

Int. Conf. on Graphene Nonophotonics

at Centro de Ciencias de Benasque Pedro Pascua, Benasque, Spain, March 6th, 2013.

Challenges to Create Graphene-Based Terahertz/Infrared Lasers

Taiichi Otsuji¹

Maxim Ryzhii², and Victor Ryzhii¹

¹ RIEC, Tohoku University, Sendai, Japan ² CNEL, University of Aizu, Aizu-Wakamatsu, Japan

Introduction and motivation

- Ultrafast carrier relaxation dynamics and THz/IR gain in optically/electrically pumped graphene
- Carrier heating & cooling effect in optical & injection pumping
- Graphene current-injection lasers
- Graphene active plasmonics for giant gain
- Summary

- 3,

RIE Promising Applications for Terahertz ICTs

(Courtesy of Terahertz Technology Trend Investigation Committee, MIC, Japan)

- Mono- or few layers of sp² bonded carbon atoms in a honeycomb lattice.
- Massless Dirac Fermions obey linear dispersion relation at K & K' points.
- High carrier mobility μ > 200,000 cm²/Vs at RT. (*cf.* InGaAs: μ ~ 12,000 cm²/Vs)

Due to its unique transport properties, graphene is suitable for implementation in photonic devices.

Idea for Graphene THz/IR Lasers

Proposal of graphene THz lasers

V.Ryzhii, M.Ryzhii, T.Otsuji, JAP 101, 083114 (2007).

M. Ryzhii and V. Ryzhii, **JJAP 46**, L151 (2007). V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji, **JAP 110**, 094503 (2011).

QCLs only work at cryogenic temperatures.
 Need powerful, compact, room-temperature operating THz sources for imaging and communications.

Investigation Committee, MIC, Japan)

JOURNAL OF APPLIED PHYSICS 101, 083114 (2007)

Negative dynamic conductivity of graphene with optical pumping

V. Ryzhii^{a)} and M. Ryzhii Computer Solid State Physics Laboratory, University of Aizu, Aizu-Wakamatsu 965-8580, Japan

T. Otsuji Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan (Received 30 January 2007; accepted 8 February 2007; published online 26 April 2007)

Optical pumping of intrinsic graphene

-Idea

V. Ryzhii, M. Ryzhii, and T. Otsuji, **JAP 101**, 083114 (2007). V. Ryzhii, et al., **JAP 106**, 084507 (2009).

Scattering Rates for Intrinsic Graphene® Obtained by MC Simulation

E. Sano, JJAP 50, 090205 (2011). X. Li et al., arXiv:1005.2631v1 (2010). V. Perebeinos and Ph. Avouris, PRB 81, 195442 (2010).

Theoretical Study of Graphene Under Pulse Excitation

A. Satou, T. Otsuji, and V. Ryzhii, **JJAP 50**, 070116 (2011). H. Suzuura and T. Ando, **J. Phys. Soc. Jpn. 77** 044703 (2008).

- 🕦

Rate equations for relaxation of quasi-Fermi $\Sigma = \Sigma(\varepsilon_F(t), T_c(t))$ Carrier concentration **level and carrier temperature** $E = E(\varepsilon_F(t), T_c(t))$ Energy density

$$\frac{d\Sigma}{dt} = \frac{1}{\pi^2} \sum_{i=\Gamma,K} \int d\mathbf{k} \left[(1 - f_{h\omega_i - v_w\hbar k})(1 - f_{v_w\hbar k}) / \tau_{iO,inter}^{(+)} - f_{v_w\hbar k} f_{h\omega_i - v_w\hbar k} / \tau_{iO,inter}^{(-)} \right]
\frac{dE}{dt} = \frac{1}{\pi^2} \sum_{i=\Gamma,K} \int d\mathbf{k} \, v_w\hbar k \left[(1 - f_{h\omega_i - v_w\hbar k})(1 - f_{v_w\hbar k}) / \tau_{iO,inter}^{(+)} - f_{v_w\hbar k} f_{h\omega_i - v_w\hbar k} / \tau_{iO,inter}^{(-)} \right]
+ \frac{1}{\pi^2} \sum_{i=\Gamma,K} \int d\mathbf{k} h\omega_i \left[f_{v_w\hbar k} (1 - f_{v_w\hbar k + h\omega_i}) / \tau_{iO,intra}^{(+)} - f_{v_w\hbar k} (1 - f_{v_w\hbar k - h\omega_i}) / \tau_{iO,intra}^{(-)} \right]$$

