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I. Motivation

Wilson Dirac Spectra
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Motivation
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Can we understand this scaling behavior?
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First Order Behavior

1/(2κ)

aµ = 0.008

aµ = 0.010
aµ = 0.013

β = 5.3

β = 5.2
β = 5.1

〈P 〉

3.043.002.962.922.882.842.80
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0.50

0.48

0.46

Plaquette expectation value showing two first order minima.

Farchioni-et-al-0506025
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I. Wilson Dirac Operator

Wilson Dirac Operator

γ5 -Hermiticity

Chiral Lagrangian

ǫ -Expansion
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Wilson Dirac operator

Wilson introduced the Wilson term to eliminate doublers

DW =
1

2
γµ(∇µ + ∇∗

µ) − 1

2
a∇∗

µ∇µ ≡ D +W.

{DW , γ5} 6= 0.

DW = γ5D
†
Wγ5.

Block structure

DW =

(

aA id

id† aB

)

with A† = A, B† = B.

W8a
2

m

D
W

D5 ≡ γ5(DW +m) = D†
5.

A transition to the Aoki phase takes
place when the gap closes, or when m

hits the strip of eigenvalues.

3/2

λ0

ρ (λ)
5

D
5

m
2

(1−(8Wa /m)   )
2/3

Discretization Phase Transitions – p. 9/55



γ5 -Hermiticity

D†
W = γ5DWγ5 ������������������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� Two complex eigenvalues can collide and turn into a pair of real
eigenvalues with opposite chirality. The number of real eigenvalues
does not change under small deformations of the operator.

� Unpaired real eigenvalues cannot move in the complex plane, and
the net chirality is equal to the index of the Dirac operator.

� What is the distribution of the real eigenvalues?

� Diagonalization of DW violates γ5 -Hermiticity. DW can only be

brought in the pseudo-diagonal form





x y

−y x



 .
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Chiral Lagrangian

Chiral Lagrangian for Wilson Fermions

− L =
1

2
mV ΣTr(U + U †) − F 2

π

4
Tr∂µU∂µU

†

−a2VW6[Tr(U + U †)]2 − a2VW7[Tr(U − U †)]2 − a2VW8Tr(U2 + U−2).

Sharpe-Singleton-1998, Rupak-Shoresh-2002, Bär-Rupak-Shoresh-

2004,Damgaard-Splittorff-JV- 2011

� Partition function for fixed index

Zν =

∫

U∈U(Nf )

dUdetνe−
R

d4xL

� For twisted mass fermions the mass term is replaced by

i

2
µV ΣTrτ3(U − U †).
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The ǫ Expansion

Expansion of the chiral Lagrangian with

p ∼ 1

L
, m ∼ 1

V
, λ =

1

V
, a ∼ 1√

V
.

To leading order the partition function factorizes into a zero momentum
part and a nonzero momentum part.

The thermodynamic limit with mV , λV and a2V fixed is known as
the microscopic limit of QCD.

The zero momentum part is equivalent to a random matrix theory with
the same global symmetries.

Although the physical quark mass is not in the microscopic domain,
eigenvalues of the Dirac operator are in the microscopic domain.
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III. Sign of Low Energy Constants

Positivity Requirements

Collective Eigenvalue Fluctuation and Trace Squared
Terms

Signs of Low Energy Constants
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Positivity Requirements

� γ5(DW +m) is Hermitian so that the QCD partition function is
positive definite for an even number of flavors and fixed index.

The corresponding chiral partition function should have the same
positivity requirements. In particular, this is the case in the ǫ domain.

This puts constraints on the parameters of the chiral Lagrangian.
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Mass Dependence of Partition Function

By changing variables U → iU it follows that

Z
χ Nf
ν (0, 0,W8) = (i)Nf νZ

χ Nf
ν (0, 0,−W8).

Positivity for all ν requires W8 > 0. From the small a -expansion of
the partition function one obtains

W8 −W6 −W7 > 0.

Akemann-Damgaard-Splittorff-JV-2010
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Eigenvalue Fluctuations and Low Energy
Constants

� Since the QCD partition function is the average of a determinant,
eigenvalue fluctuations determine the low-energy constants.

� We have seen that the broadening of the Dirac spectrum in the
complex plane determines the value of W8 .

