Hadron-hadron molecules in the heavy hadron spectrum

Bound states and resonances in effective field theory and lattice QCD calculations

Benasque 2014

D.R. Entem

Thanks to my collaborators:

P.G. Ortega, J. Segovia, F. Fernández

University of Salamanca

Outline

Introduction

hadron-hadron states The two-baryon sector: \bullet NN sector • $\Delta \Delta$ states The two-meson sector: • **The** *X*(3872) • The 0^{++} and 1^{--} sectors The baryon-meson sector: • The $\Lambda_c(2940)^+$ • The $X_c(3250)$ Summary

The Model

J. Vijande et al., J. Phys. G 31

Model Results for 1^{--} sector.

(nL)	States	QM	Exp.
(1S)	J/ψ	3096	$3096,\!916\pm0,\!011$
(2S)	$\psi(2S)$	3703	$3686,\!09\pm0,\!04$
(1D)	$\psi(3770)$	3796	$3772 \pm 1,1$
(3 S)	$\psi(4040)$	4097	4039 ± 1
(2D)	$\psi(4160)$	4153	4153 ± 3
(4S)		4389	
(3D)	$\psi(4415)$	4426	4421 ± 4
(5S)		4614	
(4D)		4641	

Masses in MeV of $J^{PC} = 1^{--} c\bar{c}$ mesons (*nL*) refers to the dominant partial wave and QM denotes the results of the model.

N.Brambila et al. Eur. Phys. J. C 71, 1534 (2011)

State	m (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X (3872)	3871.52 ± 0.20	1.3 ± 0.6	$1^{++}/2^{-+}$	$B \to K(\pi^+\pi^- J/\psi)$	Belle [85, 86] (12.8), BABAR [87] (8.6)	2003	OK
		(<2.2)		$p\bar{p} o (\pi^+\pi^- J/\psi) + \cdots$	CDF [88–90] (np), DØ [91] (5.2)		
				$B \to K(\omega J/\psi)$	Belle [92] (4.3), BABAR [93] (4.0)		
				$B \to K(D^{*0}\bar{D^0})$	Belle [94, 95] (6.4), BABAR [96] (4.9)		
				$B \to K(\gamma J/\psi)$	Belle [92] (4.0), BABAR [97, 98] (3.6)		
				$B \to K(\gamma \psi(2S))$	BABAR [98] (3.5), Belle [99] (0.4)		
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$B \to K(\omega J/\psi)$	Belle [100] (8.1), BABAR [101] (19)	2004	OK
				$e^+e^- \to e^+e^-(\omega J/\psi)$	Belle [102] (7.7)		
X (3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$?^{?+}$	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle [103] (6.0)	2007	NC!
				$e^+e^- ightarrow J/\psi \; (\ldots)$	Belle [54] (5.0)		
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \to \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \to \gamma (\pi^+\pi^-J/\psi)$	Belle [104] (7.4)	2007	NC!
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B\to K(\pi^+\chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	$?^{?+}$	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156_{-25}^{+29}	139^{+113}_{-65}	??+	$e^+e^- \to J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!

N.Brambila et al. Eur. Phys. J. C 71, 1534 (2011)

State	<i>m</i> (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- o \gamma (\pi^+\pi^- J/\psi)$	BABAR [108, 109] (8.0)	2005	OK
					CLEO [110] (5.4)		
					Belle [104] (15)		
				$e^+e^- \to (\pi^+\pi^-J/\psi)$	CLEO [111] (11)		
				$e^+e^- \to (\pi^0\pi^0 J/\psi)$	CLEO [111] (5.1)		
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	$?^{?+}$	$B \to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3\substack{+18.4 \\ -10.0}$	0,2++	$e^+e^- \to e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^+$	4443_{-18}^{+24}	107^{+113}_{-71}	?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	$4634^{+\ 9}_{-11}$	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

Meson	Mass (Exp)	Candidate?	J^{PC}	Mass (Th)
Y(4360)	4353 ± 11	$\psi(4S)$	1	4389
X(4630)	4634_{-11}^{+9}	$\psi(5S)$	1	4614
Y(4660)	4664 ± 12	$\psi(4D)$	1	4641
X(4160)	4156 ± 15	η_{c2}	2^{-+}	4166

Candidates for some XYZ mesons in our CQM $c\bar{c}$ spectrum.

