Resonances and QCD bound states in the charmed-meson and charmonium spectrum from Lattice QCD

Daniel Mohler

Fermilab Theory Group
Batavia, IL, USA
Benasque, July 2014橑 Fermilab

Collaborators: C. B. Lang, L. Leskovec, S. Prelovsek, R. M. Woloshyn

Outline

(1) Introduction and lattice basics

- Motivation
- Extracting and exploring excited energy levels
- Scattering phase-shifts and Lüscher's finite volume method
- Lattices used
- Heavy quarks with the Fermilab method
(2) Charmed and charmed-strange mesons
- $D \pi$ and $D^{*} \pi$ scattering and D meson resonances
- $D K$ scattering and $D_{s 0}^{*}(2317), D_{s 1}(2460)$
(3) Search for a charged charmonium-like Z_{C}

4 Conclusions \& outlook

Outline

(1) Introduction and lattice basics

- Motivation
- Extracting and exploring excited energy levels
- Scattering phase-shifts and Lüscher's finite volume method
- Lattices used
- Heavy quarks with the Fermilab method
(2) Charmed and charmed-strange mesons
- $D \pi$ and $D^{*} \pi$ scattering and D meson resonances
- DK scattering and $D_{s 0}^{*}(2317), D_{s 1}(2460)$
(3) Search for a charged charmonium-like Z_{C}
(4) Conclusions \& outlook

Many interesting issues

Renewed interest in hadron spectroscopy (in experiment and theory)

- X, Y and Z Charmonium-like states
- light scalar mesons
- D_{s} spectrum: $D_{s 0}^{*}(2317)\left(0^{+}\right), D_{s 1}(2460)$
- Highly excited light-quark mesons and baryons

In addition puzzling lattice data for

- Roper resonance
- \wedge baryons

Methods used interesting with regard to

- Radiative decays, hadronic transitions
- Puzzles observed in semileptonic B decays
- What kind of hadron resonances/bound states do exist beyond $\bar{q} q$ mesons and qqq baryons?

Example operators

Need: Interpolating field operator that creates states with correct quantum numbers.

- Example I: Pseudoscalar mesons with $I J^{P C}=10^{-+}$

$$
\begin{aligned}
& O_{\pi}^{(1)}=\bar{u} \gamma_{5} d \\
& O_{\pi}^{(2)}=\bar{u} \overleftrightarrow{D} \gamma_{i} \gamma_{t} \gamma_{5} d
\end{aligned}
$$

- Example II: Nucleon

$$
O_{N}=\epsilon_{a b c} \Gamma_{1} u_{a}\left(u_{b}^{\top} \Gamma_{2} d_{c}-d_{b}^{T} \Gamma_{2} u_{c}\right)
$$

- In practice: Many (slightly different) constructions possible!
- In a QFT they should all be OK; Overlap?

Example operators

Need: Interpolating field operator that creates states with correct quantum numbers.

- Example I: Pseudoscalar mesons with $I J^{P C}=10^{-+}$

$$
\begin{aligned}
& O_{\pi}^{(1)}=\bar{u} \gamma_{5} d \\
& O_{\pi}^{(2)}=\bar{u} \overleftrightarrow{D} \gamma_{i} \gamma_{t} \gamma_{5} d
\end{aligned}
$$

- Example II: Nucleon

$$
O_{N}=\epsilon_{a b c} \Gamma_{1} u_{a}\left(u_{b}^{T} \Gamma_{2} d_{c}-d_{b}^{T} \Gamma_{2} u_{c}\right)
$$

- In practice: Many (slightly different) constructions possible!
- In a QFT they should all be OK; Overlap?

The problem with excited states

From the analysis of Euclidean correlators:

$$
\left.\left\langle\hat{O}_{2}(t) \hat{O}_{1}(0)\right\rangle_{T} \propto \sum_{n} e^{-t E_{n}}<0\left|\hat{O}_{2}\right| n><n\left|\hat{O}_{1}\right| 0\right\rangle
$$

- The whole tower of states contributes

- Ground state is dominant at large t
- Exited states appear as sub-leading exponentials
- Noisy background from limited statistics

- For a single correlator, fit to several exponentials leads to poor results
\rightarrow Advanced methods needed for excited states!

