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L Nucleon-nucleon interactions

Introduction

NN interactions are a basic building block

Application of ChPT to NN interactions
S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3; PLB 295
(1992) 114, It is already a long story

Weinberg's scheme: Calculate Vjy in ChPT and solve the LS
equation:

Tun(p',p) = VNN(P/,P)+/dPHVNN(P',P”) 5 Tun(p”. p)

m
p2— "2 +ie

C. Ordéiiez, L. Ray and U. van Kolck, PRL 72 (1994) 1982; PRC
53 (1996) 2086.
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- Nucleon-nucleon interactions

e Typical three-momentum cut-offs A ~ 600 MeV are fined tuned
to data.

o NN scattering is nonperturbative: (Anti)bound states, m > M,

- /d4q(q0 +i€) " (q® —ie) " (q® + M7) 72 P(q)

P+gq
Infrared enhancement

1/lal = 1/[a| x m/|al.




Nucleon-Nucleon scattering from dispersion relations and chiral symmetry up to N“LO

- Nucleon-nucleon interactions

Extreme non-relativistic propagator (or Heavy-Baryon propagator)

1
q% +ie

"Pinch” singularity
e The integration contour cannot
—ie be deformed
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- Nucleon-nucleon interactions

Non-relativistic propagator with recoil correction:

1

2 .
P g+ ie
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L Nucleon-nucleon interactions

e Vv is calculated up to next-to-next-to-next-to-leading order
(N3LO) and applied with great phenomenological success

Entem and Machleidt, PLB 254 (2002) 93; PRC 66 (2002) 014002; PRC 68 (2003) 041001

Epelbaum, Glckle, MeiBner, NPA 637 (1998) 107; 671 (2000) 195; 747 (2005) 362

e Remaining cut-off dependence

Chiral counterterms introduced in Vi following naive chiral power
counting are not enough to reabsorb the dependence on the cut-off

Nogga, Timmermans and van Kolck, PRC 72 (2005) 054006

Pavén Valderrama and Arriola, PRC 72 (2005) 054002; 74 (2006) 054001; 74 (2006) 064004

Kaplan, Savage, Wise NPB 478 (1996) 629

Birse, PRC 74 (2006) 014003 ; C.-J. Yang, Elster and Phillips, PRC 80 (2009) 034002; idem 044002

> In Nogga et al. one counterterm is promoted from higher to
lower orders in 3Py, 3P, and 3D, and then stable results for

A < 4 GeV are obtained.

> Higher order contributions would be treated perturbatively

Pavén Valderrama, PRC 83 (2011) 024003; 84 (2011) 064002
B. Long, C.-J. Yang, PRC 84 (2011) 057001; 85 (2011) 034002; 86 (2012) 024001
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L Nucleon-nucleon interactions

e Given an attractive/repulsive singular potential only one/none
counterterm is effective.

Pavén Valderrama and Arriola, Phys.Rev.C72,054002 (2005)
Zeoli et al., Few Body Sys. 54,2191 (2013)

e This procedure is criticized by Epelbaum and Gegelia, Eur.Phys.
J.A41, 341 (2009).

It is not enough to obtain a finite T-matrix in the limit A — oo
One should absorb all divergences from loops in counterterms

To avoid renormalization scheme dependence and violation of
low-energy theorems when A — oo

e Covariant ChPT Epelbaum and Gegelia, Phys.Lett.B716,338 (2012)
Avoid 1/m expansion in nucleon denominators + OPE

Ultraviolet divergences are absorbed by leading S-wave
counterterms

Contrary to the HBChPT case Eiras,Soto, Eur.Phys.J.A17,89(2003)
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- Nucleon-nucleon interactions

e V) is calculated up to next-to-next-to-next-to-leading order
(N3LO) and applied with great phenomenological success

Entem and Machleidt, PLB 254 (2002) 93; PRC 66 (2002) 014002; PRC 68 (2003) 041001

