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QCD phase diagram

(from bnl.gov)

Important implications in heavy ion collisions, in cosmology and in
physics of compact stars.
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QCD at non-zero temperature and density

Lattice is the main non-perturbative tool for the investigation of
the QCD phase diagram

Non-zero temperature: T = 1
Nτa(β) , β = 2N

g2

Non-zero density: sign problem!

Importance sampling requires positive weights, but in

Z (T , µ) =

∫
[dU] e−SG[U] det[M(µ)]

the fermionic determinant det[M(µ)] is complex for µ 6= 0 in
SU(3).

Exceptions: • imaginary chemical potential: µ = iµI
• SU(2) or two-color QCD
• isospin chemical potential: µu = −µd



Ways around I

Perform simulations at µ=0 and take advantage of physical
fluctuations in the thermal ensemble for extracting information at
(small) non-zero µ, after suitable reweighting

[I.M. Barbour et al., 1997]
[Z. Fodor, S.D. Katz, 2002 →]

Taylor-expand in µ the v.e.v. of interest and calculate the
coefficients of the expansion by numerical simulations at µ = 0

[S.A. Gottlieb, 1988]
[QCD-TARO coll., 2001]

[C.R. Allton et al., 2002-2003-2005]
[R.V. Gavai, S. Gupta, 2003-2005]

[S. Ejiri et al., 2006]
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Ways around II

Build canonical partition functions by Fourier transform of the
grand canonical function at imaginary chemical potential

[A. Hasenfratz, D. Toussaint, 1992]
[M.G. Alford, A. Kapustin, F. Wilczek, 1999]

[P. de Forcrand, S. Kratochvila, 2004-2005-2006]
[A. Alexandru et al., 2005]

Reorder the path integral representation of the partition function,
by first calculating expectation values with constrained
parameters and then weighting over the density of states

[G. Bhanot et al., 1987]
[M. Karliner et al., 1988]

[A. Gocksch, 1988]
[V. Azcoiti, G. Di Carlo, A.F. Grillo, 1990]

[X.-Q. Luo, 2001]
[J. Ambjorn et al., 2002]

[Z. Fodor, S.D. Katz, C. Schmidt, 2005-2007]
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The method of analytic continuation

Perform Monte Carlo numerical simulations at some selected
imaginary values of the chemical potential, µ = iµI , thus getting
data points with their statistical uncertainties
Interpolate the results obtained by a suitable function of µ2

I

Analytically continue to real chemical potentials: µI → −iµ

A bit of history:

idea of formulating a theory at imaginary chemical potential
[M.G. Alford, A. Kapustin, F. Wilczek, 1999]

test of effectiveness in strong-coupling QCD [M.P. Lombardo, 2000]

thereafter, a lot of applications to QCD and tests in QCD-like
theories and in spin models



Applications in QCD:
nf = 2 staggered [Ph. de Forcrand, O. Philipsen, 2002]

[M. D’Elia, F. Sanfilippo, 2009]
nf = 3 staggered [Ph. de Forcrand, O. Philipsen, 2003]
nf = 4 staggered [M. D’Elia, M.P. Lombardo, 2003-2004]

[V. Azcoiti et al., 2004-2005]
[M. D’Elia, F. Di Renzo, M.P. Lombardo, 2007]

nf = 2 + 1 staggered [Ph. de Forcrand, O. Philipsen, 2007]

nf = 2 Wilson [L.-K. Wu, X.-Q. Luo, H.-S. Chen, 2007]
[K. Nagata, A. Nakamura, 2011]

nf = 4 Wilson [H.-S. Chen, X.-Q. Luo, 2005]

Tests:
3d SU(3) + adj. Higgs [A. Hart, M. Laine, O. Philipsen, 2001]
SU(2), nf = 8 staggered [P. Giudice, A.P., 2004]
SU(3), nf = 8 staggered [S. Conradi, M. D’Elia, 2007]
SU(2) via chiral RMT model [Y. Shinno, H. Yoneyama, 2009]

3d 3-state Potts model [S. Kim et al., 2005]
2d Gross-Neveu at large N [F. Karbstein, M. Thies, 2006]