No $c\bar{c}$ candidates for X(3872), X(3915), X(3940), G(3900), Y(4008), Y(4140), Y(4260), Y(4274), X(4350),

${}^{3}P_{0}$ model

Pair creation Hamiltonian:

$$\mathcal{H} = g \int d^3 x \bar{\psi}(x) \psi(x)$$

Non relativistic reduction:

$$T = -3\sqrt{2}\gamma' \sum_{\mu} \int d^3p d^3p' \,\delta^{(3)}(p+p') \left[\mathcal{Y}_1\left(\frac{p-p'}{2}\right) b^{\dagger}_{\mu}(p) d^{\dagger}_{\nu}(p') \right]^{C=1,I=0,S=1,J=0}$$

with $\gamma'=2^{5/2}\pi^{1/2}\gamma$, $\gamma=rac{g}{2m}$ (in the light quark sector)

■ Transition potential:

$$\left\langle \phi_{M_1} \phi_{M_2} \beta \right| T \left| \psi_{\alpha} \right\rangle = P h_{\beta \alpha}(P) \delta^{(3)}(\vec{P}_{cm})$$

${}^{3}P_{0}$ results for $c\bar{c}$ strong decays

 γ parameter fitted to $\psi(3770) \rightarrow DD$ Phys. Rev. D 78, 114033 (2008).

Meson	Dominant Mode	Γ_{QM} (MeV)	Γ_{exp} (MeV)
$\psi(3770)$	DD	22,2	$22,4\pm2,5$
	D^+D^-	9,5	$9,5\pm1,4$
	$D^0 \bar{D}^0$	12,7	$12,8\pm1,8$
(4040)	D^*D^*	92,9	80 ± 10
(4160)	D^*D^*	96,8	103 ± 8
(4360)	DD_1	89,8	103 ± 11
(4415)	DD_1	113,1	$119 \pm 16(^{*})$
(4660)	D^*D^*	107,9	42 ± 6

The baryon-baryon sector

The NN **interaction**

$$\begin{split} \psi_B &= \phi_B(\vec{p}_{\xi_1}, \vec{p}_{\xi_2}) \chi_B \xi_c [1^3] \\ \phi_B(\vec{p}_{\xi_1}, \vec{p}_{\xi_2}) &= \left[\frac{2b^2}{\pi} \right]^{\frac{3}{4}} e^{-b^2 p_{\xi_1}^2} \left[\frac{3b^2}{2\pi} \right]^{\frac{3}{4}} e^{-\frac{3b^2}{4} p_{\xi_2}^2} \\ \psi_{B_1 B_2} &= \mathcal{A} \left[\chi(\vec{P}) \psi_{B_1 B_2}^{ST} \right] \\ &= \mathcal{A} \left[\phi_{B_1}(\vec{p}_{\xi_{B_1}}) \phi_{B_2}(\vec{p}_{\xi_{B_2}}) \chi(\vec{P}) \chi_{B_1 B_2}^{ST} \xi_c [2^3] \right] \end{split}$$

111

- 111

111 111

....

- 111

Rayleigh-Ritz variational principle (Resonating Group Method)

$$(\mathcal{H} - E_T) |\psi\rangle = 0 \quad \Rightarrow \quad \langle \delta\psi | (\mathcal{H} - E_T) |\psi\rangle = 0$$
$$\left(\frac{\vec{P}'^2}{2\mu} - E\right) \chi(\vec{P}') + \int \left({}^{\mathrm{RGM}}V_D(\vec{P}',\vec{P}_i) + {}^{\mathrm{RGM}}K(\vec{P}',\vec{P}_i) \right) \chi(\vec{P}_i)d\vec{P}_i = 0$$
$$T^{\alpha'}_{\alpha}(z;p',p) = V^{\alpha'}_{\alpha}(p',p) + \sum_{\alpha''} \int dp'' \, p''^2 \, V^{\alpha'}_{\alpha''}(p',p'') \frac{1}{z - E_{\alpha''}(p'')} T^{\alpha''}_{\alpha}(z;p'',p)$$

