβ . This approach is good enough for us

Since photons follow null geodesics from emission to reception, the following algebraic
equations must be satisfied:

ηαβ [xα − xα
A(τA)][xβ − xβ

A(τA)] = 0 . (1)

These four equations must be NUMERICALLY solved to get the four emission coordinates
τA, where index A numerates the satellites.

The four proper times are the unknowns in the system (1), which may be easily solved by
using the well known Newton-Raphson method. A code has been designed to implement this
method. It uses multiple precision. Appropriate tests have been performed

Since the satellite world lines are known, functions xα
A(τA) may be calculated for any set of

proper times τ1, τ2, τ3, τ4, thus, the left hand side of Eqs. (1) can be computed and,
consequently, the Newton-Raphson method may be applied
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FROM EMISSION TO INERTIAL COORDINATES

FROM (τA
≡ τ1, τ2, τ3, τ4) TO xα

≡ (x, y, z, t)
Given four emission coordinates τA, Eqs. (1) could be numerically solved to get the
unknowns xα, that is to say, the inertial coordinates; however, this numerical method is not
used. It is better the use of an analytical formula giving xα in terms of τA, which is due to B.
Coll, J.J. Ferrando, & J.A. Morales-Lladosa (Class. Quantum Grav., 27, 2010, 065013)

The analytical formula is preferable because of the following reasons:

The numerical method based on Eqs. (1) is more time consuming

The analytical formulation of the problem allows us a systematic and clear discussion
of the bifurcation problem, and also a study of the positioning errors close to situations
of vanishing Jacobian

The analytical formula involves the function χ2 and the discriminant ∆. These quantities may
be calculated by using the satellite world lines and the emission coordinates. They are
defined in the above paper by Coll, et al.
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SOME PREVIOUS THEORETICAL RESULTS

By using the analytical formula giving the inertial coordinates from the emission ones, and
some basic relations of Minkowski space-time, the following conclusions have been
previously obtained

for χ2 ≤ 0, there is only a positioning (past-like) solution

for χ2 > 0 there are two positioning solutions (bifurcation); namely, there are two sets
of inertial coordinates (two physical real receivers) associated to the same emission
coordinates (τ1, τ2, τ3, τ4)

the Jacobian J of the transformation giving the emission coordinates in terms of the
inertial ones vanishes if and only if the discriminant ∆ vanishes

the Jacobian J may only vanish if χ2 > 0; namely, in the region of double positioning

The Jacobian J may only vanish if the lines of sight –at emission times– of the four
satellites belong to the same cone)

These conclusions are basic for the numerical estimates and discussions presented in next
slides. In particular, the fifth item may be used to reject any set of four satellites leading to
some point of vanishing Jacobian close to a certain user. Around these points with J = 0,
positioning errors are very large
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CONFIGURATIONS WITH J = 0

The user (in O) and the satellites 1, 2, and 3 generate a cone, α1 is the cone angle, and α4

is the angle between the line of sight of satellite 4 and the cone axis. This satellite is on the
cone if and only if α1 = α4. In this case the Jacobian vanishes at O
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REGION STRUCTURE ANALYSIS

3D sections with t = constant are considered. Point E is an arbitrary center. Its distance to
the origin O is the Earth radius. 3072 directions starting from E cover the 3D sections. Along
each direction our study is restricted to 0 < L < Lmax = 105 Km. We look for the zeros of
χ2 and J . Quantity J only may vanish in the segments where χ2 > 0, which are limited by

the first and second or by the third and fourth χ2-zeros
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REPRESENTATION TECHNIQUES

HEALPIX PIXELISATION(Hierarchical, Equal Area, and iso-Latitude PIXelisation)

MOLLWEIDE PROJECTION

Our maps have 3072 equal area pixels. This area is 64 times the mean angular area of the
full Moon
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SPATIAL DISTRIBUTION OF JACOBIAN VALUES (I)

(a) (b)

Galileo satellites 2, 5, 20 and 23, for L < 105 Km.

HEALPIX-MOLLWIDE representations with 3072 pixels. Distances are given in Km.

In panels (a) and (b), the color bar measures the distance, LJ , from E to the closest
point where the Jacobian takes on the value displayed in the top.

In panel (a), we see that the Jacobian vanishes (big positioning errors) at distances LJ

larger than ∼ 2 × 104 Km. Gray pixels correspond to directions with J 6= 0.

From panel (b), it follows that the condition J = 0,2 is satisfied for LJ values a little
smaller than those of panel (a) (J = 0).
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SPATIAL DISTRIBUTION OF JACOBIAN VALUES (II)

(c) (d)

Same as in previous slide for J = 0,6 [panel (c)] and J = 1,0 [panel (d)].