Epelbaum, Glockle, MeiBner, NPA 637 (1998) 107; 671 (2000) 195; 747 (2005) 362

¢ Remaining cut-off dependence

Chiral counterterms introduced in Vi following naive chiral power
counting are not enough to reabsorb the dependence on the cut-off

Nogga, Timmermans and van Kolck, PRC 72 (2005) 054006

Pavén Valderrama and Arriola, PRC 72 (2005) 054002; 74 (2006) 054001; 74 (2006) 064004

Kaplan, Savage, Wise NPB 478 (1996) 629

Birse, PRC 74 (2006) 014003 C.-J. Yang, Elster and Phillips, PRC 80 (2009) 034002; idem 044002

> The main goal of our study is to establish a sound
framework that allows to study NN interactions in chiral EFT
without any regulator dependence.

It is an interesting problem
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L N/D representation

N/D Method

Chew and Mandelstam, Phys. Rev. 119 (1960) 467

A NN partial wave amplitude has two type of cuts:
Unitarity or Right Hand Cut (RHC)

o7 = MPlrrt s o g7 o Ml
A 47
Left Hand Cut (LHC)
p’
o
,,,,, g (p—p)?+ M2
M2 /2
2 s 2 2
=T — 00, —M2/4
P T cosg P €l o0 —M:/4]
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L N/D representation

Cr
R — >
RHC
e—0 -
Nys(A
Tus(A) = Nyes(A) N,¢s(A) has Only LHC

- Dus(A) D jis(A) has Only RHC
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LUncoupled waves: Formalism

Uncoupled Partial Waves

Tyes(A) = Nyis(A)/Des(A)

~ 1 _ :m\/z
SThs(A) p(A) = —

, A>0

SDys(A) = —Nys(A)p(A) , A>0

SN ys(A) = Dys(A) STus(A) , A< —M2/4

A=p? , AA)=STus(A) , A< —M?/4



. . . . . 2
Nucleon-Nucleon scattering from dispersion relations and chiral symmetry up to N“LO

L Uncoupled waves: Formalism

Let us start with one subtraction in D(A) and N(A)

‘COUPLED SYSTEM OF LINEAR INTEGRAL EQUATIONS‘

A—D [ Noes(q
Pust) =1~ /o il A)(Jqsz(i Z7)

A-D [t AJ(S(k2)DJZS(k2)
/ e A -0

A(A) = %Tjgs(A) , A<L
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L Uncoupled waves: Formalism

A [t A gs(K?)Dyes(k?)
Des(A) =1 — ANys(0)g(A, 0) + W/ dk? 2

oo

g(A, k%)

2 1 [T, p(q%)
g(A k%) = 77/0 dq (g2 — A)(q2 — K2

Convergent, p(A) x VA

CHANGE OF VARIABLE:

L
A=—, x€[1,0]
X
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L Uncoupled waves: Formalism

Fredholm Integral Equation of the Second Kind

Dyis(x) = fres(x / dyK(x,y)D(y)

K(xy) = -8 )

T XYy

@ Not Ly for A(A) at NLO and at higher orders in ChPT

@ Not symmetric
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LN /D Representation

The N/D method provides nonperturbative scattering equations
that requires as input A(A) that is calculated in perturbation
theory

e In connection with ChPT this dispersive method was recently
applied to NN scattering in LO: M. Albaladejo and J.A. Oller,
Phys.Rev.C84, 054009 (2011): 86,034005 (2011) employing OPE

NLO: Z.-H.Guo, G. Rios, J.A. Oller, Phys.Rev.C89,014002(2014)
OPE+leading TPE

N2LO: J.A. Oller, arXiv:1402.2449 OPE+leading+subleading TPE
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/ epresentation

L_N/D Representat

High-Energy behavior

o Let [D(A)| < A" for A — o0

N(A) = T(A)D(A)
T(A) = 5(2?2/\_ L a2 | Al 4o

We divide N(A) and D(A) by (A— C)™ with m > n
D(A)

