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Nucleon-nucleon interactions

Introduction

NN interactions are a basic building block

Application of ChPT to NN interactions
S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3; PLB 295
(1992) 114. It is already a long story

Weinberg’s scheme: Calculate VNN in ChPT and solve the LS
equation:

TNN(p
′,p) = VNN(p

′,p) +

∫
dp′′VNN(p

′,p′′)
m

p2 − p′′2 + iǫ
TNN(p

′′,p)

C. Ordóñez, L. Ray and U. van Kolck, PRL 72 (1994) 1982; PRC
53 (1996) 2086.
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Nucleon-nucleon interactions

• Typical three-momentum cut-offs Λ ∼ 600 MeV are fined tuned
to data.

• NN scattering is nonperturbative: (Anti)bound states, m ≫ Mπ

P + q P − q

q

q

PP

∫
d4q (q0 + iǫ)−1(q0 − iǫ)−1(q2 +M2

π)
−2 P(q)

Infrared enhancement

1/|q| → 1/|q| ×m/|q|.
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Nucleon-nucleon interactions

Extreme non-relativistic propagator (or Heavy-Baryon propagator)

1

q0 + iǫ

q0

+iǫ
−iǫ

”Pinch” singularity
The integration contour cannot
be deformed
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Nucleon-nucleon interactions

Non-relativistic propagator with recoil correction:

1

q0 − q2

2m + iǫ

q0

− q2

2m + iǫ

q2

2m − iǫ

∫
dq0 (q0 − q2

2m
+ iǫ)−1(q0 +

q2

2m
− iǫ)−1 = −2πi

m

q2
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Nucleon-nucleon interactions

• VNN is calculated up to next-to-next-to-next-to-leading order
(N3LO) and applied with great phenomenological success
Entem and Machleidt, PLB 254 (2002) 93; PRC 66 (2002) 014002; PRC 68 (2003) 041001

Epelbaum, Glöckle, Meißner, NPA 637 (1998) 107; 671 (2000) 195; 747 (2005) 362

• Remaining cut-off dependence
Chiral counterterms introduced in VNN following naive chiral power
counting are not enough to reabsorb the dependence on the cut-off
Nogga, Timmermans and van Kolck, PRC 72 (2005) 054006

Pavón Valderrama and Arriola, PRC 72 (2005) 054002; 74 (2006) 054001; 74 (2006) 064004

Kaplan, Savage, Wise NPB 478 (1996) 629

Birse, PRC 74 (2006) 014003 ; C.-J. Yang, Elster and Phillips, PRC 80 (2009) 034002; idem 044002.

✄ In Nogga et al. one counterterm is promoted from higher to
lower orders in 3P0,

3P2 and 3D2 and then stable results for
Λ < 4 GeV are obtained.
✄ Higher order contributions would be treated perturbatively

Pavón Valderrama, PRC 83 (2011) 024003; 84 (2011) 064002

B. Long, C.-J. Yang, PRC 84 (2011) 057001; 85 (2011) 034002; 86 (2012) 024001
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Nucleon-nucleon interactions

• Given an attractive/repulsive singular potential only one/none
counterterm is effective.
Pavón Valderrama and Arriola, Phys.Rev.C72,054002 (2005)
Zeoli et al., Few Body Sys. 54,2191 (2013)

• This procedure is criticized by Epelbaum and Gegelia, Eur.Phys.

J.A41, 341 (2009).

It is not enough to obtain a finite T -matrix in the limit Λ → ∞
One should absorb all divergences from loops in counterterms

To avoid renormalization scheme dependence and violation of
low-energy theorems when Λ → ∞

• Covariant ChPT Epelbaum and Gegelia, Phys.Lett.B716,338 (2012)

Avoid 1/m expansion in nucleon denominators + OPE
Ultraviolet divergences are absorbed by leading S-wave
counterterms
Contrary to the HBChPT case Eiras,Soto, Eur.Phys.J.A17,89(2003)
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Nucleon-nucleon interactions

• VNN is calculated up to next-to-next-to-next-to-leading order
(N3LO) and applied with great phenomenological success
Entem and Machleidt, PLB 254 (2002) 93; PRC 66 (2002) 014002; PRC 68 (2003) 041001