 $au_{iO,inter}^{(\pm)}, au_{iO,intra}^{(\pm)}$

Quasi-Fermi distribution caused by CC scattering

$$f_{v_{W}\hbar k} = \frac{1}{\exp[(v_{W}\hbar k - \varepsilon_{F})/k_{B}T_{c}] + 1}$$

with $\varepsilon_{F} = \varepsilon_{F}(t), T_{c} = T_{c}(t)$

Relaxation time for interband and intraband OP

Relaxation of Quasi-Fermi Level and Carrier Temperature

A. Satou, T. Otsuji, and V. Ryzhii, JJAP 50, 070116 (2011).

KIF(12)

- Δt Pulse width = 80 fs
- I_{pump} Peak intensity

Population inversion occurs with a threshold of pumping intensity!

RIE Time-Dependent Dynamic Conductivity

T. Otsuji et al., J. Phys. D 45, 303001 (2012).

80 fs FWHM

Dynamic conductivity Re σ_{ω} = Re $\sigma_{\omega}^{\text{inter}}$ + Re $\sigma_{\omega}^{\text{intra}}$ (intra) = Drude absorption $\approx \frac{e^2}{4\hbar} (1 - 2f_{\hbar\omega}) + \frac{(\ln 2 + \varepsilon_F / 2k_B T)e^2}{\pi\hbar} \frac{k_B T \tau}{\hbar (1 + \omega^2 \tau^2)}$ Reow $\sigma^{
m intra}_{\omega}$ $\approx \frac{e^2}{4\hbar} \tanh\left(\frac{\hbar\omega - 2\varepsilon_F}{4k_BT}\right) + \frac{(\ln 2 + \varepsilon_F / 2k_BT)e^2}{\pi\hbar} \frac{k_BT\tau}{\hbar(1 + \omega^2\tau^2)}$ $\swarrow \omega$ 0 inter

Longer relaxation time, larger and broader NDC

J.M. Dawlaty et al., APL 92, 042116 (2008)

S. Boubanga Tombet et al., **PRB 85**, 035443 (2012).

Observation of Threshold Behavior, RIE Proving Stimulated THz Emission & Gain

S. Boubanga Tombet et al., PRB 85 , 035443 (2012).

Narrower Emission Spectra at a Longer Probe Delay, Reflecting Equilibration

S. Boubanga Tombet et al., **PRB 85** , 035443 (2012).

Observation of IR Stimulated Emission in fs Regime before Quasi-Equilibration

Gain Profile of MGL Laser RIE® Calculated for Slot-Line Waveguides

JOURNAL OF APPLIED PHYSICS 107, 054505 (2010)

Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides

V. Ryzhii,^{1,2,a)} A. A. Dubinov,^{1,3} T. Otsuji,^{2,4} V. Mitin,⁵ and M. S. Shur⁶

MLG: Epitaxial Graphene on SiC/Si RIE® can Control the GR-Layer Stacking

Pumping Photon Energy vs. T_c & ε_FRIE Impulsive Pumping

T. Otsuji et al., IEEE T. THz. Sci. Tech. 3, 63 (2013).

Effects of Optical-Phonon Decay $\tau_0^{\text{decay}} \models 2$ & Effective Pumping Photon Energy Ω_0

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, JJAP 50, 094001 (2011).