Am

L<C<Q0

— 0, when A — 0

Dispersive integrals are convergent with m > n subtractions
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Ln /D Representation

™

N m—i (A—C)’" ‘ A(k*)D(K?)
7;u,A Q) - /oodkz(k2—A)(k2—C)m

Zm:5' i (A=Q)" /”dqz p(a®)N(q?)

m =1 1S THE MINIMUM
Once-subtracted DRs for N(A)
and D(A)

Unnatural size of S-wave
scattering lengths

@ C could be taken different in D(A) and N(A)
o N(A): C=0
o D(A): One subtraction at C = 0 and the rest at C = —M2.
o Normalization: D(0) =1
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Ln /D Representation

In our study A(A) is given by _7’ the discontinuity across the LHC:
° : OPE
@ NLO: Leading TPE (irreducible) + Once-iterated OPE
@ N?LO: Subleading TPE

Kaiser, Brockmann and Weise, NPA625(1997)758

lim A(A) — A¥2  N2LO, at most

A—o00

A(A) is finite — A NLO, at most

-1

— A LO, at most
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/ epresentation

L_N/D Representat

Existence of solution of the IEs: A(A) = \(—A)’

Change of Variable: x = L/k? y=L/A

1
—L)2 A . D
D(y) =141y MR AT / Dbl
4ry2 4m 0 x7T2y2 VX + N42
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/ epresentation

L_N/D Representat

Kernel:

1
()2 (VX + )

@ It is quadratically integrable for v < —1/2

1 1
/ / dxdy K(x,y)>
0 0

@ The inhomogeneous term is also quadratically integrable
@ Because of Fredholm Theorem — There is a unique solution

@ The eigenvalues have no accumulation point in the finite
domain. Just change infinitesimally ga, c;, etc.
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LN /D Representation

For OPE v = —1 or —2

There is a unique solution when A(A) is given at LO with
the N/D method

In the Lippmann-Schwinger + OPE potential this is not the case.
Singular nature of the OPE potential (1/r3 for r — 0) in the
triplet waves. —Introduction

e Adding more subtractions does not modify the symmetric kernel

A2 > A(K?)D(K?)
2 [ a0

« ~ _
One extra § X — D(y) =y 2"D(y)

The degree of divergence does not increase in the inhomogeneous
term <> We multiply by the extra y
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/ epresentation

L_N/D Representat

NLO: v >1

Integration Interval: x € [¢,1] & — 0"
To recover [0,1] definet =(x —¢)/(1 —¢), u=(y —¢)/(1 —¢)

D) = (1= ) <1+<1 ot )i ’"(_L)z)

N Do(t) (1)
(=Lt [ dt GES!
o e )] T (e o)

With the modified kernel K.(u, t) given by

(1—e) 2
[(fﬂLl%a)(uﬂLﬁ)]wT <\/t+1%5+ \/u+ﬁ)

>0.

K.(u,t) =
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Ln /D Representation

Am

472

HE(U7 t) = Z,Bn_lKa;n(uy t) s

n=1

1
Kemea(u, £) :/ v Ke(u,v) Ken(v, 1) 5 (n>1),
0
K.1(u,t) = Ko(u,t) .

H.>0if A>0

@ v >1/2: For having a cancellation between both terms it is
necessary that A < 0
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LN /D Representation

The subtraction constants have no sign defined.
The factor A" also changes sign according to whether n is even or

odd.

Adding more subtractions increases also the sensitivity to
lower energies
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LN /D Representation

Perturbative calculation of A(A).

@ Irreducible diagrams contributing to A(A)

Amenable to a chiral expansion, much like Viy
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Ln /D Representation

@ Two-nucleon reducible diagrams

ANAANANAN/

Similar size to the other NLO
irreducible diagrams

@ All pion lines must be put on-shell — A < —n>M?2 /4.
@ As n increases their physical contribution fades away.