Lippmann-Schwinger Equation

111 111

NN System

■ Constituent quark model, Phys. Rev C 62, 034002 (2000)

NN System

■ Constituent quark model, Phys. Rev C 62, 034002 (2000)

NN System

- Constituent quark model, Phys. Rev C 62, 034002 (2000)
- Antisymmetry gives repulsion

	Quark	$\chi {f N}^3 {f L} {f O}$	CD-Bonn	Exp.
$E_D ({\rm MeV})$	2.2246	2.224575	2.224575	2.224575(9)
r_m (fm)	1.985	1.978	1.970	1.97535(85)
$A_S (\mathrm{fm}^{-1/2})$	0.8941	0.8843	0.8846	0.8846(9)
η	0.0250	0.0256	0.0256	0.0256(4)

- Constituent quark model, Phys. Rev C 62, 034002 (2000)
- Antisymmetry gives repulsion
- One bound state in *NN*, what happens in channels where antisymmetry is not present?

INSTITUTE OF PHYSICS PUBLISHING	JOURNAL OF PHYSICS G: N	UCLEAR AND PARTICLE PHYSICS
J. Phys. G: Nucl. Part. Phys. 27 (2001) L1–L7	www.iop.org/Journals/jg	PII: S0954-3899(01)14892-9

LETTER TO THE EDITOR

$\Delta\Delta$ and $\Delta\Delta\Delta$ bound states

A Valcarce¹, H Garcilazo², R D Mota² and F Fernández¹

		B_2
(j,i)	Quark direct	Quark direct + exchan
(0, 1)	188.8	108.4
(0, 3)	6.0	0.4
(1, 0)	193.9	138.5
(1, 2)	70.0	5.7
(2, 1)	76.4	30.5
(2, 3)	35.6	Unbound
(3, 0)	17.4	29.9
(3, 2)	30.7	Unbound

in MeV) of the $\Delta\Delta$ states with total angular momentum j and uark cluster model using only the direct term or the direct plus and in the meson-exchange model.

Meson exchange

2035.3 Unbound 2651.7 Unbound 43.0 Unbound

8.2 Unbound

INSTITUTE OF PHYSICS PUBLISHING	JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS
J. Phys. G: Nucl. Part. Phys. 27 (2001) L1–L7	www.iop.org/Journals/jg PII: S0954-3899(01)14892-9

LETTER TO THE EDITOR

$\Delta\Delta$ and $\Delta\Delta\Delta$ bound states

A Valcarce¹, H Garcilazo², R D Mota² and F Fernández¹

Table 2. Binding energies B_2 (in MeV) of the $\Delta\Delta$ states with total angular momentum j and isospin i obtained in the chiral quark cluster model using only the direct term or the direct plus exchange terms of the interaction and in the meson-exchange model.

	B_2	
Quark direct	Quark direct + exchange	Meson exchange
188.8	108.4	2035.3
6.0	0.4	Unbound
193.9	138.5	2651.7
70.0	5.7	Unbound
76.4	30.5	43.0
35.6	Unbound	Unbound
17.4	29.9	8.2
30.7	Unbound	Unbound
	Quark direct 188.8 6.0 193.9 70.0 76.4 35.6 17.4 30.7	B2 Quark direct Quark direct + exchange 188.8 108.4 6.0 0.4 193.9 138.5 70.0 5.7 76.4 30.5 35.6 Unbound 17.4 29.9 30.7 Unbound

Also in the QDCSM the 3^+ I = 0 state appears J.L. Ping *et al.*, Phys. Rev. C 78 (2009)

The ABC effect (WASA/CELSIUS Collaboration)

PRL 106, 242302 (2011)	PHYSICAL	REVIEW	LETTERS	week ending 17 JUNE 2011
------------------------	----------	--------	---------	-----------------------------

FIG. 2 (color online). Total cross sections obtained from this experiment on $pd \rightarrow d\pi^0 \pi^0 + p_{\text{spectator}}$ for the beam energies $T_p = 1.0 \text{ GeV}$ (triangles), 1.2 GeV (dots), and 1.4 GeV (squares) normalized independently. Shown are the total cross section data after acceptance, efficiency and Fermi motion corrections. The hatched area indicates systematic uncertainties. The drawn lines represent the expected cross sections for the Roper excitation process (dotted) and the *t*-channel $\Delta\Delta$ contribution (dashed) as well as a calculation for a *s*-channel resonance with m = 2.37 GeV and $\Gamma = 68$ MeV (solid).