(My) Method of choice: The variational method

Matrix of correlators projected to fixed momentum (will assume 0)

$$
C(t)_{i j}=\sum_{n} \mathrm{e}^{-t E_{n}}\langle 0| O_{i}|n\rangle\langle n| O_{j}^{\dagger}|0\rangle
$$

Solve the generalized eigenvalue problem:

$$
\begin{aligned}
C(t) \vec{\psi}^{(k)} & =\lambda^{(k)}(t) C\left(t_{0}\right) \vec{\psi}^{(k)} \\
\lambda^{(k)}(t) & \propto \mathrm{e}^{-t E_{k}}\left(1+\mathcal{O}\left(\mathrm{e}^{-t \Delta E_{k}}\right)\right)
\end{aligned}
$$

At large time separation: only a single state in each eigenvalue.
Eigenvectors can serve as a fingerprint.

```
Michael Nucl. Phys. B259, 58 (1985)
Lüscher and Wolff Nucl. Phys. B339, 222 (1990)
Blossier et al. JHEP 04, 094 (2009)
```


Using single hadron interpolators, what do we see?

- In practical calculations $\bar{q} q$ and $q q q$ interpolators couple very weakly to multi-hadron states

```
McNeile & Michael, Phys. Lett. B 556, 177 (2003); Engel et al. PRD 82, 034505 (2010);
    Bulava et al. PRD 82, 014507(2010); Dudek et al. PRD 82, 034508(2010);
```

- This is not unlike observations in string breaking studies

```
Pennanen & Michael hep-lat/0001015;Bernard et al. PRD 64 074509 2001;
```

- This necessitates the inclusion of hadron-hadron interpolators
- We know: Energy levels \neq resonance masses Naïve expectation: Correct up to $\mathcal{O}\left(\Gamma_{R}\left(m_{\pi}\right)\right)$
- Was good enough for heavy pion masses where one would deal with bound states or very narrow resonances.

An example: Negative parity Nucleons

```
Alexandrou, Korzec, Koutsou, Leontiou, PRD 89 034502 (2014)
```


- Beware: different scale setting schemes
- Suggests considerable dependence on interpolator construction
- Should be remedied by including multi-hadron interpolators explicitly!

The Lüscher method for elastic scattering

$$
\begin{aligned}
& \text { M. Lüscher Commun. Math. Phys. } 105 \text { (1986) 153; Nucl. Phys. B } 354 \text { (1991) } \\
& \text { 531; Nucl. Phys. B } 364 \text { (1991) } 237 .
\end{aligned}
$$

$$
\begin{aligned}
& E_{n}(L) \quad \xrightarrow{(2)} \quad \delta_{l} \quad \xrightarrow{(3)} \quad m_{R} ; \quad \Gamma_{R} \text { or coupling } g
\end{aligned}
$$

(1) Extract energy levels $E_{n}(L)$ in a finite box
(2) The Lüscher formula relates this spectrum to the phase shift of the continuum scattering amplitude
(3) Extract resonance parameters with some degree of modeling/approximation

Energy levels in a box - an illustration

animations by C. B. Lang and DM

- Left: Expectations for ρ-like resonance at varying coupling $g_{\rho \pi \pi}$
- Right: Expectations for ρ-like resonance with physical $g_{\rho \pi \pi}$ and varying mass

Lüscher method and extensions (selected papers)

- Rest-frame calculation in multiple spatial volumes L^{3}
M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531;
Nucl. Phys. B 364 (1991) 237 .
- Moving frames for equal mass hadrons $m_{h 1}=m_{h 2}$

```
Rummukainen, Gottlieb, Nucl. Phys. B 450, 397 (1995);
Kim, Sachrajda, Sharpe, Nucl. Phys. B 727, 218 (2005);
    Feng, Jansen, Renner, PoS LAT2010 104 (2010);
    Dudek, Edwards, Thomas, PRD 86 034031 (2012).
```

- Moving frames for $m_{h 1} \neq m_{h 2}$: Even and odd / mix

```
            Fu, PRD 85 014506 (2012); Döring et al. EPJ A48 114 (2012);
Göckeler et al. PRDD 86 094513 (2012); Leskovec, Prelovsek, PRD 85 114507 (2012);
```

- Calculations in multiple asymmetric boxes i.e. $L^{2} \times L_{z}$
- 3-particle scattering
Hansen, Sharpe 1311.4848; Polejaeva, Rusetsky, EPJ A48 67 (2012);
Briceno, Davoudi, PRD 87094507 (2013)
- Twisted boundary conditions
Briceno, Davoudi, Luu, PRD 88, 034502 (2013);
Briceno, Davoudi, Luu and Savage, PRD 89, 074509 (2014);
Briceno, PRD 89, 074507 (2014)

For more see Raul's talk!