@ This only occurs for the imaginary part!
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/ epresentation

L_N/D Representat

Chiral scaling of subtraction constants.

The change of the subtraction point makes the subtraction
constants change

A2 A(K?)D(K?
N(A) =11+ 1A+ — dk2M
T

oo (k)2
2 2 2
s B [ a0

V=1 — / dk*A(k*)D (k2)( C)2k2
2k? = C

vy =12+~ /_OO dsz(k2)D(k2)m
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Ln /D Representation

/ S T PN 1 n
= dk“A(k")D(k )m ~ O(p")
c [t 2k? — C _
vy =y + 7T/ dk2A(k2)D(k2)m ~O(p" )

M2
Coefficient A(A) = 0O(p°) O(p? o C ZMTr
121 pO pz ? A(k ) ~ O(p")
1% Piz pO ) D(k2) ~ O(pO)
V3 pt p? D(0) = 1

This chiral power counting coincides with Weinberg power counting
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Ln /D Representation

_ 00 2 2
D) =1+ 32 AAE) [7 g AT

E-C [* 5  p(@®)N(¢)
0o — 0o + - /0 dq q2(q2—E)(q2—C)

Coefficient A(A) = 0O(p°) O(p?)
5o p 2 pO
53 p p2

p(A) = mVA/4m ~ O(p°)
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Ln /D Representation

U, Op ~ O(p—Z(n—l)-‘rm)
for A(A) ~ O(p™)

n<[F] ,suchthat —2(n—1)+m2>0

However, more relevant that the counting is to have a meaningful
IE.

This could eventually require including more subtraction constants.
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Ln /D Representation

Analogy with ChPT, e.g. meson-meson sector O(p*):

3 o] /

s Imfy(s’)
fr = 242 ds’' —— 277
4 = o + 15 + s + - /4m3r s (s’)3(s/—s)

Doing the same
ag=0(p") , o1 = O(p%) , ar = O(p°)

and no more subtractions are included because they would scale
with negative powers (low-energy propagation)

The «; are combination of the L; = O(A?)
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LUncoupled waves: 150

Once-subtracted DR
vy = —4mwas/m~ 31 M2

% — = m /jwdkzw {\/jz _ i}

T 2n2a (k2)2 as

Correlation between a. and rs

g re = 2.92(6) fm
_g Exp: 2.75 + 0.05 fm
Nijmll: 2.67 fm Arriola, Pavén,
10 OPE NLO: n=2 ’,
ol [\%LO n=1— NZLO n=2 nucl-th/0407113
N°LO: n=1 Nijmegen -
1% 50 100 150

p(MeV)



. . . . . 2
Nucleon-Nucleon scattering from dispersion relations and chiral symmetry up to N“LO

LUncoupled waves: 150

A/L dk2%g(;\, ) + D(A) = 1+ A" (A, 0)

D(A) = Do(A) + asD1(A) with Dg 1(A) independent of as

Low-energy correlation:

v_ i Ak D k2
rszao—i-nl-i-az, 27r2/ dk? 1( )\/ k2

as a2

Qo = 2.61 ~2.73 fm y m A(
aq=" 1 k2 [D K2)v/—k2 — Di(K?) }
a1 =-593~ —565fm?, = 22 (k2 ol 3
a2=5902~612fw’.  __m t s A(k )Do(K?)
2T (k2)?

Pavén Valderrama, Ruiz Arriola PRC74(2006)054001: solving a
Lippmann-Schwinger equation with Vjyy that includes OPE+TPE +
boundary conditions + orthogonality of wave functions
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LUncoupled waves: 150

Twice-subtracted DR: 2. [1] is fixed — 1, and §; are fitted

6y = —8.0(3) M2,
vy = —23(1) M *

pred / dr2\ IR ) A ) ( )