Epelbaum, Glöckle, Meißner, NPA 637 (1998) 107; 671 (2000) 195; 747 (2005) 362

• Remaining cut-off dependence
Chiral counterterms introduced in VNN following naive chiral power
counting are not enough to reabsorb the dependence on the cut-off
Nogga, Timmermans and van Kolck, PRC 72 (2005) 054006

Pavón Valderrama and Arriola, PRC 72 (2005) 054002; 74 (2006) 054001; 74 (2006) 064004

Kaplan, Savage, Wise NPB 478 (1996) 629

Birse, PRC 74 (2006) 014003 ; C.-J. Yang, Elster and Phillips, PRC 80 (2009) 034002; idem 044002.

✄ The main goal of our study is to establish a sound
framework that allows to study NN interactions in chiral EFT
without any regulator dependence.

It is an interesting problem
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N/D representation

N/D Method

Chew and Mandelstam, Phys. Rev. 119 (1960) 467

A NN partial wave amplitude has two type of cuts:

Unitarity or Right Hand Cut (RHC)

ℑT =
m|p|
4π

TT † , p2 > 0 −→ ℑT−1 = −m|p|
4π

I

Left Hand Cut (LHC)

p

p′

q
1

(p− p′)2 +M2
π

p2 = − M2
π/2

1− cos θ
→ p2 ∈]−∞,−M2

π/4]
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N/D representation

RHC

ǫ → 0

R → ∞

CI

ǫ → 0

R → ∞
CII

−m2
π
4

LHC

TJℓS(A) =
NJℓS(A)

DJℓS(A)

NJℓS(A) has Only LHC

DJℓS(A) has Only RHC
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Uncoupled waves: Formalism

Uncoupled Partial Waves

TJℓS(A) = NJℓS(A)/DJℓS(A)

ℑ 1

TJℓS(A)
= −ρ(A) ≡ m

√
A

4π
, A > 0

ℑDJℓS(A) = −NJℓS(A)ρ(A) , A > 0

ℑNJℓS(A) = DJℓS(A)ℑTJℓS(A) , A < −M2
π/4

A ≡ |p|2 , ∆(A) = ℑTJℓS(A) , A < −M2
π/4
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Uncoupled waves: Formalism

Let us start with one subtraction in D(A) and N(A)

Coupled system of linear integral equations

DJℓS(A) = 1− A− D

π

∫ ∞

0
dq2

ρ(q2)NJℓS(q
2)

(q2 − A)(q2 − D)

NJℓS(A) = NJℓS(D) +
A− D

π

∫ L

−∞

dk2
∆JℓS(k

2)DJℓS(k
2)

(k2 − A)(k2 − D)

L ≡ −M2
π

4
∆(A) = ℑTJℓS(A) , A < L
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Uncoupled waves: Formalism

DJℓS(A) = 1− ANJℓS(0)g(A, 0) +
A

π

∫ L

−∞

dk2
∆JℓS(k

2)DJℓS(k
2)

k2
g(A, k2)

g(A, k2) =
1

π

∫ +∞

0
dq2

ρ(q2)

(q2 − A)(q2 − k2)

Convergent, ρ(A) ∝
√
A

Change of variable:

A =
L

x
, x ∈ [1, 0]

DJℓS(x) = 1− L

x
NJℓS(0)g(x, 0) +

L

πx

∫ 1

0
dy

∆(y)g(x, y)

y
D(y)
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Uncoupled waves: Formalism

Fredholm Integral Equation of the Second Kind

DJℓS(x) = fJℓS(x) +

∫ 1

0
dyK (x , y)D(y)

K (x , y) =
L

π

g(x, y)

x y
∆(y)

Not L2 for ∆(A) at NLO and at higher orders in ChPT

Not symmetric
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N/D Representation

The N/D method provides nonperturbative scattering equations
that requires as input ∆(A) that is calculated in perturbation
theory

Integrals of infinite extent are convergent by introducing enough
number of subtractions

• In connection with ChPT this dispersive method was recently
applied to NN scattering in LO: M. Albaladejo and J.A. Oller,