� Which spectral fluctuations are responsible for W6 and W7 ?
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Trace Squared Terms

� Trace squared terms can be linearized at the expense of a
Gaussian integral and then can be added to the mass term.

� This random mass can interpreted in terms collective fluctuations
of Dirac eigenvalues.

� Collective spectral fluctuations must be consistent with the
symmetries of the QCD Dirac operator.
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Collective Eigenvalue Fluctuations andW6

For W6 < 0 we have

e−a2V W6Tr2(U+U−1) ∼
∫

dye−y2/(16V |W6|a
2)− 1

2
yTr(U+U−1)

The partition function can be written as

Z(m;W6,W8) =

∫

dye−y2/16V |W6|a
2

Z(m− y;W6 = 0,W8)

=

∫

dye−y2/a6V |W6|a
2〈
∏

k

(m− y − λk)〉.

A negative W6 therefore corresponds to collective fluctuations of the
strip of eigenvalues.

A positive W6 would correspond to collective eigenvalues fluctuations
in the imaginary direction which is not possible. This suggests that
W6 < 0 . Kieburg-Splittorff-JV-2012
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Collective Spectral Fluctuations of DW
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W6

Wx

Collective fluctuations consistent with complex conjugation.

What is the source of these fluctuations in terms of gauge field
fluctuations? Kieburg-Splittorff-JV-2013
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Collective Fluctuations in Terms of D5

X XXXXX XX X XX

W

W7

6

Collective spectral fluctuations of D5

.
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Signs of Low-Energy Constants

� W8 > 0 independent of the value of W6 and W7 .
Akemann-Damgaard-Splittorf-JV-2010,Hansen-Sharpe-2011

� Positivity of the QCD partition function requires that
W8 −W6 −W7 > 0 .

� Interpretation in terms of eigenvalue fluctuations requires that
W6 < 0 , W7 < 0 .

� Twisted mass Wilson fermions lattice simulations find mPS
0 < mPS

±

m
PS
0

2
− m

PS
±

2
=

16a2(W8 + 2W6)

F 2
π

Münster-2004, Sharpe-Wu-2004

W ′
6 W ′

8

Iwasaki 0.0049(38) –0.0119(17)

tlSym 0.0082(34) –0.0138(22)
Herdoiza-etal-2013

Extrapolation to the chiral limit
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Sign of Low Energy Constants

A consistent picture emerges if

W8 > 0, W6 < 0, W7 < 0,

W8 + 2W6 < 0.

Kieburg-Splittorff-JV-2012,Hansen-Sharpe-2011
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IV. Wilson Random Matrix Theory

Random Matrix Theory

Chiral Symmetry Breaking
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Random Matrix Theory for the Wilson Dirac
Operator

Since the chiral Lagrangian is determined uniquely by symmetries, in
the microscopic domain it also can be obtained from a random matrix
theory with the same symmetries. In the sector of index ν the random
matrix partition function is given by

Zν
Nf

=

∫

dAdBdW detNf (DW +m+ zγ5) P (DW ),

with

DW =





aA C + aD

−C† + aD† aB



 and A† = A, B† = B.

A is a square matrix of size n× n , and B is a square matrix of size
(n+ ν) × (n+ ν) . The matrices C and D are complex n× (n+ ν)

matrices. Damgaard-Splittorff-JV-2010
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Chiral Symmetry Breaking

As a function of a this random matrix ensemble is a transition from the
Chiral Unitary Ensemble to the Unitary Ensemble.

The Chiral Unitary Ensemble is equivalent to QCD in the microscopic
domain with chiral symmetry breaking pattern
U(Nf ) × U(Nf ) → U(Nf )

The Unitary Ensemble is Equivalent to QCD in 3 dimensions with
symmetry breaking pattern U(Nf ) → U(Nf/2) × U(Nf/2) .

For two flavors this gives two massless pions.
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V. Phase Diagram

Mean Field Limit

Aoki Phase

First Order Scenario
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Chiral Lagrangian

Chiral Lagrangian for Wilson Fermions in the microscopic domain

− L =
1

2
mV ΣTr(U + U †)

−a2VW6[Tr(U + U †)]2 − a2VW7[Tr(U − U †)]2 − a2VW8Tr(U2 + U−2).