Drawbacks
1 a practical one: Monte Carlo simulations yield data points with

statistical uncertainties at fixed values of the imaginary chemical
potential; the interpolation of these points is not unambiguous

2 a principle one: the theory at imaginary chemical potential has its
own non-analyticities and is periodic in the variable θ = µI/T
(period 2π/Nc) [A. Roberge, N. Weiss, 1986]

⇒ the region effectively available for Monte Carlo simulations is
limited by the condition µI/T . 1

Roberge-Weiss

The combination of these two drawbacks implies that the analytic
continuation is expected to work for real chemical potentials
satisfying µR/T . 1.
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Analytic continuation of the critical line

β

µ̂I

µ̂R

π
NNτ

≡ µ̂RW
3π

NNτ

βc

µ̂c

βE

µ̂I ≡ aµI , µ̂R ≡ aµR , T = 1
Nτa

The most important application of the method is the analytic
continuation of the critical line itself.



Strategy

locate the (pseudo-)critical β’s for several fixed values of the
imaginary chemical potential, by looking for peaks in the
susceptibilities of a given observable

interpolate the critical β’s obtained at imaginary chemical
potential with an analytic function of µ2, to be then extrapolated
to real chemical potential

if the theory is free of the sign problem, compare the
extrapolated curve with the determinations of the critical β’s at
real chemical potential.

Observables: chiral condensate, Polyakov loop, plaquette.



Investigations in QCD-like theories

Early approaches in QCD: pseudocritical line βc(µ2) well
interpolated by βc(µ2) = βc(0) + Aµ2, for µ = iµI , at small µI

[Ph. de Forcrand, O. Philipsen, 2002-2003]
[M. D’Elia, M.P. Lombardo, 2003-2004]

Later on, systematic investigations aimed at extending the
domain of reliability of the method
- wider range of µI values in numerical simulations
- larger statistics
- several trial interpolations

[P. Cea, L. Cosmai, M. D’Elia, A.P. et al, 2006→]

Testfield: QCD-like theories (two-color QCD and finite isospin QCD)
free of the sign problem, where the analytic continuation can be
compared with Monte Carlo determinations obtained directly at real
chemical potentials.
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SU(2), nf = 8 staggered, 163 × 4 lattice, am = 0.07
[P. Cea, L. Cosmai, M. D’Elia, A.P., Phys. Rev. D77 (2008) 051501]
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(aµ)2
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βc

A+B(aµ)
2
,    µmax=0

from the chiral condensate

No room for fitting functions different from A + Bµ̂2 at µ2 < 0;
extrapolation fails!



SU(2), nf = 8 staggered, 163 × 4 lattice, am = 0.07
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A global fit with A0 + A1(aµ)2 + A2(aµ)4 + A3(aµ)6 works nicely;
remark: all Ai > 0.
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Finite isospin SU(3), nf = 8 staggered, 83 × 4 lattice, am=0.1
[P. Cea, L. Cosmai, M. D’Elia, C. Manneschi, A.P., Phys. Rev. D80 (2009) 034501]
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SU(3) finite isospin 

8
3
x4 

polynomial order µ6 

χ2/d.o.f.=0.88

Deviations from the linear behavior in µ2 are evident at µ2 < 0. At
least a 3rd order polynomial in µ2 is needed; extrapolation OK.
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Predictivity is increased if the coefficient of µ2 in the 3rd order
polynomial in µ2 is constrained by a linear fit in the region near µ = 0.
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SU(3) with nf = 4

SU(3), nf = 4 staggered, 123 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., Phys. Rev. D81 (2010) 094502]

Setup:

Φ-hybrid Monte Carlo algorithm, with dt=0.01
[S.A. Gottlieb et al., 1987]

statistics: 10k trajectories of 1 Molecular Dynamics unit
(up to 100k for a few β’s near βc(µ2))

βc(µ2) determined as the position of the peak in the susceptibility
of the (real part of) the Polyakov loop

simulations on apeNEXT and on the PC cluster of the INFN Bari
Computer Center for Science