At N2LO: 8™ ~ 7.5 M*
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LUncoupled waves: 150

pcotd = _a% + %rsp2 +3 i, vip¥

I's V2 v3 \Z3 Vs V6
NLO 2.32 —1.08 6.3 —36.2 225 —1463
NNLO-T | 2.92(6) —0.32(8) 2.9(1) —27.7(8) 177(4) —1167(30)
NNLO-1T | 2.609(4) —0.657(3) 5.20(2) —30.39(9) 191.9(6) | —1263(3)
A 2.68 —0.61 5.1 —30.0
B 262 ~ 2.6/ | —052~ —048 | 40~4.2 | —20.5~ —19.9
C 2.68 —0.48 2.0 —20.0
v, X 1071 [ vg x 10~ 2 vog X 1073 | vig x 10~ 7

NLO 985 —681 780 —344(3)

NNLO-T | 795(18) —554(12) 393(8) —284(6)

NNLO-l | 857.1(1.9) | —595.7(1.3) | 421.7(9) —304(3)

[A] Epelbaum et al., NPA671,295(2000);
[B] Epelbaum et al., EPJA19,401(2004);

[C] Stoks et al., PRC48,792(1993)
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LUncoupled waves: 150

Quantifying contributions to A(A)

A typical integral from twice-subtracted DR:

A(A+ M2) /L 2 D)D) /°°d ge— 7°p(9°)

2 T ey ¢ — K2)(q2 + ME)
The integral displays the dominant role played by the nearest region in
the LHC
S s ——
N S ——
20}
©
B
‘—4??-50’
ol All —
OPE ----
01 O(pd) TPE =
ol O TPE ‘ ‘ ‘
0 50 100 150 200 250 300

p(Mev)
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L Uncoupled P-waves

Uncoupled P-waves

)\p = lim A(A)

LN YR

Once-subtracted DRs are not meaningful.

Three-time subtracted DRs are needed for 3Py and 3P;

I/2:47Ta\//m N I/3:0>k

OPE
§E 3PO
ke -2
= dy = 2.82(5) M;
% 53 = 0.18(6) M-*

o v & o ®

)

p(MeV)
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L Uncoupled P-waves

OPE
> N2LO
5 > Nijmegen -
g 10
o
«Q_-15
w0
-20

50 100 150 200 250

p(MeV)

Twice-subtracted DRs are
enough
by = 0.4(1) M2
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LUncoupled waves: Higher partial waves £ > 2

A partial wave should vanish as A’ in the limit A — 0% (threshold)

Method: /-TIME-SUBTRACTED DR \
Az/ dk2A k2 DJgs(kz)
(k2)t(k2 — A)
Vi1 =0, lim N(A) — A
A—0

4

, ALt A(K?)D(K?)

i—1 2 2
i=2 -

lim D(A) — 14 O(A)

¢ —1 free parameters: §; (i =2,...,/)
(A) , Principle of maximal smoothness:
— A 0p=0", 2<p<t—-1
d0¢ is the only free parameter
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L Uncoupled D-waves

Uncoupled D-waves

. A(A)
Twice-subtracted DRs Ap = lim (—A)3/2 <0
OPE
. NLO —
N’LO:Bom'
g s Nijrweé_ea 1D2
5. 8y = —0.07(1) M2

0 50 100 150 200 250
p(MeV)
OPE
2 NLO —
N’LO:Bom
_ N°LO =
_@” ® Nijmegen 3 Dz
= _
2 8 = —0.017(3) M2
W 10
5
00 50 100 150 200 250

p(Mev)
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L Uncoupled D-waves

Born approximation

High-¢ partial waves are expected to be perturbative
Al L A(k?)D(K?)
N(A) = — dk? o
W= | @
Al L AB(kz)
Ng(A) = — dk?
W= Wi

Apg(A) only includes irreducible contributions

[For (>2  Np(A) = Viy(A)]

Perturbative phase shifts: dg(A) = p(A)Ng(A)

@ Connection between the subtraction constants v; and ChPT
counterterms
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LUncoupled F—, G— and H-waves