P. Adlarson,¹ C. Adolph,² W. Augustyniak,³ V. Baru,^{4,5} M. Bashkanov,⁶ T. Bednarski,⁷ F. S. Bergmann,⁸

Abashian-Booth-Crowe Effect in Basic Double-Pionic Fusion: A New Resonance?

I(J^P) = 0(3⁺) resonance
Inconsistency with the NN inelastic cross section?
G. Faldt and C. Wilkin, Phys, Lett. B 701 for π⁰π⁰
M. Albaladejo and E. Oset arXiv:1304.7698 for π⁺π⁻
A posible candidate for a ΔΔ state A. Pricking, M. Bashkanov and H. Clement arXiv:1310:5532

The observables are consistent with a

■ A new proposal as a NN* state D. Bugg Eur. Phys. J A50

The meson-meson sector

Measured Properties of X(3872)

- **Quantum Numbers** $J^{PC} = 1^{++}$ (confirmed by LHCb)
- **Width** : $\Gamma < 1,2MeV$
- Mass : $M_X = 3871,68 \pm 0,17 \ MeV/c^2 \rightarrow$ below $D^0 D^{*0}$ mass threshold of $3871,80 \pm 0,35 \ MeV/c^2$

$$\square \frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 0.8 \pm 0.3$$

$$\blacksquare \frac{\mathcal{B}(X \to J/\psi\gamma)}{\mathcal{B}(X \to J/\psi\pi^+\pi^-)} = 0.33 \pm 0.12$$

 $\square \frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi\pi^+\pi^-)} = 1.1 \pm 0.4$

 $\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi\gamma)} < 2,1$

Measured Properties of X(3872)

- **Quantum Numbers** $J^{PC} = 1^{++}$ (confirmed by LHCb)
- **Width** : $\Gamma < 1,2MeV$
- Mass : $M_X = 3871,68 \pm 0,17 \ MeV/c^2 \rightarrow$ below $D^0 D^{*0}$ mass threshold of $3871,80 \pm 0,35 \ MeV/c^2$

$$\frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 0,8 \pm 0,3$$

$$\frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 0,33 \pm 0,12$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,1 \pm 0,4$$

$$\frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1,1 \pm 0,4$$

We perform a couple channel calculation with DD^* and P-wave $c\bar{c}$ states.

The M_1M_2 system

- \blacksquare **Quark interactions** \rightarrow **Cluster interaction.**
- **\square** For the DD^* system only direct RGM Potential:

■ $\phi_C(\vec{p}_C)$ is the wave function for cluster *C* solution of Schrödinger's equation using Gaussian Expansion Method.

The M_1M_2 system

- \blacksquare **Quark interactions** \rightarrow **Cluster interaction.**
- **\square** For the DD^* system only direct RGM Potential:

■ $\phi_C(\vec{p}_C)$ is the wave function for cluster *C* solution of Schrödinger's equation using Gaussian Expansion Method.

