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Euclidean path integral, complex action problem and dual representation

• Vacuum expectation values with Feynman’s path integral:

〈O〉 =
1

Z

∫
D[ψ] e−S[ψ] O[ψ]

• In a Monte Carlo simulation observables are computed as averages over
field configurations ψ distributed according to

P [ψ] =
1

Z
e−S[ψ]

• For finite chemical potential µ the action S[ψ] is complex and the Boltz-
mann factor cannot be used as probability weight in a stochastic process.

Rewriting a system in terms of new variables where only real and positive
terms appear in the partition sum could overcome the complex action problem.



Charged scalar field



Charged scalar field

• Continuum action:

S =

∫
d 4x
[
− φ(x)∗4φ(x) + [m2 − µ2] |φ(x)|2 + λ |φ(x)|4

]
+ iµN

• Action on the lattice:

S =
∑
x

[
κ |φx |2 + λ |φx |4 −

3∑
j=1

(
φ?x φx+ĵ + φ?x φx−ĵ

)
− φ?x e

−µ φx+4̂ − φ?x e
µ φx−4̂

]

κ = 8 +m2



Dual representation – I

• Expand the individual nearest neighbor terms:

e e
−µ δν,4 φ?x φx+bν =

∞∑
jx,ν=0

(e−µ δν,4)jx,ν

(jx,ν)!
(φx)

jx,ν (φ?x+ν̂)
jx,ν

e e
µ δν,4 φ?x φx−bν =

∞∑
jx,ν=0

(eµ δν,4 )jx,ν

(jx,ν)!
(φx)

jx,ν (φ?x−ν̂)
jx,ν

• Idea: Use the jx,ν and jx,ν as the new degrees of freedom.

• Remaining φ-integrals at a site x :∫
C

d φx e−κ|φx|
2−λ|φx|4 (φx)

F (j,j) (φ?x)
F (j,j)

Fx(j, j), F x(j, j) ∈ N0 are linear combinations of the j and j variables
attached to the site x. They correspond to the total j, j-flux at x.



Dual representation – II

• Using φx = r eiθ the integrals at a site x read:∫
C

d φx e−κ|φx|
2−λ|φx|4 (φx)

F (j,j) (φ?x)
F (j,j) =∫ ∞

0
dr r Fx +F x + 1 e−κr

2−λr4
∫ π

−π
dθ e iθ [Fx−F x] = I(Fx + F x) δ(Fx − F x)

• At every site there is a weight factor I(Fx + F x) and a constraint.

• The constraint δ(Fx−F x) forces the total flux Fx−F x at x to vanish.

• The structure can be simplified by using linear combinations kx,ν ∈ Z
and lx,ν ∈ N0 of the original variables jx,ν and jx,ν.

• Only the kx,ν are subject to constraints.



Dual representation – III (final form)

• The original partition function is mapped exactly to a sum over
configurations of the dual variables kx,ν ∈ Z and lx,ν ∈ N0 :

Z =
∑
{k,l}

W(k, l) C(k)

• Weight factor (real and positive):

W(k, l) =
∏
x,ν

1

(|kx,ν | +lx,ν)! lx,ν!

×
∏
x

e−µkx,4 I
(∑

ν

[|kx,ν | + |kx−ν̂,ν | +2(lx,ν + lx−ν̂,ν)]
)

• Constraint (only for k-variables):

C(k) =
∏
x

δ
(∑

ν

[ kx,ν − kx−ν̂,ν ]
)



Admissible configurations are loops:

• Constraint from the integration over the U(1) phases:

∀ x : fx =
∑
ν

[ kx,ν − kx−ν̂,ν ] = 0

• Admissible configurations of dual variables are oriented loops of flux:

• Chemical potential gives different weight to forward and backward tem-
poral flux. Particle number = net winding number of k-flux.



Coupling gauge fields

• The nearest neighbor terms can be gauged:

e e
−µ δν,4 φ?x Uν,x φx+bν =

∞∑
jx,ν=0

(e−µ δν,4)jx,ν

(jx,ν)!
(Uν,x )jx,ν (φx)

jx,ν (φ?x+ν̂)
jx,ν

• Additional weight factor in the final form of the dual representation:∏
x,ν

(Ux,ν)
kx,ν

• Loops are dressed with gauge transporters.



Scalar QED / U(1) gauge Higgs model with 2 flavors



Scalar QED / U(1) gauge Higgs model with 2 flavors

Continuum action:

S =

∫
d 4x
{
− φ(x)∗

[
∂ν + iAν(x)

][
∂ν + iAν(x)

]
φ(x)

+ [m2
φ − µ2

φ] |φ(x)|2 + λφ |φ(x)|4
}

+ iµφNφ

+

∫
d 4x
{
− χ(x)∗

[
∂ν − iAν(x)

][
∂ν − iAν(x)

]
χ(x)

+ [m2
χ − µ2

χ] |χ(x)|2 + λχ |χ(x)|4
}

+ iµχNχ

+
1

4

∫
d 4xFρσ Fρσ



Adding dynamical gauge fields in the dual representation

• Two copies of the loop sum integrated over gauge fields:

Z =
∑
{k,l,k,l}

Wφ(k, l)Wχ(k, l) C(k) C(k)

×
∫
D[U ] exp

(
β
∑
x,ρ<σ

Re Ux,ρ Ux+ρ̂,σ U
?
x+σ̂,ρ U

?
x,σ

)∏
x,ν

(Ux,ν)
kx,ν−kx,ν

• Expansion of the Boltzmann factor ....

eβ Ux,ρ Ux+ρ̂,σ U
?
x+σ̂,ρ U

?
x,σ =

∑
px,ρσ

β px,ρσ

(px,ρσ)!