Alternative approaches

- Transition amplitude method

$$
\text { McNeile, Michael, Pennanen, PRD } 65094505 \text { (2002) }
$$

- Histogram method

```
Bernard, Lage, Meißner, Rusetsky, JHEP 0808 (2008) 024
```

- Correlator method
Meißner, Polejaeva, Rusetsky, Nucl. Phys. B 846,1 (2011)
- Finite-volume Hamiltonian EFT

$$
\text { Hall et al., PRD } 87094510 \text { (2013) }
$$

- HALQCD method: Extract a potential

$$
\text { Ishii et al., PLB 712, } 437 \text { (2012) }
$$

Technicalities: Lattices used

ID	$N_{L}^{3} \times N_{T}$	N_{f}	$a[\mathrm{fm}]$	$L[f \mathrm{fm}]$	\#configs	$m_{\pi}[\mathrm{MeV}]$	$m_{K}[\mathrm{MeV}]$
(1)	$16^{3} \times 32$	2	$0.1239(13)$	1.98	$280 / 279$	$266(3)(3)$	$552(2)(6)$
(2)	$32^{3} \times 64$	$2+1$	$0.0907(13)$	2.90	196	$156(7)(2)$	$504(1)(7)$

- Ensemble (1) has 2 flavors of nHYP-smeared quarks

$$
\begin{array}{r}
\text { Gauge ensemble from Hasenfratz et al. PRD } 78054511 \text { (2008) } \\
\text { Hasenfratz et al. PRD } 78014515 \text { (2008) }
\end{array}
$$

- Ensemble (2) has 2+1 flavors of Wilson-Clover quarks

$$
\text { PACS-CS, Aoki et al. PRD } 79034503 \text { (2009) }
$$

- On the small volume we use distillation

On the larger volume we use stochastic distillation

$$
\begin{aligned}
& \text { Peardon et al. PRD 80, } 054506 \text { (2009); } \\
& \text { Morningstar et al. PRD 83, } 114505 \text { (2011) }
\end{aligned}
$$

Heavy quarks using the Fermilab method

El-Khadra et al., PRD 55,3933

- We tune κ for the spin averaged kinetic mass $\left(M_{\eta_{c}}+3 M_{J / \Psi}\right) / 4$ to assume its physical value
- General form for the dispersion relation

$$
\begin{array}{r}
\text { Bernard et al. PRD83:034503,2011 } \\
E(p)=M_{1}+\frac{p^{2}}{2 M_{2}}-\frac{a^{3} W_{4}}{6} \sum_{i} p_{i}^{4}-\frac{\left(p^{2}\right)^{2}}{8 M_{4}^{3}}+\ldots
\end{array}
$$

- We compare results from three different fit strategies
- Energy splittings are expected to be close to physical
- For MeV values of masses

$$
M=\Delta M+M_{\text {sa,phys }}
$$

Testing our tuning ...

	Ensemble (1)	Ensemble (2)	Experiment
m_{π}	$266(3)(3)$	$156(7)(2)$	$139.5702(4)$
m_{K}	$552(1)(6)$	$504(1)(7)$	$493.677(16)$
m_{ϕ}	$1015.8(1.8)(10.7)$	$1018.4(2.8)(14.6)$	$1019.455(20)$
$m_{\eta_{s}}$	$732.3(0.9)(7.7)$	$692.9(0.5)(9.9)$	$688.5(2.2)^{*}$
$m_{J / \Psi}-m_{\eta_{c}}$	$107.9(0.3)(1.1)$	$107.1(0.2)(1.5)$	$113.2(0.7)$
$m_{D_{s}^{*}}-m_{D_{s}}$	$120.4(0.6)(1.3)$	$142.1(0.7)(2.0)$	$143.8(0.4)$
$m_{D^{*}}-m_{D}$	$129.4(1.8)(1.4)$	$148.4(5.2)(2.1)$	$140.66(10)$
$2 m_{\bar{D}}-m_{\overline{\bar{c}}}$	$890.9(3.3)(9.3)$	$882.0(6.5)(12.6)$	$882.4(0.3)$
$2 M_{D_{s}}-m_{\bar{c} \bar{c}}$	$1065.5(1.4)(11.2)$	$1060.7(1.1)(15.2)$	$1084.8(0.6)$
$m_{D_{s}}-m_{D}$	$96.6(0.9)(1.0)$	$94.0(4.6)(1.3)$	$98.87(29)$

- A single ensemble: Discrepancies due to discretization and unphysical light-quark masses expected

Low-lying charmonium spectrum on Lattice (1)

- Serves as further confirmation of our heavy-quark approach
- Data from 1 ensemble; Errors statistical + scale setting

Outline

(1) Introduction and lattice basics

- Motivation
- Extracting and exploring excited energy levels
- Scattering phase-shifts and Lüscher's finite volume method
- Lattices used
- Heavy quarks with the Fermilab method
(2) Charmed and charmed-strange mesons
- $D \pi$ and $D^{*} \pi$ scattering and D meson resonances
- DK scattering and $D_{s 0}^{*}(2317), D_{s 1}(2460)$
(3) Search for a charged charmonium-like Z_{C}
(4) Conclusions \& outlook