Rearrangement processes (like $DD^* \rightarrow J/\psi\omega$)

Coupling $q\bar{q}$ and $q\bar{q}\bar{q}q$ sectors

Hadronic state: $|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\psi\rangle + \sum_{\beta} \chi_{\beta}(P) |\phi_{M1}\phi_{M2}\beta\rangle$

Solving the coupling with $c\bar{c}$ states \rightarrow Schrödinger type equation:

$$\sum_{\beta} \int \left(H^{M_1 M_2}_{\beta'\beta}(P',P) + V^{eff}_{\beta'\beta}(P',P) \right) \chi_{\beta}(P) P^2 dP = E \chi_{\beta'}(P')$$

with

Lippman-Schwinger equation

$$T^{\beta'\beta}(E;P',P) = V_T^{\beta'\beta}(P',P) + \sum_{\beta''} \int dP'' P''^2 V_T^{\beta'\beta''}(P',P'') \frac{1}{E - E_{\beta''}(P'')} T^{\beta''\beta}(E;P'',P)$$

with $V_T^{\beta'\beta}(P',P) = V^{\beta'\beta}(P',P) + V_{eff}^{\beta'\beta}(P',P), V_{\beta'\beta}^{eff}(P',P) = \sum_{\alpha} \frac{h_{\beta'\alpha}(P')h_{\alpha\beta}(P)}{E-M_{\alpha}}$

Lippman-Schwinger equation

$$T^{\beta'\beta}(E;P',P) = V_T^{\beta'\beta}(P',P) + \sum_{\beta''} \int dP'' P''^2 V_T^{\beta'\beta''}(P',P'') \frac{1}{E - E_{\beta''}(P'')} T^{\beta''\beta}(E;P'',P)$$

with $V_T^{\beta'\beta}(P',P) = V^{\beta'\beta}(P',P) + V_{eff}^{\beta'\beta}(P',P), V_{\beta'\beta}^{eff}(P',P) = \sum_{\alpha} \frac{h_{\beta'\alpha}(P')h_{\alpha\beta}(P)}{E-M_{\alpha}}$ Solution (Baru et al. Eur. Phys. Jour. A 44, 93 (2010))

$$T^{\beta'\beta}(E;P',P) = T_V^{\beta'\beta}(E;P',P) + \sum_{\alpha,\alpha'} \phi^{\beta'\alpha'}(E;P') \Delta_{\alpha'\alpha}^{-1}(E) \bar{\phi}^{\alpha\beta}(E;P)$$

Non resonant contribution

Resonant contribution

with

 $T_{V}^{\beta'\beta}(E;P',P) = V^{\beta'\beta}(P',P) + \sum_{\beta''} \int dP'' P''^{2} V^{\beta'\beta''}(P',P'') \frac{1}{z - E_{\beta''}(P'')} T_{V}^{\beta''\beta}(E;P'',P)$

with

$$\phi^{\alpha\beta'}(E;P) = h_{\alpha\beta'}(P) - \sum_{\beta} \int \frac{T_V^{\beta'\beta}(E;P,q)h_{\alpha\beta}(q)}{q^2/2\mu - E} q^2 dq,$$

$$\bar{\phi}^{\alpha\beta}(E;P) = h_{\alpha\beta}(P) - \sum_{\beta'} \int \frac{h_{\alpha\beta'}(q)T_V^{\beta'\beta}(E;q,P)}{q^2/2\mu - E} q^2 dq$$

Solution (Baru et al. Eur. Phys. Jour. A 44, 93 (2010))

$$T^{\beta'\beta}(E;P',P) = T_V^{\beta'\beta}(E;P',P) + \sum_{\alpha,\alpha'} \phi^{\beta'\alpha'}(E;P')\Delta_{\alpha'\alpha}^{-1}(E)\bar{\phi}^{\alpha\beta}(E;P)$$

Non resonant contribution

Resonant contribution

with

$$\Delta^{\alpha'\alpha}(E) = \left\{ (E - M_{\alpha})\delta^{\alpha'\alpha} + \mathcal{G}^{\alpha'\alpha}(E) \right\}$$
$$\mathcal{G}^{\alpha'\alpha}(E) = \sum_{\beta} \int dq q^2 \frac{\phi^{\alpha\beta}(q, E)h_{\beta\alpha'}(q)}{q^2/2\mu - E}$$

Resonance mass (pole position)

$$\left|\Delta^{\alpha'\alpha}(\bar{E})\right| = \left|(\bar{E} - M_{\alpha})\delta^{\alpha'\alpha} + \mathcal{G}^{\alpha'\alpha}(\bar{E})\right| = 0$$