This is also the Lagrangian for the mean field calculation.

Sharpe-Singleton-1998, Sharpe-Wu-2004, Golterman-Sharpe-Singleton-2005
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Mean Field Limit

U = V





eiθ1 0

0 eiθ2



V −1 Z =

∫

dθ1dθ2 sin2 θ1 − θ2
2

e−S

− S = mV Σ(cos θ1 + cos θ2) − 4a2W6((cos θ1 + cos θ2)
2 + 4a2W7(sin θ1 + sin

−4a2W8(cos
2 θ1 + cos2 θ2).

Normal Phase: cos θ1 = cos θ2 = sign(m) .

Aoki phase: cos θ1 = cos θ2 = mΣ
8a2W8

Because of the Haar measure: sin θ1 = − sin θ2 =
(

1 − (mΣ)2

(8a2W8)2

)1/2
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Aoki Phase

U = cos θ + i sin θV τ3V
†.

If θ 6= 0 , V contains two directions of U than remain massless. This
is the Aoki phase.

The second term gives rise to an isoscalar pseudoscalar condensate.
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First Order Scenario

B

ΦΦ

Φ ΦV(   )V(   )

m

A

Effetive potential for the order parameter. In the first order scenario
(left) there is an effective potential potential between the two minima
while in the usual case the effective potential is only slightly tilted by
the quark mass.

In terms of the chiral Lagrangian a first order scenario takes place if
2W6 +W8 > 0 when there is a potential barrier between the minima
with cos θ1 = cos θ2 = ±1 .
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Phase Diagram

m

8 68a (W +2W )2

1st order Sharpe−Singleton

2n
d 

Aok
i

2nd Aoki

Aoki phase

spinodal

sp
in

od
al

Splittorff-Lattice 2012
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VI. Spectra and Phases

Chiral Condensate

First Order Scenario and Dirac Spectra

Microscopic Spectral Density of DW

Mean Field Calculation of the spectral density

Predictions
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Spectra and Phases

� A phase transition takes place when the gap closes. This happens
when we enter the Aoki phase.

� For the nonhermitian Dirac operator this happens when the cloud
of eigenvalues hits the quark mass.

� The transition to the Aoki phase is continuous.

� How can we understand the first order behavior in terms of
collective fluctuations of Dirac eigenvalues?
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First Order Scenario and Dirac Spectra

2

Σ(   )m

1/V ma

Mass Dependence of the Chi-
ral Condensate in a First Or-
der Scenario (green) and for the
Aoki phase (red).

� Banks-Casher Relation

Σ(m) = lim
1

V

∑

k

2m

λ2
k +m2
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First Order Scenario and Dirac Spectra

� Because the Wilson Dirac operator in neither Hermitian nor
anti-Hermitian its eigenvalues can move.

� Because of the fermion determinant they will be repelled from the
quark mass.

� The finite jump of the Dirac spectrum results in a first order phase
transition.

m 

Minimum A Minimum B

m

The fuzzy string of eigenvalues is repelled from the mass, m , which
results in a first order phase transition.
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Spectral Density of DW

The spectral density of the complex eigenvalues of the Wilson Dirac operator is given by
Kieburg-JV-Zafeiropoulos-2011

ρc(z, z∗) = |z − z∗|2ZNf =−2(z, z∗; a∗)ZNf =2(z, z∗; a8).

For two dynamical quarks with mass m the spectral density is given by

ρNf =2(z, z∗) =
|z − z∗|2(z − m2)(z∗ − m)2ZNf =−2(z, z∗; a8)ZNf =4(m, m, z, z∗.; a8)

ZNf =2(m, m; a8)

-10

0

10

Re z
0

2

4

6

8

Im z
0

5.´10-6

0.00001

0.000015

Kieburg-Splittorf-JV-2012
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Density of Complex Eigenvalues

ρν
c,Nf

(z, z∗, m; a6, a8) =

R

dye
− y2V

16|W6|a2 Zν
Nf

(m − y; 0, a8)ρν
c,Nf =2(z − y, z∗ − y, m − y; 0, a8)

Zν
Nf

(m; a6, a8)

We work this out for mV Σ ≫ 1 and a2WkV ≫ 1 . Then we can use a mean field
approximation. The Dirac spectrum is inside a strip

ρν,MFT
c,Nf =2(z, z∗, m; 0, a8) = θ(8a2

8 − xΣ).