[
Ux,ρ Ux+ρ̂,σ U

?
x+σ̂,ρ U

?
x,σ

] px,ρσ
... leads to new integer valued dual variables px,ρσ on the plaquettes.

• Integrating the gauge fields dUx,σ gives rise to new constraints that con-
nect px,ρσ, kx,ν and kx,ν at each link.



Dual form of the partition function:

The original partition sum is mapped exactly to a sum over loop and surface
configurations:

Z =
∑

{p,k,l,k,l}

WG(p)Wφ(k, l)Wχ(k, l) CL(p, k, k) CS(k) CS(k)

WG(p) : plaquette-based weight factor for gauge variables p
Wχ(k, l),Wφ(k, l), : link-based weight factor for matter variables k, l, k, l
CL(p, k, k) : link-based constraint ⇒ gauge surfaces
CS(k), CS(k) : site-based constraint ⇒ matter loops

CL[p, k, k] =
∏
x,ν

δ

( ∑
ρ:ν<ρ

[px,νρ − px−ρ̂,νρ]−
∑
ρ:ν>ρ

[px,ρν − px−ρ̂,ρν] + kx,ν − kx,ν

)

CS[k] =
∏
x

δ

(
4∑

ν=1

[kx−ν̂,ν − kx,ν]

)



Suitable worm algorithms



An admissible configuration:

spaceti
m

e

Chemical potential favors flux forward in time.



Generalized worm algorithm for gauge Higgs systems:

Worm starts by inserting a unit of matter flux. Adding segments transports
both the site and link defects across the lattice ....
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Generalized worm algorithm for gauge Higgs systems
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Algorithm was tested in the 1-flavor U(1) model and in a Z3 gauge Higgs
model at finite µ. Clearly outperforms local dual update.



Bulk observables

• Bulk observables are obtained as derivatives of the free energy with
respect to the parameters.

• They have the form of averages and fluctuations of the dual variables.

• Observables related to the particle number:

n =
T

V

∂ lnZ

∂µ
=

1

N 3
s Nt

∂ lnZ

∂µ
, χn =

∂ n

∂µ

• Observables related to field expectation values:

〈|φ |2〉 =
−T
V

∂ lnZ

∂κ
=
−1

N 3
s Nt

∂ lnZ

∂κ
, χφ =

−∂〈|φ |2〉
∂κ

• Dual forms:

n =
1

N 3
s Nt

〈∑
x

kx,4

〉
, 〈|φ |2〉 =

1

N 3
s Nt

〈∑
x

I(fx + 2)

I(fx)

〉



Checks - I

Simulation with dual variables can be checked with high precision:
(here for β =∞)
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Checks - II

Comparison to conventional simulation:
(µφ = µχ = 0, κφ = κχ = 9.0, λφ = λχ = 0.0)
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Phase diagram



Bulk observables at µ = 0

Using: κφ = κχ = M,λφ = λχ = 1.0
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Phase diagram at µ = 0
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Turning on chemical potential

A point in the confining phase: κφ = κχ = 5.73, λφ = λχ = 1.0, β = 0.75
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Silver blaze region that ends in a strong first order
transition leading back into the Higgs phase.



Turning on chemical potential

A point in the Higgs phase: κφ = κχ = 5.325, λφ = λχ = 1.0, β = 0.85
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Spectroscopy with dual variables



Spectroscopy for the charged scalar at finite density

• Zero momentum propagator

C(t) =
∑
~x

〈φ~x,t φ∗~0,0 〉 ∝ e−E0t

〈φy φ∗z 〉 =
1

Z

∫
D[φ] e−S φy φ

∗
z =

Zy,z
Z

• Dual representation of the partition sum Zy,z with two insertions:

Zy,z =
∑
{k,l}

∏
x,ν

1

(|kx,ν | +lx,ν)! lx,ν!
∏
x

δ
(∑

ν

[ kx,ν − kx−ν̂,ν ]− δx,y + δy,z

)
×
∏
x

e−µkx,4 I
(∑

ν

[|kx,ν | + |kx−ν̂,ν | +2(lx,ν + lx−ν̂,ν)] + δx,y + δy,z

)

• Admissible configurations in Zy,z :

Closed loops of flux plus an open string of flux connecting y and z.



Worm strategy for correlators

• Since Zy,z consists of closed loop plus a single open string, every step of
the worm corresponds to an admissible configuration for some Zu,v.

• In our propagators we project to zero momentum, i.e., the spatial lattice
indices are summed.

• To compute C(t) one simply evaluates the temporal distance t of head
and tail of the worm at every step and C(t) is obtained as a histogram.



What do we expect? Analysis of the free case in the continuum.

• Propagator in the continuum:

C(t) =

∫
dp4

2π

eip4t

[p4 − i(m− µ)][p4 + i(m+ µ)]

• Asymmetry between forward and backward propagation:

C(t) ∝
{

e−(m−µ)t for t > 0

e+(m+µ)t for t < 0

−i(m

−µ

)+µ

−

Imp
4

Re p
4

)i(m



Test of free propagators against (lattice) Fourier transformation
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Excellent agreement indicates that the finite density propagators computed
from the dual representation are under control. (163 × 100, m = 1, λ = 0)



Propagators at non zero coupling
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Asymmetric propagation for µ < µc ' 0.17. Condensation (= constant
propagator) for µ above µc. (163 × 100, κ = 7.44, λ = 1)



Summary:

• Considerable progress was made towards rewriting several systems in rep-
resentations where the partition sum has only real and positive terms.

• Dual degrees of freedom are surfaces for gauge fields and loops for matter.

• Constraints for dual variables can be handled with worm-type algorithms.

• Interesting new algorithmic options when surfaces have boundaries.

• Spectroscopy is under control.

• Systems may serve as solved test cases for other approaches.