Motivation: Experimental D_{s} spectrum

- Established states:
- $D_{s}\left(J^{P}=0^{-}\right)$and $D_{s}^{*}\left(1^{-}\right)$
- $D_{s 0}^{*}(2317)\left(0^{+}\right), D_{s 1}(2460)\left(1^{+}\right), D_{s 1}(2536)\left(1^{+}\right), D_{s 2}^{*}(2573)\left(2^{+}\right)$
- More recent discoveries:
- $D_{s 1}^{*}(2710)$ seen by BaBar, Belle, LHCb (1^{-})
- $D_{s,}^{*}(2860)$ seen by BaBar, LHCb (3^{-}?, 0^{+}?)
- $D_{s,}^{*}(3040)$ seen by BaBar (1^{+}?, 2^{-}?)
- $D_{s, J}^{*}(2632)$ seen by SELEX (1^{-}?)
- $j=\frac{1}{2}$ doublet almost mass-degenerate with non-strange states
- Some models suggest a tetraquark/molecular interpretations for controversial states
- (Most) lattice studies using single hadron ($c \bar{s}$) interpolators get large or badly determined masses
- Large $m_{\pi}: D_{s 0}^{*}(2317)$ below $D K$ threshold;

Small $m_{\pi}: D_{s 0}^{*}(2317) \approx D K$ threshold

Our previous attempt on ensemble (2)...

- DK threshold turned out to be unphysical
- Even with light sea-quark masses the lowest states with $J^{P}=0^{+}, 1^{+}$remained unphysical
- Including the DK threshold explicitly might be vital

$D \pi$ and $D^{\star} \pi$ scattering on ensemble (1)

```
DM, Prelovsek, Woloshyn, PRD 87 034501
- In the \(J^{P}=0^{+} D_{0}^{\star}\) channel we extract three levels


- For the \(J^{P}=1^{+}\)channel there are two resonances \(D_{1}(2420)\) and \(D_{1}(2430)\)



\section*{\(D \pi\) and \(D^{\star} \pi\) scattering}
```

DM, Prelovsek, Woloshyn, PRD 87 034501 (2013)

```
- Motivated by the heavy quark limit, We assume one state is given by the naive energy level and fit the remaining data to obtain

\begin{tabular}{ccc}
\hline & \(D_{0}^{\star}(2400)\) & \(D_{1}(2430)\) \\
\hline\(g^{\text {lat }}[\mathrm{GeV}]\) & \(2.55 \pm 0.21\) & \(2.01 \pm 0.15\) \\
\(g^{\text {exp }}[\mathrm{GeV}]\) & \(\leq 1.92 \pm 0.14\) & \(\leq 2.50 \pm 0.40\) \\
\hline
\end{tabular}

\section*{Revisiting the \(D_{s 0}^{*}(2317)\) and \(D_{s 1}(2460)\)}
- Use almost physical light quarks
- Work with a partially quenched strange quark
- Use \(\phi\) meson and \(\eta_{s}\) to set strange quark mass
- We obtain \(\kappa_{s}=0.13666\)
- Improve charm quark tuning used for Fermilab charm
- Use Landau link for \(c_{s w, c}=\frac{1}{u_{0}^{3}}\)
- Empirically this reduces discretization effects
- Explicitly include DK interpolators into the basis

\section*{Contractions}

- Handled efficiently within the distillation method
\[
\begin{array}{r}
\text { Peardon et al. PRD 80, } 054506 \text { (2009) } \\
\text { Morningstar et al. PRD 83, } 114505 \text { (2011) }
\end{array}
\]

\section*{Energy levels for \(D_{s}\) with \(J^{P}=0^{+}\)}
```

DM, Lang, Leskovec, Prelovsek, Woloshyn, PRL 111 222001 (2013)

```

- With the combined basis we obtain a much better quality of the ground state plateau
- The variational method yields two low-lying levels and fits are unambiguous

\section*{Possible interpretations}
(1) A sub-threshold state stable under the strong interaction
- We call this "bound state scenario"
- This is irrespective of the nature of the state
- One expects a negative scattering length in this case

See Sasaki and Yamazaki, PRD 74114507 (2006) for details.
(2) A resonance in a channel with attractive interaction
- The lowest state corresponds to the scattering level shifted below threshold in finite volume
- The additional level would indicate a QCD resonance
- One expects a positive scattering length in this case

This is the situation for the \(D_{0}^{*}(2400)\)
DM, Prelovsek, Woloshyn, PRD 87034501 (2013).

\section*{Using Lüscher's formula}
- We can test the plausibility of these scenarios using Lüscher's formula and an effective range approximation
```