■ Bare *cc*̄ probabilities

$$\left\{M_{\alpha}\delta^{\alpha\alpha'} - \mathcal{G}^{\alpha'\alpha}(\bar{E})\right\}c_{\alpha'}(\bar{E}) = \bar{E}c_{\alpha}(\bar{E})$$

■ Molecular wave function

$$\chi_{\beta'}(P') = -2\mu_{\beta'} \sum_{\alpha} \frac{\phi_{\beta'\alpha}(E;P')c_{\alpha}}{P'^2 - k_{\beta'}^2}$$

■ Normalization

$$\sum_{\alpha} |c_{\alpha}|^2 + \sum_{\beta} \langle \chi_{\beta} | \chi_{\beta} \rangle = 1$$

Isospin symmetric calculation

 \blacksquare ³ S_1 and ³ D_1 DD^* partial waves included.

Coupling to 1^{++} ground and first excited $c\bar{c}$ states with bare masses within the model:

 $c\bar{c}(1^3P_1) \rightarrow M = 3503,9 \; MeV$ $c\bar{c}(2^3P_1) \rightarrow M = 3947,4 \; MeV.$

First results:

M (MeV)	$c\bar{c}(1^3P_1)$	$c\bar{c}(2^3P_1)$	$D^0 D^{*0}$	$D^{\pm}D^{*\mp}$	Assignment
3936	0 %	79~%	10,5%	10,5%	$\rightarrow X(3940)$
3865	1~%	32~%	$_{33,5\%}$	$_{33,5\%}$	$\rightarrow X(3872)$
3467	95~%	0 %	2,5%	2,5~%	$\rightarrow \chi_{c1}(3510)$

Parameter free calculation.

Isospin breaking

Charge basis \rightarrow Isospin breaking:

$$|D^{\pm}D^{*\mp}\rangle = \frac{1}{\sqrt{2}} (|DD^*I=0\rangle - |DD^*I=1\rangle)$$
$$|D^0D^{*0}\rangle = \frac{1}{\sqrt{2}} (|DD^*I=0\rangle + |DD^*I=1\rangle)$$

$M\left(MeV ight)$	$c\bar{c}(1^3P_1)$	$c\bar{c}(2^3P_1)$	$D^{0}D^{*0}$	$D^{\pm}D^{*\mp}$	Assignment
3937	0~%	79~%	7%	14%	$\rightarrow X(3940)$
3863	1~%	30~%	46~%	23%	$\rightarrow X(3872)$
3467	95~%	0 %	2,5%	2,5~%	$\rightarrow \chi_{c1}(3510)$

Isospin probabilities:

- $\blacksquare I = 0 \rightarrow \mathcal{P} = 66 \%,$
- $\square I = 1 \rightarrow \mathcal{P} = 3\%.$

Dependence on γ

Binding energy very sensitive \rightarrow Variation of γ .

No DD^* **interaction included.** DD^* **interaction included.**

 $D^0 \overline{D}^{*0}$ component $D^+ D^{*-}$ component $c\overline{c}(2P)$ component $c\overline{c}(1P)$ component

Final results

 $^{3}P_{0} \gamma$ strength parametre 25 % smaller $\rightarrow E_{bind} = -0.6 MeV$.

M (MeV)	$c\bar{c}(1^3P_1)$	$c\bar{c}(2^3P_1)$	$D^{0}D^{*0}$	$D^{\pm}D^{*\mp}$	Assignment
3942	0 %	88~%	4%	8 %	$\rightarrow X(3940)$
3871	0 %	7~%	83%	10~%	$\rightarrow X(3872)$
3484	97~%	0 %	1,5%	1,5%	$\rightarrow \chi_{c1}(3510)$

Isospin probabilities:

- $\square I = 0 \rightarrow \mathcal{P} = 70 \%,$
- $\square I = 1 \rightarrow \mathcal{P} = 23\%.$

P.G. Ortega, J. Segovia, DRE, F. Fernández, Phys. Rev. D 81 (2010)

- P.G. Ortega, DRE, F. Fernández, J. Phys. G 40 (2013)
- M. Takizawa, S. Takeuchi, PTEP 9 (2013) at hadron level