The mean field limit of the partition function is given by

ZMF
2 (m; 0, a8) = e2mV Σ−4V a2

8 + e−2mV Σ−4V a2

8 + θ(8a2
8 − |mΣ|)eV m2Σ2/8a2

8
+4V a2

8 .

Kieburg-Splittorff-JV-2012
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The First Order Scenario at Work

-400 -200 0 200 400

xΣV
0

0.2

0.4
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1

ρ cM
F

N
f=

2(x
,m

,a
6,a

8)

m= +5, a6=i3, a8=3
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1

ρ cM
F

N
f=

2(x
,m

,a
6,a

8)

m= -5, a6=i3, a8=3

Spectral density of Wilson Dirac
operator for m = 5 , a2

6V = −9

, a2
8V = 9 .

Spectral density of Wilson Dirac
operator for m = −5 , a2

6V =

−9 , a2
8V = 9 .

The strip of eigenvalues is repelled from the quark mass. The distance
between the quark mass and the strip of eigenvalues is given by

|m|V − 8(a8 + 2a6)V/Σ.
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Predictions

� Pion mass Sharpe-Singleton-2004, Münster-2004

m2
π =

2|m|Σ − 16(W8 + 2W6)a
2

F 2
π

.

When W8 + 2W6 < 0 we have
a minimum pion mass. This
has been observed in lattice
simulations with twisted mass
fermions. Jansen-etal-2005

high
low

amPCAC
χ

(amPS)2

0.040.030.020.010-0.01-0.02-0.03-0.04

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

The minimum pion mass is O(a) .

� The first order scenario has only been observed for dynamical
Wilson quarks, whereas the Aoki phase has been found both in the
quenched case and in the case with dynamical Wilson quarks.
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IV. Other Phases

� Lattice simulations show the existence of a phase with

〈ψ̄γ5ψ〉 6= 0.

Azcoiti-Di Carlo-Follana-Vaquero-2013

� In terms of eigenvalues of γ5DW it is given by

1

V

〈

∑

k

1

λk

〉

.

� What is the source of the asymmetry in the average Dirac
spectrum?

� Can we reconcile this phase with Wilson chiral perturbation
theory?
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VII. Determining the Low Energy Constants

Exact Results

Comparison to Lattice Data

Simple Relations for the Small a -Limit
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Exact Results

� Low Energy Constants can be obtained by fitting analytical results
to lattice data

� We will use exact results for Dirac spectral to do so:

⋆ Density of complex eigenvalues: ρc(z)

⋆ Density of the right handed modes: ρr(x)

⋆ Density of the left handed modes: ρl(x)

⋆ The chirality distribution: ρχ(x) ≡ ρr(x) − ρl(x)

⋆ The eigenvalue density of γ5DW : ρ5(x)

Damgaard-Splittorff-JV-2010,Akemann-Nagao-2011,Larssen-2012,Kieburg-

JV-Zafeiropoulos-2011,Splittorff-JV-2011,Kieburg-Splittorff-JV-2012
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More Quenched Lattice Dirac Spectra at fixedν

The spectrum of the Hermitian Wilson Dirac operator for ν = 0 (top) and ν = 1

(bottom). The blue curve is the WRMT result with W8 6= 0 and W6 = W7 = 0 while for
the red curve they are nonzero. Deuzeman-Wenger-Wuilloud-2011
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Additional Real Modes
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Additional number real modes of the Wilson Dirac operator. In the left figure we show the
analytical result compared to random matrix simulations (Kieburg-JV-Zafeiropoulos-2011)
and in the right figure we show lattice result of (Deuzeman-Wenger-Wuilloud-2011) for two
different lattice spacings. The lattice data are consistent with a logarithmic a

-dependence.
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Eigenvalue Density ofγ5(DW + m)

-10 -8 -6 -4 -2 0 2 4 6 8 10

λ5
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ρ 5ν=
1 (λ

5 ,m
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m=2.3 a

6
=i0.0 a
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8
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The microscopic spectrum of γ5(DW + m) for ν = 1 Damgaard-Heller-Splittorff-2012.