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354

``` (1991) 531; Nucl. Phys. B 364 (1991) 237.
\[
\begin{aligned}
K^{-1}=p \cot \delta(p) & =\frac{2}{\sqrt{\pi} L} Z_{00}\left(1 ; q^{2}\right) \\
& \approx \frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}
\end{aligned}
\]
- Results for ensembles (1) and (2)
\[
\begin{array}{ll}
a_{0}=-0.756 \pm 0.025 \mathrm{fm} & r_{0}=0.056 \pm 0.031 \mathrm{fm} \\
a_{0}=-1.33 \pm 0.20 \mathrm{fm} & r_{0}=0.27 \pm 0.17 \mathrm{fm} \tag{2}
\end{array}
\]

\section*{Results for the scattering length \(a_{0}\)}
```

DM, Lang, Leskovec, Prelovsek, Woloshyn, PRL 111 222001 (2013)

```

- We compare to the predictions from an indirect calculation Liu et al. PRD 87014508 (2013).
- Our determination robustly leads to negative values.

\section*{Infinite volume bound states vs. experiment}
- (Infinite volume)bound state: T-matrix pole for \(\cot \delta\left(i\left|p_{b}\right|\right)=i\)
- Using our \(a_{0}\) and \(r_{0}\) we can determine the binding momentum and calculate the corresponding Energy level


\section*{Extending our calculation to the \(D_{s 1}(2460)\)}
- Assume the heavy quark limit is a good approximation \(\rightarrow \quad D_{s 1}(2536)\) decays only in D-wave and we extract just a naive energy level


\section*{Composition of eigenstates}

- Beware: Ambiguity in the normalization (eliminated by ratios)

\section*{Results in \(T_{1}^{+}\)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline set & \[
\begin{gathered}
\hline a_{0}^{D^{*} K} \\
{[\mathrm{fm}]}
\end{gathered}
\] & \[
\begin{gathered}
r_{0}^{D^{*} K} \\
{[\mathrm{fm}]}
\end{gathered}
\] & \(\left(a p_{B}\right)^{2}\) & \(a m_{B}\) & \[
\begin{gathered}
m_{K}+m_{D^{*}}-m_{B} \\
{[\mathrm{MeV}]} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
m_{B}-\frac{1}{4}\left(m_{D_{S}}+3 m_{D_{S}^{*}}\right) \\
{[\mathrm{MeV}]}
\end{gathered}
\] \\
\hline \multicolumn{7}{|l|}{Ensemble (1)} \\
\hline & -0.665(25) & -0.106(37) & -0.0301(15) & 1.3511(35) & 93.2(4.7)(1.0) & 404.6(4.5)(4.2) \\
\hline \multicolumn{7}{|l|}{Ensemble (2)} \\
\hline set 1 & -1.15(19) & 0.13(22) & -0.0071(22) & 1.0336(60) & 43.2(13.8)(0.6) & 408(13)(5.8) \\
\hline set 2 & -1.11(11) & 0.10(10) & -0.0073(16) & 1.0331(41) & 44.2(9.9)(0.6) & 407.0(8.8)(5.8) \\
\hline \multicolumn{7}{|l|}{Experiment} \\
\hline & & & & & 44.7 & 383 \\
\hline & & set & \[
\begin{array}{r}
1(2536)-\frac{1}{4}(n \\
{[\mathrm{MeV}} \\
\hline
\end{array}
\] & \[
\left.+3 m_{D_{s}^{*}}\right)
\] & \begin{tabular}{l}
\[
m_{D_{S 1}(2536)}-m_{K}-
\] \\
[MeV]
\end{tabular} & \\
\hline & & \multicolumn{3}{|l|}{Ensemble (1)} & & \\
\hline & & & 444(12) & & -53(12) & \\
\hline & & \multicolumn{3}{|l|}{Ensemble (2)} & & \\
\hline & & set 1 & 507(10) & & 56(11) & \\
\hline & & set 2 & 501(8) & & 50(8) & \\
\hline & & \multicolumn{3}{|l|}{Experiment} & & \\
\hline & & & 459 & & 31 & \\
\hline
\end{tabular}

\section*{Resulting \(D_{s}\) P-wave spectrum}

- Remaining discrepancies of the size of discretization uncertainties
- Possible improvement down the road: S-wave - D-wave mixing for \(1^{+}\)and \(2^{+}\)states.

\section*{Outline}
(1) Introduction and lattice basics
- Motivation
- Extracting and exploring excited energy levels
- Scattering phase-shifts and Lüscher's finite volume method
- Lattices used
- Heavy quarks with the Fermilab method
(2) Charmed and charmed-strange mesons
- \(D \pi\) and \(D^{*} \pi\) scattering and D meson resonances
- DK scattering and \(D_{s 0}^{*}(2317), D_{s 1}(2460)\)
(3) Search for a charged charmonium-like \(Z_{C}\)
(4) Conclusions \& outlook

\section*{Experimental evidence}
[from Brambilla et al., arXiv:1404.3723]
\begin{tabular}{|c|c|c|c|c|}
\hline particle & \(C\) & \(J^{P}\) & decay & collab. \\
\hline\(Z^{+}(4430)\) & -1 & \(1^{+}\) & \(\psi(2 S) \pi^{+}\) & Belle \(^{08}\), LHCb \(^{14}\) \\
\(Z_{c}^{+}(3900)\) & -1 & \(? ?\) & \(J / \psi \pi^{+}\) & BESIIII \(^{13}\), Belle \(^{13}\), \\
& & & & CLEO-C \(^{13}\) \\
\(Z_{C}^{+}(3885)\) & -1 & \(1^{+}\) & \(\left(D D^{*}\right)^{+}\) & BESIIII \\
\(Z_{C}^{+}(4020)\) & -1 & \(? ?\) & \(h_{C}(1 P) \pi^{+}\) & BESIII \\
\(Z_{C}^{+}(4025)\) & -1 & \(? ?\) & \(\left(D^{*} D^{*}\right)^{+}\) & BESIII \\
\(Z^{+}(4200)\) & -1 & \(1^{+}\) & \(J / \psi \pi^{+}\) & Belle \(^{14} @\) Moriond14 \\
\hline
\end{tabular}
- States contain a charm-anticharm pair and carry charge \(\rightarrow\) at least four quarks


\section*{Previous studies}
- First search for \(Z_{C}^{+}(3900)\)
```