SU(3), nf = 4 staggered, 123 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., Phys. Rev. D81 (2010) 094502]
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Deviations from the linear behavior in µ2 are seen
Also a plain 3rd order polynomial in µ2 works well
It is hard to see differences among the successful interpolations



SU(3), nf = 4 staggered, 123 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., Phys. Rev. D81 (2010) 094502]
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The formal limit Tc → 0 leads to

µc(T = 0) =

√
C
B

Tc(0) = 2.5904(93)Tc(0)



SU(3), nf = 4 staggered, 123 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., Phys. Rev. D81 (2010) 094502]

Extrapolations to positive µ2
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SU(3), nf = 4 staggered, 123 × 4 lattice, am = 0.05
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SU(3) with nf = 2

SU(3), nf = 2 staggered, 163 × 4 lattice, am = 0.05 (mπ ∼ 400 MeV)
[P. Cea, L. Cosmai, M. D’Elia, A.P., F. Sanfilippo, Phys. Rev. D 85 (2012) 094512]

Setup:

rational hybrid Monte Carlo algorithm, with dt=0.01

statistics: 10k trajectories of 1 Molecular Dynamics unit
(up to 100k for the four/five β’s near βc(µ2))

βc(µ2) determined as the position of the peak in the (real part of)
the Polyakov loop

simulations on the PC clusters of the INFN Bari Computer
Center for Science and INFN-Genova



Finite isospin SU(3), nf = 2 staggered, 163 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., F. Sanfilippo, Phys. Rev. D 85 (2012) 094512]
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Deviations from the linear behavior in µ2
iso are seen

Global fit: no even polynomial up to the fourth order works!



Finite isospin SU(3), nf = 2 staggered, 163 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., F. Sanfilippo, Phys. Rev. D 85 (2012) 094512]
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Fit to data at µ2
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ratio (4,2) of polynomials (left) and “physical fit” (right)



Finite isospin SU(3), nf = 2 staggered, 163 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., F. Sanfilippo, Phys. Rev. D 85 (2012) 094512]
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SU(3), nf = 2 staggered, 163 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., F. Sanfilippo, Phys. Rev. D 85 (2012) 094512]
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The formal limit Tc → 0 of the “physical fit” leads to

µc(T = 0) =

√
C
B

Tc(0) = 3.284(65)Tc(0)

[K. Nagata, A. Nakamura, 2011]: 2.73(58)Tc(0) for nf = 2 Wilson.



SU(3), nf = 2 staggered, 163 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., F. Sanfilippo, Phys. Rev. D 85 (2012) 094512]
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SU(3), nf = 2 staggered, 163 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., F. Sanfilippo, Phys. Rev. D 85 (2012) 094512]
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aq = −0.3997(87) , aiso = −0.3606(67)

about 4σ difference!
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Curvatures (cont’d): Rq = −0.515(11) , Riso = −0.465(9)

Riso = −0.426(19) [J.B. Kogut, D.K. Sinclair (2004)]
(inexact R-algorithm and smaller spatial volume)
Rq = −0.500(34) [P. De Forcrand, O. Philipsen (2002)]
(am = 0.025; good agreement→ mild mass dependence)
Rq = −0.38(12) [K. Nagata, A. Nakamura, 2011]
(Wilson fermions)
Rq = −0.792(10) [M. D’Elia, M.P. Lombardo (2003)]
(nf = 4; significant flavor dependence)

Rq−iso =
Rq − Riso

Rq
=

aq − aiso

aq
= 0.098(26)

Large Nc limit
[D. Toublan (2005)] [M. Hanada et al. (2011, 2012)] [A. Armoni, A. Patella (2012)]
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SU(3), nf = 2 staggered, 163 × 4 lattice, am = 0.05
[P. Cea, L. Cosmai, M. D’Elia, A.P., F. Sanfilippo, Phys. Rev. D 85 (2012) 094512]

Order of the phase transition

The order of the RW endpoint may strongly influence the nature
of the pseudocritical line at imaginary µ.

For non-zero quark density the RW endpoint is first order for low
masses, am < 0.043(5).
[C. Bonati, M. D’Elia, G. Cossu, F. Sanfilippo (2011)]

Our mass is larger, therefore we expect (and, actually, verified)
that the pseudocritical line does not become first order when we
approach the RW endpoint along the pseudocritical line at
imaginary µ.