Phys.Rev.C84, 054009 (2011); 86,034005 (2011) employing OPE

NLO: Z.-H.Guo, G. Ŕıos, J.A. Oller, Phys.Rev.C89,014002(2014)
OPE+leading TPE

N2LO: J.A. Oller, arXiv:1402.2449 OPE+leading+subleading TPE
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N/D Representation

High-Energy behavior

Let |D(A)| ≤ An for A → ∞

N(A) = T (A)D(A)

T (A) =
S(A)− 1

2ρ(A)
→ A−1/2 , A → +∞

N(A) ≤ An−1/2

We divide N(A) and D(A) by (A− C )m with m > n

D(A)

Am
→ 0 , when A → ∞

L < C < 0

Dispersive integrals are convergent with m > n subtractions
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N/D Representation

D(A) =

m∑

i=1

δi (A− C )m−i − (A− C )m

π

∫
∞

0

dq2
ρ(q2)N(q2)

(q2 − A)(q2 − C )m

N(A) =

m∑

i=1

νi (A− C )m−i +
(A− C )m

π

∫ L

−∞

dk2 ∆(k2)D(k2)

(k2 − A)(k2 − C )m

m = 1 is the minimum

Once-subtracted DRs for N(A)
and D(A)

Unnatural size of S-wave
scattering lengths

C could be taken different in D(A) and N(A)

N(A): C = 0
D(A): One subtraction at C = 0 and the rest at C = −M2

π.
Normalization: D(0) = 1
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N/D Representation

In our study ∆(A) is given by −i
2 the discontinuity across the LHC:

LO: OPE

NLO: Leading TPE (irreducible) + Once-iterated OPE

N2LO: Subleading TPE

Kaiser, Brockmann and Weise, NPA625(1997)758

∆(A) is finite

lim
A→∞

∆(A) → A3/2 N2LO, at most

→ A NLO, at most

→ A−1 LO, at most
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N/D Representation

Existence of solution of the IEs: ∆(A) = λ(−A)γ

Change of Variable: x = L/k2, y = L/A

D(y) = 1 + ν1
m(−L)

1
2

4πy
1
2

+
λm

4π2
(−L)γ+

1
2

∫ 1

0

dx

xγ+
1
2 y

1
2

D(x)√
x +

√
y

Symmetryzing the kernel. Change of function:

D̃(y) = y−
γ
2 D(y)

D̃(y) = y−γ/2 + y−
γ+1
2 ν1

m(−L)
1
2

4π

+
λm

4π2
(−L)γ+

1
2

∫ 1

0
dx

D̃(x)

(xy)
γ+1
2 (

√
x +

√
y)



Nucleon-Nucleon scattering from dispersion relations and chiral symmetry up to N2LO

N/D Representation

Kernel:

K (y , x) =
1

(xy)
γ+1
2 (

√
x +

√
y)

It is quadratically integrable for γ < −1/2

∫ 1

0

∫ 1

0
dxdy K (x , y)2 < ∞

The inhomogeneous term is also quadratically integrable

Because of Fredholm Theorem → There is a unique solution

The eigenvalues have no accumulation point in the finite
domain. Just change infinitesimally gA, ci , etc.
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N/D Representation

For OPE γ = −1 or −2
There is a unique solution when ∆(A) is given at LO with
the N/D method
In the Lippmann-Schwinger + OPE potential this is not the case.
Singular nature of the OPE potential (1/r3 for r → 0) in the
triplet waves. →Introduction

• Adding more subtractions does not modify the symmetric kernel

A2

π

∫
dk2

∆(k2)D(k2)

(k2)2
. . .