Uncoupled F—, G— and H-waves

{—time subtracted DRs

Standard treatment;
1 free parameter per wave

3('F3) [ded]

OPE
N NL
NLO:Born Pot:Nijmil +
E R R
P(Mev)

¥ g
= =
> 08
8 x
% % o) e
N’LO:Born
1 NELO—
Nijmegen -
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LUncoupled F—, G— and H-waves

Quantifying contributions to A(A)

The perturbative character for £ > 3 can also be seen here:

ie t dk2A(k2)D(k2)

T ) (k%)
o1 o1
4
B — 01
- 0t = 02
& & 03
g 02 g 04
’u‘?'m ?705
Y _ -06
< os All — <o All —
5 OPE- 08 5 OPE-
08 O(pz) TPE 09 O(pz) TPE
o(p®) TPE O(p°) TPE
08 50 100 150 200 250 = 50 100 150 200 250

p(MeV) p(MeV)
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L Coupled waves

Coupled Waves

;plm
4

Sus =1+ T
Along the RHC A >0
Sus - Shs = Shs - Sus =1
cos 2¢ /201 i sin 2¢ e/(91+42) )
- ' ; >
SJIS <isin 2e e’<61+52) Ccos 2¢ 61262 ) |p| - 0

¢ is the mixing angle: i=1((=J-1),i=2({(=J+1)

1 %sin2 2¢e -1
m Ti(A) —r(A)[1+ 1 — cos 2¢ cos 25,-] = —vi(A)
m— ™ _ _zp(A)M = —up(A)

sin 2¢
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LCoupled waves

Ti(A) = roy - (=11, 12, 22)

One proceeds in a coupled-iterative way:
@ We take an input.
@ Solve the integral equations and get new v;;(A).

© Repeat the process until convergence is obtained.
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LCoupled Waves: 351 — 3D1

361 — 3Dy

® Minimum number of subtractions in the DRs: 1 free
parameter, E45 = 2.225 MeV

o
5
g—lD
=
015
of
5
-20
OPE — y\fLQn o
> NLO-—— NZLO-III -
N°LO-I Nijmegen -
o 50 100 150 200 250 300 50 100 150 200 250
p(Mev) p(Mev)

€, [deg]
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3 3

LCoupled Waves: °S; — °D;

L 2 2 5
— _L 2 A (k*)Dui(k?) (1 Amk )
re = o2 at/ dk (k2)2 2 + g11(0 k )

/ ELEC )p(q)

5:(9(50 0 >(977 N2 = Iim( _k3,+;\/z>50

0 5 A—K>
n = —tane; = [D/S ratio]
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LCoupled Waves: 351 — 3D1

at [fm] r¢ [fm] n Ng [fm~— 1 v v3
NLO 5.22 1.47 0.0295 0.714 -0.10572(12) 0.8818(11)
NNLO-I 5.52(3) 1.89(3) 0.0242(3) 0.818(10) 0.157(22) 0.645(9)
NNLO-I | 5.5424% 1.750% 0.02535(13) | 0.78173(2) | 0.0848(4) 0.762(7)
Al 5.4104(20) | 1.7536(25) | 0.0253(2) 0.7830(15) | 0.040(7) 0.673(2)
[B] 5.424 1.753 0.0245 0.046 0.67

v vg X 1071 | vg X 102 | vig X 103
NLO 1867(11) | —1375(11) | 1008(11) —760(12)
NNLO-I | 1161(41) | —840(30) 625(22) —463(17)
NNLO-1l | 1426(13) | —1015(15) | 764(17) —545(20)

[A] de Swart et al., Proceedings of 3rd International Symposium on Dubna Deuteron 95, Dubna, Moscow, July
4-7, 1995, arXiv: nucl-th/9509032

[B] Epelbaum et al., NPA671, 295 (2000).