Comparison with data

Flatte parametrization

Following V. Baru et al. Phys. Lett. B 586, 53 (2004)

$$F_{DD*}^{\beta}(P, P; E) = -\pi\mu \sum_{\alpha} \frac{h_{\beta\alpha}^{2}(P)}{E - M_{\alpha} + g_{DD*}^{\alpha}(E)}$$

$$g^{\alpha}_{DD^*}(E) = \sum_{\beta} \int \frac{h^2_{\beta\alpha}(P)}{\frac{P^2}{2\mu} - E - i0^+} P^2 dP \sim \bar{E}^{\alpha}_{DD^*} + \frac{i}{2} \Gamma^{\alpha}_{DD^*} + \mathcal{O}(4\mu^2 \epsilon/\Lambda^2)$$

for small binding energies

$$\frac{dBr(B \to KD^0 D^{*0})}{dE} = \mathcal{B}\frac{1}{2\pi} \frac{\Gamma_{D^0 D^{*0}}(E)}{|D(E)|^2}$$
$$\frac{dBr(B \to K\pi^+\pi^- J/\Psi)}{dE} = \mathcal{B}\frac{1}{2\pi} \frac{\Gamma_{\pi^+\pi^- J/\Psi}(E)}{|D(E)|^2}.$$
$$D(E) = E - E_f + \frac{i}{2}(\Gamma_{D^0 D^{*0}} + \Gamma_{D^+ D^{*-}} + \Gamma(E)) + \mathcal{O}(4\mu^2\epsilon/\Lambda^2)$$

We calculate

$$\Gamma_{\pi^{+}\pi^{-}J/\Psi} = \sum_{JL} \int_{0}^{k_{max}} dk \frac{\Gamma_{\rho}}{(M_{X} - E_{\rho} - E_{J/\Psi})^{2} + \frac{\Gamma_{\rho}^{2}}{4}} \left| \mathcal{M}_{X \to \rho J/\Psi}^{JL}(k) \right|^{2}.$$

Belle and BaBar data

 $B \to K \pi^+ \pi^- J / \Psi$ data

solid (dashed) line with (without) resolution function

$$N_{Belle}^{\pi\pi J/\Psi}(E) = 2,5 [\text{MeV}] \left(\frac{131}{8,3\,10^{-6}}\right) \frac{dBr(B \to K\pi^+\pi^- J/\Psi)}{dE}$$
$$N_{BaBar}^{\pi\pi J/\Psi}(E) = 5 [\text{MeV}] \left(\frac{93,4}{8,4\,10^{-6}}\right) \frac{dBr(B \to K\pi^+\pi^- J/\Psi)}{dE}$$

Belle and BaBar data

 $B \to K D^0 \bar{D}^0 \pi^0$ data

solid (dashed) line with (without) resolution function

$$N_{Belle}^{D^0 \bar{D}^0 \pi^0}(E) = 2,0 [MeV] \left(\frac{48,3}{0,73\,10^{-4}}\right) \frac{dBr(B \to KD^0 \bar{D}^0 \pi^0)}{dE}$$
$$N_{BaBar}^{D^0 D^{*0}}(E) = 2,0 [MeV] \left(\frac{33,1}{1,67\,10^{-4}}\right) \frac{dBr(B \to KD^0 \bar{D}^{*0})}{dE}$$

γ	E_{bind}	$c\bar{c}(2^3P_1)$	$D^0 D^{*0}$	$D^{\pm}D^{*\mp}$	$J/\psi ho$	$J/\psi\omega$
0,231	$-0,\!60$	12,40	79,24	7,46	0,49	0,40
0,226	-0,25	8,00	86,61	$4,\!58$	$0,\!53$	$0,\!29$

E_{bind} (MeV)	$\Gamma_{\pi^+\pi^-J/\psi}$	$\Gamma_{\pi^+\pi^-\pi^0 J/\psi}$	R_1
$-0,\!60$	$27,\!61$	14,40	$0,\!52$
-0,25	$24,\!18$	$10,\!64$	$0,\!44$