One extra L
y
· x
L
−→ D̃(y) = y−

γ
2
+1D(y)

The degree of divergence does not increase in the inhomogeneous
term ↔ We multiply by the extra y
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N/D Representation

NLO: γ ≥ 1

Integration Interval: x ∈ [ε, 1] ε → 0+

To recover [0, 1] define t = (x − ε)/(1− ε), u = (y − ε)/(1− ε)

D̃ε(u) = (1− ε)−
γ

2 (u +
ε

1− ε
)−

γ

2

(
1 + (1− ε)−

1
2 (u +

ε

1− ε
)−

1
2 ν1

m(−L)
1
2

4π

)

+
λm

4π2
(−L)γ+

1
2

∫ 1

0

dt
D̃ε(t) (1− ε)−γ− 1

2

[
(t + ε

1−ε )(u + ε
1−ε )

] γ+1
2
(√

t + ε
1−ε +

√
u + ε

1−ε

)

With the modified kernel Kε(u, t) given by

Kε(u, t) =
(1− ε)−γ− 1

2

[
(t + ε

1−ε)(u + ε
1−ε)

] γ+1
2
(√

t + ε
1−ε +

√
u + ε

1−ε

) > 0 .
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N/D Representation

D̃ε(u) = f (u)+
λm

4π2
(−L)γ+

1
2

∫ 1

0
dt Hε(u, t)f (t)

Hε(u, t) =
∑

n=1

βn−1Kε;n(u, t) ,

Kε;n+1(u, t) =

∫ 1

0
dv Kε(u, v)Kε;n(v , t) , (n ≥ 1) ,

Kε;1(u, t) ≡ Kε(u, t) .

Hε > 0 if λ > 0

γ ≥ 1/2: For having a cancellation between both terms it is
necessary that λ < 0
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N/D Representation

We can get rid of this limitation by adding more

subtractions

The subtraction constants have no sign defined.

The factor An also changes sign according to whether n is even or
odd.

Adding more subtractions increases also the sensitivity to
lower energies
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N/D Representation

Perturbative calculation of ∆(A).

Irreducible diagrams contributing to ∆(A)

Amenable to a chiral expansion, much like VNN
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N/D Representation

Two-nucleon reducible diagrams

Similar size to the other NLO

irreducible diagrams

.

.

.

.

All pion lines must be put on-shell −→ A ≤ −n2M2
π/4.

As n increases their physical contribution fades away.

This only occurs for the imaginary part!
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N/D Representation

Chiral scaling of subtraction constants.

The change of the subtraction point makes the subtraction
constants change

N(A) = ν1 + ν2A+
A2

π

∫ L

−∞

dk2
∆(k2)D(k2)

(k2)2

= ν ′1 + ν ′2A+
(A− C )2

π

∫ L

−∞

dk2
∆(k2)D(k2)

(k2 − C )2

ν ′1 = ν1 −
C 2

π

∫ L

−∞

dk2∆(k2)D(k2)
1

(k2 − C )2k2

ν ′2 = ν2 +
C

π

∫ L

−∞

dk2∆(k2)D(k2)
2k2 − C

(k2 − C )2(k2)2
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N/D Representation

ν ′1 = ν1 −
C 2

π

∫ L

−∞

dk2∆(k2)D(k2)
1

(k2 − C )2k2
∼ O(pn)

ν ′2 = ν2 +
C

π

∫ L

−∞

dk2∆(k2)D(k2)
2k2 − C

(k2 − C )2(k2)2
∼ O(pn−1)

Coefficient ∆(A) = O(p0) O(p2)

ν1 p0 p2

ν2 p−2 p0

ν3 p−4 p−2

C ∼ M2
π

∆(k2) ∼ O(pn)

D(k2) ∼ O(p0)
D(0) = 1

This chiral power counting coincides with Weinberg power counting
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N/D Representation

D(A) = 1 + δ2A− A(A− E )

π

∫ ∞

0
dq2

ρ(q2)N(q2)

q2(q2 − E )(q2 − A)

E −→ C

δ2 → δ2 +
E − C

π

∫ ∞

0
dq2

ρ(q2)N(q2)

q2(q2 − E )(q2 − C )

Coefficient ∆(A) = O(p0) O(p2)

δ2 p−2 p0

δ3 p−4 p−2

ρ(A) = m
√
A/4π ∼ O(p0)

⋆ D(A) is attached to two-nucleon reducible diagrams
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N/D Representation

νn, δn ∼ O(p−2(n−1)+m)

for ∆(A) ∼ O(pm)

How many subtraction to include for a given m?

n ≤ [m2 ] , such that −2(n − 1) +m ≥ 0

However, more relevant that the counting is to have a meaningful
IE.