By comparing panels (b) and (c), it follows that the condition J = 0,6 [panel (c)] is
satisfied for LJ values smaller than those of panel (b) (J = 0,2). In the region where
J ∼ 0,6, positioning errors are expected to be small enough.

In the region where J ∼ 1,0, positioning errors are expected to be better;
nevertheless, panel (d) shows an extended gray region corresponding to directions
whose J values are always smaller than 1,0
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SPATIAL DISTRIBUTION OF JACOBIAN VALUES (III)

(e) (f)

Same as in the two last slides for J = 1,4 [panel (e)] and J = 1,7 [panel (f)]

Panels (d), (e) and (f) show that, as J increases, the area of the gray region grows,
which means that the directions containing J values greater than 1.0 are restricted to
cover small areas; in other words, these directions become more and more scarce

From panels (e) and (f), it follows that J values in the interval (1,4, 1,7) appear –in
scarce directions– at LJ distances greater than 1,9 × 104 Km. In most directions, the
Jacobian values are well below 1,0 for similar distances to point E.

No directions with |J | greater than about 2.0 have been found in this case.
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POSITIONING ERRORS: THEORY (I)

The background world lines of the satellites are known circumferences yα = xα
A(τA)

Given the inertial coordinate xα of an user, the above circumferences, Eqs. (1), the
Newton-Raphson method, and multiple precision may be used to find the emission
coordinates τ1, τ2, τ3, τ4 with very high accuracy.

Finally, the inertial coordinates xα may be recovered from the emission ones –with very high
accuracy– by using the analytical solution found by Coll, Ferrando, & Morales-Lladosa. This
is a severe test for our codes, which must recover the expected number of figures

Let us now suppose that there are uncertainties in the satellite world lines, whose equations
are yα = xα

A(τA) + ξα
A, where ξα

A are deviations with respect to the background world lines.

Then, new inertial coordinates xα + ∆(xα) may be obtained, from the emission ones τA

(whose observational values cannot be changed), the perturbed world lines
yα = xα

A(τA) + ξα
A, and the Coll et al. analytical solution.

Quantity ∆d = [∆2(x1) + ∆2(x2) + ∆2(x3)]1/2 is a good estimator of the positioning errors
produced by the ξα

A uncertainties in the satellite motions.
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POSITIONING ERRORS: THEORY (II)

We have taken intervals of 200 Km having zeros of J . Each interval corresponds to a
certain direction. The estimator ∆d has been calculated in many points around J = 0.

In order to do that, random deviations ξα
A have been generated around each satellite (with a

maximum amplitude of 1 m). These random deviations have been used in each point of the
200 Km interval where quantity ∆d has been calculated.
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POSITIONING ERRORS: NUMERICAL CALCULATIONS

(g) (h) (i)

A segment of 200 Km where J vanishes

panel (g) displays the point where J vanishes

Panel (h) shows that positioning errors strongly grow close to the J = 0 point

From panel (i), it follows that J∆d vanishes at the same point as J .
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POSITIONING ERRORS FOR L > 105 Km

It is assumed that the errors in the position of the GALILEO satellites have an
amplitude of 1 m.

The two lines correspond to different observation directions. The errors quickly grow as
the distance L to point E increases

For L = 4 × 105 Km, the positioning errors become as large as ∼ 2 Km.

For a more realistic amplitude of ∼ 10 m in the GALILEO satellite position
uncertainties, the positioning errors – for L = 4 × 105 Km – become as large as
∼ 20 Km.
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NAVIGATION IN THE SOLAR SYSTEM: PULSARS (1)

Errors close to 20 km at a distance from Earth of ∼ 4 × 105 Km (GALILEO
expectations) are similar to the positioning errors expected for pulsar navigation (in the
solar system). Hence, we may conclude that, for distances greater than the mean
distance Earth-Moon, we should not use satellite constellations. Pulsars might be an
advantageous alternative.

WE FIRST REPLACE FOUR PULSARS BY FOUR IDEAL SATELLITES
FORECASTING THEIR PROPER TIMES. THUS, THE SAME METHODS AS IN
GNNSs (GALILEO, GPS, AND SO ON) MAY BE USED

It does not matter that we are dealing with an ideal satellite configuration, which may
not be realized in practice. Anyway, some conclusions based on this unrealistic
configuration strongly suggest some conditions, which should be satisfied by realistic
designs of pulsar based positioning

In the case of pulsars, it is frequent to work in an almost inertial reference centered in
the solar system barycenter. We also use this reference, in which, the satellite (pulsar)
world lines must be known. Uncertainties in these lines would lead to positioning errors
as it has been emphasized above
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NAVIGATION IN THE SOLAR SYSTEM: PULSARS (2)

In a first step, pulsars (satellites) are considered at rest in our system of reference and,
consequently, the world line of each satellite is fully defined by its two angular
coordinates and its distance to the barycenter. In the absence of uncertainties in these
three coordinates, positioning would be exact.