The red and blue curves represents the analytical result for the resolvent Splittorff-JV-2011

Gν(m, z; a) =
1

16a2π

Z

dsdt

t − is
e−[(s+iz)2+(t−z′)2]/16a2 (m − is)ν

(m − t)ν
Z̃ν

1|1(
p

m2 + s2,
p

m2 − t2; a = 0)

where

Z̃ν
1|1(x, y; a = 0) =

yν

xν
[yKν+1(y)Iν(x) + xKν(y)Iν+1(x)]

The width of the topological peak behaves as ∼ a/
√

V .
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Observables in the smalla Limit

� The density of the projection of the eigenvalues of DW on the
imaginary axis. According to the Banks-Casher formula we have

∆ =
π

ΣV
.

� The average number of the additional real modes for ν = 0 :

Nν=0
add

a≪1
= 2V a2(W8 − 2W7).

� The width of the Gaussian shaped strip of complex eigenvalues:

σ2

(∆)2
a≪1
=

4

π2
a2V (W8 − 2W6).
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Observables in the smalla Limit

� The variance of the distribution of chirality over the real
eigenvalues:

〈x2〉ρν
χ

∆2

a≪1
=

8

π2
V a2(νW8 −W6 −W7), ν > 0.

There are linear dependencies between the relations. This results in
the consistency condition

〈x2〉ν=1
ρχ

∆2
=
σ2

∆2
+

2

π2
Nν=0

add .

Kieburg-JV-Zafeiropoulos-2013
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VIII. Overlap Dirac Operator

Random Matrix Overlap Dirac Operator

Aoki Phase for the Overlap Dirac Operator
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Overlap Dirac Operator at a = 0

The overlap Dirac operator

Dov = 1 + γ5Usign(D5)U
−1, D5 = DW +mγ5

� Looks drastic to replace the eigenvalues by their sign, but at zero
lattice spacing this is actually exact.

� The eigenvectors contain the information on the eigenvalues.

D5 =





u 0

0 v









m λ

λ −m









u−1 0

0 v−1





� Complete diagonalization by addition rotation with tan 2φk = λk/m

.
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Overlap Dirac Operator at a = 0

� The projected eigenvalues are given by λk/m .

� At nonzero lattice spacing overlap eigenvalues are expected to
have correlations that different by O(a) or O(a2) terms

� What happens to eigenvalue correlation of when the Wilson Dirac
operator is in the Aoki phase?
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Overlap Dirac Operator at a 6= 0

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

The spectral density of the projected overlap Dirac operator for a = 0.3 ,

m = 100 and index ν = 0 and ν = 1 . The black curve shows the analytical

result and the red and blue curve the result from the computed eigenvalues.
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Overlap Dirac Operator at a 6= 0

0.0 0.2 0.4 0.6 0.8 1.0
x0.00
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The spectral density of the projected overlap Dirac spectra for m =0.2 and

a = 0.05, a = 0.15, a = 0.24, a = 0.35, a = 0.45, a = 0.55 (from top to

bottom). The critical value for the transition to the Aoki phase is a = 0.35

(green curve). The curves have been rescaled to have the same small x

behavior, separately for the normal phase and the Aoki phase.
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Overlap Dirac Operator at a 6= 0
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Comparison of the spectral density of the overlap Dirac operator for a = 0.15

and m = 0.2 and the analytical chiral random matrix theory result.The

unfolded eigenvalues are shown right.
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Overlap Dirac Operator at a 6= 0
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Global behavior of the spectral density of the projected overlap Dirac operator

for same set of parameters as in Fig. 1.
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� Collective spectral fluctuations drive the first order scenario.

� In the quenched case a transition to the Aoki phase takes place in
the approach to the chiral limit at fixed a . A first order scenario is
not possible.

� For dynamical quarks both a transition to the Aoki phase and a first
order scenario are possible in the approach to the chiral limit. A
first order scenario is consistent with the constraints of the the low
energy constants and is favored by current lattice simulations.

� Lattice simulations that show a phase with an isoscalar
pseudoscalar condensate should be understood.

� The overlap operator is in a different phase when the Wilson Dirac
operator is in the Aoki phase, but is very robust outside this phase.
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