This could eventually require including more subtraction constants.
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N/D Representation

Analogy with ChPT, e.g. meson-meson sector O(p4):

f4 = α0 + α1s + α2s
2 +

s3

π

∫ ∞

4m2
π

ds ′
Imf4(s

′)

(s ′)3(s ′ − s)

Doing the same

α0 = O(p4) , α1 = O(p2) , α2 = O(p0)

and no more subtractions are included because they would scale
with negative powers (low-energy propagation)

The αi are combination of the Li = O(A0)
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Uncoupled waves: 1S0

Once-subtracted DR
ν1 = −4πas/m∼ 31 M−2

π

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200  250  300

δ(
1 S 0

) 
[d

eg
]

p(MeV)

OPE
NLO: n=1

N2LO: n=1

NLO: n=2
N2LO: n=2

Nijmegen

rs =
m

2π2as

∫

L

−∞

dk
2 ∆(k2)D(k2)

(k2)2

{

√

−k2 −
1

as

}

Correlation between as and rs

rs = 2.92(6) fm

Exp: 2.75± 0.05 fm
NijmII: 2.67 fm Arriola, Pavón,

nucl-th/0407113
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Uncoupled waves: 1S0

−A

π

∫ L

−∞

dk2∆(k2)D(k2)

k2
g(A, k2) + D(A) = 1 + A

4πas
m

g(A, 0)

D(A) = D0(A) + asD1(A) with D0,1(A) independent of as

Low-energy correlation:

rs = α0 +
α−1

as
+

α−2

a2s
,

α0 = 2.61 ∼ 2.73 fm ,

α−1 = −5.93 ∼ −5.65 fm
2 ,

α−2 = 5.92 ∼ 6.12 fm
3 .

α0 =
m

2π2

∫ L

−∞

dk2∆(k2)D1(k
2)

(k2)2

√
−k2

α−1 =
m

2π2

∫ L

−∞

dk2∆(k2)

(k2)2

[
D0(k

2)
√

−k2 − D1(k
2)
]

α−2 = − m

2π2

∫ L

−∞

dk2∆(k2)D0(k
2)

(k2)2

Pavón Valderrama, Ruiz Arriola PRC74(2006)054001: solving a

Lippmann-Schwinger equation with VNN that includes OPE+TPE +

boundary conditions + orthogonality of wave functions
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Uncoupled waves: 1S0

Twice-subtracted DR: as [ν1] is fixed — ν2 and δ2 are fitted

δ2 = −8.0(3) M−2
π ,

ν2 = −23(1) M−4
π .

From the once-subtracted DR:

νpred2 =
1

π

∫ L

−∞

dk2
∆(k2)D(k2)

(k2)2

At N2LO: νpred2 ∼ −7.5 M−4
π
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Uncoupled waves: 1S0

p cot δ = − 1
as

+ 1
2 rsp

2 +
∑

i=2 vip
2i

rs v2 v3 v4 v5 v6
NLO 2.32 −1.08 6.3 −36.2 225 −1463
NNLO-I 2.92(6) −0.32(8) 4.9(1) −27.7(8) 177(4) −1167(30)
NNLO-II 2.699(4) −0.657(3) 5.20(2) −30.39(9) 191.9(6) −1263(3)
[A] 2.68 −0.61 5.1 −30.0
[B] 2.62 ∼ 2.67 −0.52 ∼ −0.48 4.0 ∼ 4.2 −20.5 ∼ −19.9
[C] 2.68 −0.48 4.0 −20.0

v7 × 10−1 v8 × 10−2 v9 × 10−3 v10 × 10−4

NLO 985 −681 480 −344(3)
NNLO-I 795(18) −554(12) 393(8) −284(6)
NNLO-II 857.1(1.9) −595.7(1.3) 421.7(9) −304(3)

[A] Epelbaum et al., NPA671,295(2000);
[B] Epelbaum et al., EPJA19,401(2004);

[C] Stoks et al., PRC48,792(1993)
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Uncoupled waves: 1S0

Quantifying contributions to ∆(A)

A typical integral from twice-subtracted DR:

A(A+M2
π)

π2

∫ L

−∞

dk2∆(k2)D(k2)

(k2)2

∫
∞

0

dq2
q2ρ(q2)

(q2 − A)(q2 − k2)(q2 +M2
π)

The integral displays the dominant role played by the nearest region in

the LHC
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Uncoupled P-waves

Uncoupled P-waves

λP = lim
A→−∞

∆(A)

(−A)(3/2)
> 0 ,

Once-subtracted DRs are not meaningful.