The angular pulsar coordinates have been chosen in such a way that the lines of sight
point towards the white pixels. Evidently, these pulsars are not in the same cone
(J 6= 0); hence, the estimated positioning errors are not large due to a bad choice of
pulsars with J = 0.

Pulsar distances to the barycenter have been taken to be 0.98, 0.60, 0.89, and 0.50
Kpc.
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NAVIGATION IN THE SOLAR SYSTEM: PULSARS (3)

Users, Q, have been assumed to be inside a sphere, S, centered in the solar system
barycenter with radius 50 A.U.

As a test, we have taken the inertial coordinates of an user Q, to compute its emission
coordinates by using the Newton-Raphson method and, then, the initial inertial
coordinates have been recovered with the analytical formula. It has been verified that a
large number of figures is recovered; namely, it has been proved that code precisions
are high enough.
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NAVIGATION WITH PULSARS: ERRORS

Uncertainties in the pulsar (satellite) world lines have been now considered. It has
been assumed that pulsar coordinates have errors with amplitudes of 107 Km. The
corresponding positioning errors have been calculated as for GNSSs.

Since the size of the sphere S (100 A.U. ≃ 1,5 × 1010 Km) is much smaller than the
distance to the pulsars, which is of the order of 1 Kpc ≃ 3 × 1016 Km, positioning
errors are very similar for all the users inside S. They have many common figures.

If the position of an user with respect to the barycentric reference is known, e.g., an
user on Earth, we may find its position by using pulsars, and the difference between
both positions is the main common part, Ξ, of the positioning errors inside S.

If the positioning errors are corrected inside S by subtracting the main common part Ξ

everywhere, we get residual errors of the order of 10 Km, which is the order of
magnitude of the errors estimated –in the technical literature– for positioning based on
pulses emitted from X-ray pulsars

Recently, the distance to PSR J2222-0137 has been measured with the greatest
accuracy reached until now (Deller et al., 2013). The relative error is ∼ 3 × 10−3 and
the absolute one is of the order of 1013 Km. These large errors in the pulsar world
lines lead to inadmissible positioning errors of the order of 107 Km ∼ 0,1 A.U.
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GENERAL DISCUSSION I

In our approach, satellites move in Schwarzschild space-time, so the effect of the
Earth gravitational field on the clocks is taken into account, e.g., GPS clocks run more
rapid than clocks at rest on Earth by about 38.4 microseconds per day. It has been
verified and taken into account.

However, it is assumed that photons move in Minkowski space-time. This procedure is
good enough since the Earth gravitational field produces a very small effect on
photons while they travel from the satellites to the receiver. The distance traveled is not
large and the gravitational field is weak.

The emission coordinates may be obtained from the inertial ones by using accurate
numerical codes based on the Newton-Raphson method.

The inertial coordinates can be found from the emission ones by using the analytic
transformation law of Coll, Ferrando & Morales-Lladosa.

Small uncertainties in the satellite world lines produce large positioning errors if J ≃ 0.

If possible, the four emitters (satellites of the chosen GNSS) must be selected to avoid
both bifurcation and situations with J ≃ 0.
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GENERAL DISCUSSION II

Positioning on Earth surface always correspond to χ2 ≤ 0, and the Jacobian does not
vanish in this case. Nevertheless, our study applies to the case of objects located away
from Earth surface. For distances to E smaller than ∼ 2 × 104 Km, positioning errors
are admissible since J takes on appropriate non vanishing values.

At distances close to ∼ 4 × 105 Km, Galileo satellites lead to positioning errors as
greater as ∼ 20 Km in some directions. For greater distances, pulsar based
positioning would be advantageous.

Pulsar based relativistic positioning in the solar system must be strictly local, without
considering the pulsar distances as basic elements for location. If these distances are
only used to calculate corrections to a rather well estimated position, the errors in the
corrections (due to uncertainties in pulsar distances) must be evaluated in each case.

In Feng et al., J Zhejiang Univ-Sci C (Comput and Electron), 14, 2013, 133, A local
non relativistic method for navigation with pulsars is described.

In S.I. Sheikh et al., Journal of Guidance, Control, and Dynamics, 29, 2006, 49, pulsar
distances are involved in some formulas. The procedure may be right, but it requires a
detailed analysis according to previous comments
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