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From Mainz 2013 to Benasque 2013: 

Tensor Networks Reach Quantum Simulation! 
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Outline 
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 Introduction and motivation: cavity-lattice quantum simulation 
 

 Tensor networks and the way they can gift quantum simulation 
 

 Case study: Tensor-network simulation of kagome 

(photonic) quantum simulator 
 

 New horizons for photonic quantum simulation 
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Photon lattices for quantum simulation 
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 Quantum simulation: employing well-controlled quantum 
systems to simulate complex quantum matter  
  

 Physical implementation: using photons as particles in a “photon lattice” 
quantum simulator (an array of circuit QED elements) 
 

 Flexible lithographic fabrication and easily attainable strong coupling 
 

 
 

 “On-chip” many-body physics: superfluid–Mott-insulator transition, 
macroscopic quantum self-trapping, and fractional quantum Hall physics etc 
 

 Well-controlled quantum systems  with “circuit excitations” rather than 
physical particles 

Andrew A. Houck, Hakan E. Türeci, and Jens Koch, Nature Phys. 8, 292 (2012). 



/17 

Kagome cavity lattices 
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 Arrays of on-chip microwave resonators in a kagome geometry described by 
the Jaynes-Cummings-Hubbard (JCH) Hamiltonian: 

 

 

 

 

D. L. Underwood, W. E. Shanks, J. Koch, 
and A. A. Houck, Phys. Rev. A 86, 
023837 (2012) 

 Needing sophisticated and efficient 
numerical techniques that can capture 
many-polariton correlations  

  

 address larger arrays and collective   
phenomena and possible phase 
transitions of light  
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Tensor networks (TN) 
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 Powerful tools for classical simulation of quantum many-
body systems by representing the state of a system as an 
efficiently-contractible network of multi-index tensors 
optimized variationally 

F. Verstraete, V. Murg, and J. Cirac, Adv. Phys. 57, 143 (2008); R. Orus, arXiv:1306.2164 

 

Many-body Hilbert space 

TN 

 2D: Projected-entangled-pair states (PEPS) 

 

 
 

 1D: Matrix-product states (MPS) 
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Myths and facts about tensor networks! 
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Myths Facts 

 
TNs do not produce any physics! 

 
 
 

 
 

 
 

 
 

 
 

 
 

TNs do produce physics addressing (efficiently) 
otherwise intractable problems such as multi-

channel Kondo model etc 

TNs outperform quantum monte 
carlo all the time! 

Not suffering minus sign but rather tricky 
contraction schemes beyond 1D 

… 
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Photonic PEPS 
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Kagome PEPS 
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# of photons 

 PEPS ansatz to the many-photon 
ground state: 
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Capturing equilibrium properties 
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 Target the ground-state energy           : 

 Variational “sweeping procedure”: 

 Generalized eigenvalue problem: 
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Effective Hamiltonian 

11 



/17 

Equilibrium properties 
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Equilibrium properties 
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Dynamical properties 
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 The average result of a joint photon-number 
measurement performed on cavities k and k′ 

 Two-point correlation functions associated with the propagation of two-
photonic excitations: 

k 

k′ 
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Propagation of localized excitations 
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Reference cavity: 
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Propagation of delocalized superposition 
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Fabry-Perot-type  resonances 

Relative phase 
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New horizons? 
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 Tensor networks offer efficient classical simulation of photonic quantum 
simulators 
 

 Proposed a flexible numerical framework for unraveling exotic phases of light 
on a kagome geometry 
 

 Simulation of the kagome lattice in the ultrastrong coupling regime of light-
matter interaction         T. Niemczyk et al, Nature Phys. 6, 772 (2010).  
 

 Paving the way for studying a variety of thrilling strongly correlated many-
photon phenomena such as possible fermionization of photons, anomalous 
Hall effects etc upon a systematic extension of the proposed numerical 
framework to larger kagome arrays 
 

Andrew A. Houck, Hakan E. Türeci, and 
Jens Koch, Nature Phys. 8, 292 (2012). 
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From the cover of the 
March 1998 issue of 
the “Physics World” 
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