Sasa Prelovsek, Luka Leskovec PLB 727 172 (2013)

```
- \(J / \Psi \pi\) and \(D D^{*}\) interpolators
- only levels close to two-meson states found
- Search for resonance in \(D D^{*}\) scattering
\[
\text { Chen et al., PRD } 89094506 \text { (2014) }
\]
- no \(J / \Psi \pi\) interpolators,
- twisted mass ensembles with \(m_{-} \pi=300,420,485 \mathrm{MeV}\)
- Phase shift analysis assuming only \(D D^{*}\) is relevant
- S-wave - P-wave mixing taken into account

\section*{Our approach}
- Search for a \(Z_{c}^{+}\)in the \(I^{G} J^{P C}=1^{+} 1^{+-}\)channel
- Aim at simulating all meson-meson states below \(\approx 4.1 \mathrm{GeV}\)
- Include tetraquark interpolators of type \(3_{c} \times \overline{3}_{c}\)
- Count energy levels and identify them according to their overlaps
- Hope: See an extra level, as would be expected for a (narrow) resonance

More rigorous approach (a la Lüscher) quite challenging
- Coupled channel system with many channels
- Small shifts in finite volume and (largish) discretization effects
- Thresholds should be close to physical
- Suitable ensembles are (probably) not available at the moment.

\section*{Analysis details}
- We use ensemble (1)
\[
\begin{aligned}
m_{\pi} & =266 \mathrm{MeV} \\
a & =0.1239(13) \mathrm{fm} \\
L & \approx 1.98 \mathrm{fm}
\end{aligned}
\]
- \(18 \times 18\) basis with \(J / \Psi \pi, \eta_{c} \rho, D^{(*)} D^{(*)}\) and Tetraquark interpolators
- Neglects 3-particle states
- Determine energy levels and calculate overlaps \(Z_{i}^{n}\) of the i-th operator to the n-th state

\section*{Wick contractions}
a

- We neglect contractions with a backtracking c-quark
- OZI suppressed and difficult to handle (tower of light states)

\section*{A look at the spectrum of scattering states}
- Expect level close to non-interacting scattering states
\[
\begin{aligned}
& J / \Psi \pi \\
& \eta_{c} \rho \\
& J \Psi(1) \pi(-1) \\
& D D^{*} \\
& \Psi_{2 S} \pi \\
& D^{*} D^{*} \\
& \Psi_{3770} \pi \\
& D(1) D^{*}(-1) \\
& \Psi_{3} \pi
\end{aligned}
\]


\section*{An additional state!}

- We see energy levels close to scattering states we expected to see
- We see an additional state with a good signal
- Would ideally want to have higher scattering levels like \(J / \Psi(2) \pi(-2)\)
- What is the additional state?

\section*{Playing with the interpolator basis}

- The level disappears when tetraquark-like interpolators are dropped
- For our pion mass, some scattering channels seem to decouple

\section*{Overlap ratios and composition of our extra-state}


\section*{Result and uncertainty estimate}

Additional state at
\[
m_{Z_{c}^{+}}=4.16 \pm 0.16 \pm \mathcal{O}\left(\Gamma_{Z_{c}^{+}}\right) \mathrm{GeV}
\]

Uncertainty includes
- A crude estimate of the pion-mass dependence
- An estimate of heavy quark discretization effects
- A flat percent uncertainty from the lattice scale determination

- Result not compatible with the \(Z_{c}(3900)\) but additional level (exotic state!) observed

\section*{Outline}
(1) Introduction and lattice basics
- Motivation
- Extracting and exploring excited energy levels
- Scattering phase-shifts and Lüscher's finite volume method
- Lattices used
- Heavy quarks with the Fermilab method
(2) Charmed and charmed-strange mesons
- \(D \pi\) and \(D^{*} \pi\) scattering and \(D\) meson resonances
- DK scattering and \(D_{s 0}^{*}(2317), D_{s 1}(2460)\)
(3) Search for a charged charmonium-like \(Z_{C}\)

4 Conclusions \& outlook

\section*{Conclusions}
- Determining the the resonance spectrum from QCD has just begun
- Meson and baryon states close to threshold(s) can be attacked
- It will be a lot of incremental progress working our way up the spectrum (Coupled channel results encouraging \(\rightarrow\) Christopher)
- Precision results for charm will require full control of systematics (physical quark masses, continuum extrapolation, multiple volumes)
- Extracting resonance parameters from lattice scattering phase shifts will need (some degree) of modeling, just like in experiment.
- Brute force calculations may not be tractable
- Lattice QCD calculations \(\leftrightarrow\) Phenomenology/ EFT’s

\section*{Backup slides}

\section*{Angular momentum (mesons)}
- Reminder: No unique spin assignment on the lattice. Five irreducible representations:
\begin{tabular}{|c|c|c|}
\hline Irrep of \(O\) & \(J\) & Spinors in irrep \\
\hline\(A_{1}\) & \(0,4, \ldots\) & \(1, \gamma_{t}, \gamma_{5}, \gamma_{t} \gamma_{5}\) \\
\hline\(A_{2}\) & \(3,6, \ldots\) & \\
\hline\(E\) & \(2,4,5, \ldots\) & \\
\hline\(T_{1}\) & \(1,3,4,5, \ldots\) & \(\gamma_{i}, \gamma_{t} \gamma_{i}, \gamma_{5} \gamma_{i}, \gamma_{t} \gamma_{5} \gamma_{i}\) \\
\hline\(T_{2}\) & \(2,3,4,5, \ldots\) & \\
\hline
\end{tabular}
- Classification of interpolator basis by representations
- Unique identification of spin nontrivial
```