The differences between NNLO-1 and NNLO-II are much smaller
than in the 1Sy wave
7N physics is more dominant in 35; — 3Dy
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Nucleon-Nucleon scattering from dispersion relations and chiral symmetry up to N“
3 3

LCoupled Waves: °S; — °D;

Twice-subtracted DRs: Eq, ri, at
NNLO-II Results V32 is fitted

@ 3Dy is not accurately reproduced
@ Three-time subtracted DRs for this wave: NNLO-III
o 122 is around a 20% larger than predicted from NNLO-I|

bvs: = O(p) = 0.23 ~ M=

Vprcd

N~ 4M; ~ 500 MeV
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LCoupled waves: 3P2 — 3F2

3P2 _3,_-2

. An(A)
= I a0

3P, requires at least three subtractions 3P, [2] ; 3, [1] ; e [0]

OPE —
NLO-— 08
15| N2LO:Bom 4
NLOE 15
T | Nijmegen—
g | 57
S 525
i >
% &3 oPE—
35 NLO-—
05| _4[N’LOBom
NLO==
451 Nijmegen-——
W @ h 50 100 150 200 250 3
p(Mev) p(MeV)

p(Mev)

Clear improvement compared to the Born approximation in 3F,
and e> without modifying the values of the ¢;'s

The improvement does not come by modifying the potential
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LCoupled waves: 3'D3 - 363

Standard formalism

7
OPE— N’LO:Born OPE—
8 NLO-— Nijmegen—— o NLO
o NLo=a o5 Lo:gom
7 = s NLOE
g 4 g 1 74 Nijmegen - Y
g = =
£ & s ER /s
= o = OPE—
NLO B
2| 2 N’LO:Bom
NLOF .
4 Nijmegen -
B W ™ R ] R ]
P(Mev) p(Mev) p(Mev)

Clear improvement compared to the Born approximation in 3D3
without modifying the values of the ¢;'s

3D3 [1];3G3 [1] ; €3 [0]
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LCoupled waves: 3F4 - 3H4

3,:4 _3H4

Standard formalism

0. 0.2
OPE— OPE—
25 NLO 0.35 NLO 0
N’LO:Bom o3 N’LoBom
_ | Niom ™ NLOE= 02
Nijmegen—— .25F Ni -
g ' go jmegen Foa
s 502 b=
o & 06 OPE—
LS %015
.08 NLO
01 a 2L O
N’ LO,%om
05 005 1 N’LO==
# Ni -
jmegen
R 50100 150 200 250 X = 50 100 150 200 250 3
p(MeV) p(MeV) p(MeV)

Clear improvement compared to the Born approximation in 3F4
without modifying the values of the ¢;'s

*Fa [1] :2Ha [0] ; ea [0]
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LCoupled waves: 3G5 — 3/5

3Gs —3s

Standard formalism

01 02
0 01
0|
=01 =
g \q &oyl
=02 =
Y 202
%o OPE \ % OPE
- NLO— 03 NLO—
oa|NLOBOM N’Lo:gom
N2LOZ= 04f NLOFE
Nijmegen—— Nijmegen——
-0 50 100 150 200 250 3 05 50100 150 200 250 300 -0 50100 150 200 250 3

p(Mev) p(MeV) p(Mev)

Note the improvement in *Gs.

This was not accomplished before.

Neither perturbatively (even following the spectral-function
regularization) nor by iterating V.

A genuine effect of NN rescattering.

3Gs [1]; 35 [1] ; €5 [0]
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L Conclusions

Conclusions

® A(A) is calculated perturbatively in ChPT up to N2LO
OPE, leading and subleading TPE, once-iterated OPE.

@ Accurate reproduction of Nijmegen phase shifts.

@ No need to modify Vyn(A) in order to achieve such accurate
reproduction.

@ Dispersion relations provide a sound framework where NN
rescattering can be studied in a well-defined way and
independent of regulator.
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L Conclusions

@ Correlation between scattering length and effective range in
S-waves ~ 10%

(]

Chiral power counting for the subtraction constants.

/\NN ~ 0.4-0.5 GeV.
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