Three-time subtracted DRs are needed for 3P0 and 3P1

ν2 = 4π aV /m , ν3 = 0∗
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Uncoupled P-waves
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Uncoupled waves: Higher partial waves ℓ ≥ 2

A partial wave should vanish as Aℓ in the limit A → 0+ (threshold)

Method: ℓ-time-subtracted DR

N(A) =
Aℓ

π

∫ L

−∞

dk2∆(k2)DJℓS(k
2)

(k2)ℓ(k2 − A)

ν1, . . . , νℓ−1 = 0, lim
A→0

N(A) −→ Aℓ

D(A) = 1 +

ℓ∑

i=2

δiA
i−1 +

Aℓ

π

∫ L

−∞

dk2∆(k2)D(k2)

(k2)ℓ
g(A, k2)

lim
A→0

D(A) −→ 1 +O(A)

lim
A→0

N(A)

D(A)
−→ Aℓ

ℓ− 1 free parameters: δi (i = 2, . . . , ℓ)
Principle of maximal smoothness:
δp = 0∗ , 2 ≤ p ≤ ℓ− 1
δℓ is the only free parameter
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Uncoupled D-waves

Uncoupled D-waves

Twice-subtracted DRs λD = lim
A→−∞

∆(A)

(−A)3/2
< 0
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Uncoupled D-waves

Born approximation

High-ℓ partial waves are expected to be perturbative

N(A) =
Aℓ

π

∫ L

−∞

dk2
∆(k2)D(k2)

(k2)ℓ(k2 − A)

NB(A) =
Aℓ

π

∫ L

−∞

dk2
∆B(k

2)

(k2)ℓ(k2 − A)

∆B(A) only includes irreducible contributions

For ℓ ≥ 2 NB(A) = VNN(A)

Perturbative phase shifts: δB(A) = ρ(A)NB(A)

Connection between the subtraction constants νi and ChPT
counterterms
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Uncoupled F−, G− and H-waves

Uncoupled F−, G− and H-waves

Standard treatment:
ℓ−time subtracted DRs
1 free parameter per wave
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Uncoupled F−, G− and H-waves

Quantifying contributions to ∆(A)

The perturbative character for ℓ ≥ 3 can also be seen here:

Aℓ

π

∫ L

−∞

dk2
∆(k2)D(k2)

(k2)ℓ
g(A, k2)
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Coupled waves

Coupled Waves

SJIS = I + i
|p|m
4π

T

Along the RHC A ≥ 0

SJIS · S†
JIS = S

†
JIS · SJIS = I

SJIS =

(
cos 2ε e i2δ1 i sin 2ε e i(δ1+δ2)

i sin 2ε e i(δ1+δ2) cos 2ε e i2δ2

)
, |p|2 ≥ 0

ε is the mixing angle: i = 1 (ℓ = J − 1), i = 2 (ℓ = J + 1)

Im
1

Tii (A)
= −ρ(A)

[
1 +

1
2 sin

2 2ε

1− cos 2ε cos 2δi

]−1 ≡ −νii (A)

Im
1

T12(A)
= −2ρ(A)

sin (δ1 + δ2)

sin 2ε
≡ −ν12(A)
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Coupled waves

Tij(A) =
Nij(A)

Dij(A)
, (ij = 11, 12, 22)

One proceeds in a coupled-iterative way:

1 We take an input.

2 Solve the integral equations and get new νij(A).

3 Repeat the process until convergence is obtained.
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Coupled Waves: 3S1 − 3D1

3S1 − 3D1

Minimum number of subtractions in the DRs: 1 free
parameter, Ed = 2.225 MeV
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Coupled Waves: 3S1 − 3D1

Correlation between rt and at

rt = − m

2π2at

∫ L

−∞

dk2
∆11(k

2)D11(k
2)