Dudek et al., PRL 103 262001 (2009)

```

\section*{\(Z_{c}\) Interpolator basis I}
\[
\begin{aligned}
& \mathcal{O}_{1}=\bar{c} \gamma_{i} c[0] \bar{d} \gamma_{5} u[0] \\
& \mathcal{O}_{2}=\bar{c} \gamma_{i} \gamma_{t} c[0] \bar{d} \gamma_{5} u[0] \\
& \mathcal{O}_{3}=\bar{c} \overleftarrow{\nabla}_{j} \gamma_{i} \vec{\nabla}_{j} c[0] \bar{d} \gamma_{5} u[0] \\
& \mathcal{O}_{4}=\bar{c} \overleftarrow{\nabla}_{j} \gamma_{i} \gamma_{t} \vec{\nabla}_{j} c[0] \bar{d} \gamma_{5} u[0] \\
& \mathcal{O}_{5}=\left|\epsilon_{i j k}\right|\left|\epsilon_{k l m}\right| \bar{c} \gamma_{j} \overleftarrow{\nabla}, \vec{\nabla}_{m} c[0] \bar{d} \gamma_{5} u[0] \\
& \mathcal{O}_{6}=\left|\epsilon_{i j k}\right|\left|\epsilon_{k l m}\right| \bar{c} \gamma_{t} \gamma_{j} \overleftarrow{\bar{\nabla}}, \vec{\nabla}_{m} c[0] \bar{d} \gamma_{5} u[0] \\
& \mathcal{O}_{7}=R_{i j k} Q_{k l m} \bar{c} \gamma_{j} \overleftarrow{\nabla} / \vec{\nabla}_{m} c[0] \bar{d} \gamma_{5} u[0] \\
& \mathcal{O}_{8}=R_{i j k} Q_{k l m} \bar{c} \gamma_{t} \gamma_{j} \overleftarrow{\nabla}, \vec{\nabla}_{m} c[0] \bar{d} \gamma_{5} u[0] \\
& \left.\mathcal{O}_{9}=\sum_{e_{k}= \pm e_{x, y, z}} \bar{c} \gamma_{i} c\left[e_{k}\right] \bar{d} \gamma_{5} u\left[-e_{k}\right] \quad\right) \\
& \left.\mathcal{O}_{10}=\bar{c} \gamma_{5} c[0] \bar{d} \gamma_{i} u[0] \quad\right\}\left[\bar{c} \Gamma_{1} c\right]_{1_{c}}\left[\bar{d} \Gamma_{2} u\right]_{1_{c}} \eta_{c} \rho \\
& \mathcal{O}_{11}=\bar{c} \gamma_{5} u[0] \bar{d} \gamma_{i} c[0] \\
& \mathcal{O}_{12}=\bar{c} \gamma_{5} \gamma_{t} u[0] \bar{d} \gamma_{i} \gamma_{t} c[0] \\
& \mathcal{O}_{13}=\bar{c} \gamma_{5} u[1] \bar{d} \gamma_{i} c[-1] \\
& \}\left[\bar{c} \Gamma_{1} u\right]_{1_{c}}\left[\bar{d} \Gamma_{2} c\right]_{1_{c}} D D^{*} \\
& \left.\mathcal{O}_{14}=\epsilon_{i j k} \bar{c} \gamma_{j} u[0] \bar{d} \gamma_{k} c[0] \quad\right\}\left[\bar{c} \Gamma_{1} u\right]_{1_{c}}\left[\bar{d} \Gamma_{2} c\right]_{1_{c}} D^{*} D^{*} \\
& \left.\mathcal{O}_{15}=N_{L}^{3} \epsilon_{a b c} \epsilon_{a b^{\prime} c^{\prime}}\left(\bar{c}_{b} C \gamma_{5} \bar{d}_{c} c_{b^{\prime}} \gamma_{i} C u_{c^{\prime}}-\bar{c}_{b} C \gamma_{i} \bar{d}_{c} c_{b^{\prime}} \gamma_{5} C u_{c^{\prime}}\right)\right\}\left[\bar{c} \Gamma_{1} \bar{d}\right]_{3_{c}}\left[c \Gamma_{2} u\right]_{\overline{3}_{c}} \\
& \left.\mathcal{O}_{16}=N_{L}^{3} \epsilon_{a b c} \epsilon_{a b^{\prime} c^{\prime}}\left(\bar{c}_{b} C \bar{d}_{c} c_{b^{\prime}} \gamma_{i} \gamma_{5} C u_{c^{\prime}}-\bar{c}_{b} C \gamma_{i} \gamma_{5} \bar{d}_{c} c_{b^{\prime}} C u_{c^{\prime}}\right)\right\}\left[\bar{c} \Gamma_{1} \bar{d}\right]_{3_{c}}\left[c \Gamma_{2} u\right]_{\overline{3}_{c}} \\
& \left.\mathcal{O}_{17}=\mathcal{O}_{15} \quad \mathcal{O}_{18}=\mathcal{O}_{16} \quad\right\} \quad N v=32
\end{aligned}
\]

\section*{Technicalities: The "Distillation" method}
```