For non-zero isospin density the region of Im(µiso)) is larger and
we could expect that the pseudocritical line at imaginary µiso
becomes first-order before reaching the RW endpoint.
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Conclusions

The study of QCD at imaginary chemical potentials can bring a
lot of information relevant for the region of real chemical
potentials, not only through analytic continuation.

Wrt the critical line
Deviations from the quadratic behavior in µ of the pseudocritical
couplings at negative µ2 are clearly visible in QCD with nf = 2 and
4.

There are, however, several kinds of functions able to interpolate
them, leading to extrapolations which diverge from each other at
large real µ.

The situation is quite similar in nf = 2 QCD with non-zero isospin
density. The curvature of the critical line at µ = 0 is less
pronounced here, than in nf = 2 QCD with finite baryon density.



Outlook

Get closer to the continuum ...

MILC code + chemical potential

HISQ/tree action on 323 × 8, 403 × 8, 483 × 8

... and to physics:

2+1 flavors, mu,d/ms=0.05 on the LCP



QCD with imaginary chemical potential

SU(Nc) gauge theory with imaginary µ

µ→ iν, Z (θ) = Tr
[
e−βH+iθN̂

]
θ = βν , β =

1
T

Free quarks (N = 0, 1, 2, . . .) −→ Z (θ) periodic with 2π
Color singlets (N multiple of Nc)→ Z (θ) periodic with 2π/Nc

[A. Roberge, N. Weiss, 1986] have shown that
Z (θ) is always periodic with 2π/Nc



Roberge-Weiss’ proof I

Z (θ) =

∫
DψDψDAµ exp

{
−
∫

d4x
[
ψ(γD −m)ψ − 1

4
F 2 − i

θ

β
ψ†ψ

]}
time interval running from τ = 0 to τ = β
periodic b.c. for A, anti-periodic b.c. for ψ

change of variables I

ψ(x , τ) −→ exp(iτθ/β) ψ(x , τ)

Z (θ) =

∫
DψDψDAµ exp

{
−
∫

d4x
[
ψ(γD −m)ψ − 1

4
F 2
]}

with ψ(x , β) = −exp(iθ)ψ(x ,0)



Roberge-Weiss’ proof II

change of variables II

ψ −→ Uψ , A −→ UAU−1 − i
g

(∂U)U−1

U(x , τ) ∈ SU(Nc), U(x , β) = exp(2πik/Nc) U(x ,0), k integer
i.e. U periodic up to an element of Z(Nc)

Z (θ) =

∫
DψDψDAµ exp

{
−
∫

d4x
[
ψ(γD −m)ψ − 1

4
F 2
]}

with ψ(x , β) = −exp(2πik/Nc) exp(iθ)ψ(x ,0)

i.e. Z (θ) = Z (θ + 2πk/Nc)



QCD with imaginary chemical potential

SU(Nc) gauge theory with imaginary µ

µ→ iν, Z (θ) = Tr
[
e−βH+iθN̂

]
θ = βν , β =

1
T

Free quarks (N = 0, 1, 2, . . .) −→ Z (θ) periodic with 2π
Color singlets (N multiple of Nc)→ Z (θ) periodic with 2π/Nc

[A. Roberge, N. Weiss, 1986] have shown that
Z (θ) is always periodic with 2π/Nc

F (θ) = − ln Z (θ)/β
T < TE : regular function of θ (tool: hopping parameter expansion)
T > TE : discontinuous function in θ = 2π(k + 1/2)/Nc (tool:
perturbative evaluation of the effective potential for the Wilson line)

Back


	Introduction
	QCD phase diagram
	QCD with non-zero baryon density and the sign problem
	The method of analytic continuation

	Investigations in QCD-like theories free of the sign problem
	Two-color QCD with nf=8
	Finite isospin SU(3) with nf=8

	Application to QCD with nf=4 and nf=2
	SU(3) with nf=4
	Finite isospin SU(3) with nf=2
	SU(3) with nf=2

	Conclusions and Outlook