(k2)2

{
1

at
+

4πk2

m
g11(0, k

2)

}

− 8

m

∫ ∞

0
dq2

ν11(q
2)− ρ(q2)

(q2)2

S = O
(

S0 0
0 S2

)
OT , N2

p = lim
A→k2

d

(√
−k2d + i

√
A

)
S0

η = − tan ǫ1 = [D/S ratio]
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Coupled Waves: 3S1 − 3D1

at [fm] rt [fm] η N2
p [fm−1] v2 v3

NLO 5.22 1.47 0.0295 0.714 -0.10572(12) 0.8818(11)
NNLO-I 5.52(3) 1.89(3) 0.0242(3) 0.818(10) 0.157(22) 0.645(9)
NNLO-II 5.5424⋆ 1.759⋆ 0.02535(13) 0.78173(2) 0.0848(4) 0.762(7)
[A] 5.4194(20) 1.7536(25) 0.0253(2) 0.7830(15) 0.040(7) 0.673(2)
[B] 5.424 1.753 0.0245 0.046 0.67

v7 v8 × 10−1 v9 × 10−2 v10 × 10−3

NLO 1867(11) −1375(11) 1008(11) −760(12)
NNLO-I 1161(41) −840(30) 625(22) −463(17)
NNLO-II 1426(13) −1015(15) 764(17) −545(20)

[A] de Swart et al., Proceedings of 3rd International Symposium on Dubna Deuteron 95, Dubna, Moscow, July

4–7, 1995, arXiv: nucl-th/9509032

[B] Epelbaum et al., NPA671, 295 (2000).

The differences between NNLO-I and NNLO-II are much smaller
than in the 1S0 wave
πN physics is more dominant in 3S1 − 3D1
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Coupled Waves: 3S1 − 3D1

Twice-subtracted DRs:
NNLO-II Results

Ed , rt , at
ν122 is fitted

3D1 is not accurately reproduced

Three-time subtracted DRs for this wave: NNLO-III

ν223 is around a 20% larger than predicted from NNLO-II

δν3
νpred3

= O(p) = 0.23 ∼ Mπ

Λ

Λ ∼ 4Mπ ∼ 500 MeV
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Coupled waves: 3P2 − 3F2

3P2 − 3F2

λ11 = lim
A→−∞

∆11(A)

(−A)3/2
> 0 ,

3P2 requires at least three subtractions 3P2 [2] ; 3F2 [1] ; ǫ2 [0]
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Clear improvement compared to the Born approximation in 3F2
and ǫ2 without modifying the values of the ci ’s

The improvement does not come by modifying the potential
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Coupled waves: 3D3 − 3G3

3D3 − 3G3

Standard formalism
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Clear improvement compared to the Born approximation in 3D3

without modifying the values of the ci ’s

3D3 [1] ; 3G3 [1] ; ǫ3 [0]
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Coupled waves: 3F4 − 3H4

3F4 − 3H4

Standard formalism
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Clear improvement compared to the Born approximation in 3F4
without modifying the values of the ci ’s

3F4 [1] ; 3H4 [0] ; ǫ4 [0]
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Coupled waves: 3G5 − 3I5

3G5 − 3I5

Standard formalism
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Note the improvement in 3G5.
This was not accomplished before.
Neither perturbatively (even following the spectral-function
regularization) nor by iterating VNN .
A genuine effect of NN rescattering.

3G5 [1] ; 3I5 [1] ; ǫ5 [0]
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Conclusions

Conclusions

∆(A) is calculated perturbatively in ChPT up to N2LO
OPE, leading and subleading TPE, once-iterated OPE.

Accurate reproduction of Nijmegen phase shifts.

No need to modify VNN(A) in order to achieve such accurate
reproduction.

Dispersion relations provide a sound framework where NN

rescattering can be studied in a well-defined way and
independent of regulator.
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Conclusions

Born approximation is much more dependent on the ci ’s than
the full results.

Correlation between scattering length and effective range in
S-waves ∼ 10%

Chiral power counting for the subtraction constants.

ΛNN ∼ 0.4–0.5 GeV.

Can one connect the δi with the chiral Lagrangians?
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