 Peardon et al. PRD 80, 054506 (2009)
 Morningstar et al. PRD 83, 114505 (2011)

```
- Idea: Construct separable quark smearing operator using low modes of the 3D lattice Laplacian
Spectral decomposition for an \(N \times N\) matrix:
\[
f(A)=\sum_{k=1}^{N} f\left(\lambda^{(k)}\right) v^{(k)} v^{(k) \dagger} .
\]

With \(f\left(\nabla^{2}\right)=\Theta\left(\sigma_{s}^{2}+\nabla^{2}\right)\) (Laplacian-Heaviside (LapH) smearing):
\[
q_{s} \equiv \sum_{k=1}^{N} \Theta\left(\sigma_{s}^{2}+\lambda^{(k)}\right) v^{(k)} v^{(k) \dagger} q=\sum_{k=1}^{N_{v}} v^{(k)} v^{(k) \dagger} q .
\]
- Advantages: momentum projection at source; large interpolator freedom, small storage
- Disadvantages: expensive; unfavorable volume scaling
- Stochastic aboroach (mostlv) eliminates bad volume scalina

\section*{Pion Nucleon scattering in \(J^{P}=\frac{1-}{2}\)}
```

Lang and Verducci, PRD 87 054502 (2013)

```
- Puzzle: Do we extract an energy level related to the \(N^{\star}(1535)\) or do we see the \(N \pi\) threshold?
- To address this: Combined basis of 3-quark and \(N \pi\) interpolators
- Simulation at \(M_{\pi}=266 \mathrm{MeV}, m_{N}=1068 \mathrm{MeV}\) on a 2-flavor sea

Expected energy levels for a single resonance with \(\Gamma_{r}=150 \mathrm{MeV}\) :


\section*{Pion Nucleon scattering in \(J^{P}=\frac{1}{2}^{-} \|\)}

- Spectrum using just 3-quark interpolators can be misleading
- Pattern using combined basis is very similar to experiment
- At physical masses problem is inelastic \(\rightarrow\) much harder```