JOURNAL OF APPLIED PHYSICS 110, 094503 (2011)

Toward the creation of terahertz graphene injection laser

V. Ryzhii,^{1,a)} M. Ryzhii,¹ V. Mitin,² and T. Otsuji³

M. Ryzhii and V. Ryzhii, JJAP 46, L151 (2007).

Negative Dynamic Conductivity at Different τ and η_0^{decay} at RT

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, JAP 110, 094503 (2011).

24

Advantage of Current Injection: RIE® Carrier Over-Cooling Effect even at RT

V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, JAP 110, 094503 (2011).

2D Plasmon Dispersions in Graphene

тоноки

26

Dispersions and the Damping of Graphene Plasmons

A. D. Svintsov, V. Vyurkov, S. Yurchenko, T. Otsuji, and V. Ryzhii, JAP 111, 083715(2012).

Semi-classical Boltzmann's equations for Dirac Fermion

Amplification of THz-SPPs along RIE® Population-Inverted-Graphene Waveguide

A. Dubinov, Y. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, **JPCM 23**, 145302 (2011). F. Rana, **IEEE T. NanoTechnol. 7**, 91 (2008).

 $\alpha = \text{Im}(q_z) = 2\text{Im}(\rho\omega/c)$

THz photon

Plasmonic Terahertz Lasing from RIE® Nano-Patterned Graphene-Metal Array

V.V. Popov, O.V. Polischuk, A.R. Davoyan, V. Ryzhii, T. Otsuji, M.S. Shur, PRB 86, 195437 (2012).

- 1. Optically/Electrically pumped GR-THz/IR lasers.
- 2. Carrier heating can be suppressed by reducing the pumping photon energy.
- 3. Current injection is the best-suited, providing a carrier over-cooling effect.
- 4. Dual-gate GR-FET is a possible GR-injection THz/IR laser structure.
- 5. Active plasmonic structures can greatly boost the THz/IR gain.
- 6. Advantages of graphene THz/IR injection lasers:
 - no need extra care for carrier depopulation.
 - low end of THz range at room temperatures.
 - integrated with simple epitaxy techniques.

Acknowledgements

This work is financially supported in part by the CREST, JST, Japan, GA-Specially Promoting Research and Core-to-Core, JSPS, Japan.

тс

Journal of Physics D Applied Physics

Volume 45 Number 30 1 August 2012

Fast Track Communication

Double graphene-layer plasma resonances terahertz detector V Ryzhii, T Otsuji, M Ryzhii and M S Shur

Topical review

Graphene-based devices in terahertz science and technology *T Otsuji, S A Boubanga Tombet, A Satou, H Fukidome, M Suemitsu, E Sano, V Popov, M Ryzhii and V Ryzhii*

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 19, NO. 1, JANUARY/FEBRUARY 2013

iopscience.org/jphysd

IOP Publishing

Terahertz-Wave Generation Using Graphene: Toward New Types of Terahertz Lasers

Taiichi Otsuji, Member, IEEE, Stephane Boubanga Tombet, Akira Satou, Member, IEEE, Maxim Ryzhii, Senior Member, IEEE, and Victor Ryzhii, Fellow, IEEE

(Invited Paper)

Collaborators

MITP, RAS KIREE, RAS

Prof. Vladimir Prof. Michael Prof. Junichiro Prof. Vladimir Prof. Vyach. Mitin

Shur

Vyurkov Kono

Popov

Prof. Maxim Prof. Eiichi Ryzhii Sano

Silvia Chan

Nano-Japan RIEC,

Prof. Victor Prof. Maki Ryzhii Suemitsu Fukidome

Dr. Hiro Prof. Tetsuya Dr. Akira Suemitsu

Dr. Stephane Satou Boubanga Tom.

Handa

Karasawa

Tetsuya Watanabe Fukushima

Takabayashi El Moutaouakil

Thank you very much for your attention!