 $\frac{X(3872) \to \pi^+ \pi^- \pi^0 J/\psi}{X(3872) \to \pi^+ \pi^- J/\psi} = 0.8 \pm 0.3$ R_1

E_{bind} (MeV)	$\Gamma^{VMD}_{J/\psi\gamma}$	$\Gamma^{ANN}_{J/\psi\gamma}$	R_2^M	$\Gamma^{car{c}}_{J/\psi\gamma}$	$R_2^{c\bar{c}}$	R_2
$-0,\!60$	0,014	0,056	0,0025	8,15	0,29	0,30
-0,25	$0,\!011$	$0,\!045$	0,0023	$5,\!25$	$0,\!22$	$0,\!22$

$$R_{1} = \frac{X(3872) \rightarrow \pi^{+}\pi^{-}\pi^{0}J/\psi}{X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi} = 0.8 \pm 0.3$$

$$R_{2} = \frac{\Gamma(X(3872) \rightarrow \gamma J/\psi)}{\Gamma(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)} = 0.14 \pm 0.05 \quad 0.33 \pm 0.12$$

E_{bind} (MeV)	$\Gamma^{ANN}_{\Psi(2S)\gamma}$	R_3^M	$\Gamma^{car{c}}_{\Psi(2S)\gamma}$	$R_3^{c\bar{c}}$	R_3
$-0,\!60$	0,134	0,0048	9,80	$0,\!35$	0,34
-0,25	0,101	0,0042	$6,\!31$	$0,\!26$	$0,\!26$

$$R_{1} = \frac{X(3872) \rightarrow \pi^{+}\pi^{-}\pi^{0}J/\psi}{X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi} = 0.8 \pm 0.3$$

$$R_{2} = \frac{\Gamma(X(3872) \rightarrow \gamma J/\psi)}{\Gamma(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)} = 0.14 \pm 0.05 \quad 0.33 \pm 0.12$$

$$R_{3} = \frac{\Gamma(X(3872) \rightarrow \gamma \psi(2S))}{\Gamma(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)} = 1.1 \pm 0.4$$

Ethim d (MeV)	R_2/R_2
	1.10
$-0,\!60$	1,13
-0,25	$1,\!18$

$$R_{1} = \frac{X(3872) \to \pi^{+}\pi^{-}\pi^{0}J/\psi}{X(3872) \to \pi^{+}\pi^{-}J/\psi} = 0,8 \pm 0,3$$

$$R_{2} = \frac{\Gamma(X(3872) \to \gamma J/\psi)}{\Gamma(X(3872) \to \pi^{+}\pi^{-}J/\psi)} = 0,14 \pm 0,05 \quad 0,33 \pm 0,12$$

$$R_{3} = \frac{\Gamma(X(3872) \to \gamma \psi(2S))}{\Gamma(X(3872) \to \pi^{+}\pi^{-}J/\psi)} = 1,1 \pm 0,4$$

$$\frac{R_{3}}{R_{2}} = \frac{\mathcal{B}(X \to \psi(2S)\gamma)}{\mathcal{B}(X \to J/\psi\gamma)} < 2,1$$

The 0^{++} sector

Bare $c\bar{c} \ 2^3 P_0$ (3909)

Meson channels: $DD + J/\psi\omega + D_sD_s + J/\psi\phi$

			12.000					
Mass(MeV)	$2^{3}P_{0}$	DD	$J/\psi\omega$	$D_s D_s$	$J/\psi\phi$	Γ_{DD}	$\Gamma_{J/\psi\omega}$	$\Gamma_{D_s D_s}$
$\overline{3896,05-i2,10}$	34,22	$46,\!67$	$9,\!41$	$9,\!67$	0,03	3,37	$0,\!83$	_
3970,07 - i94,67	57,27	35, 32	$0,\!15$	5,72	$1,\!54$	$38,\!69$	$2,\!89$	147,76
		E.J. Ei	chten et a	l. Phys. Re	ev. D 73 0	14014 (20)05) (C ³)	
3881, 4 - i30, 75	49	34,22	_	4,41	_			

X(3945) and $Y(3940) \rightarrow X(3915)$

Uehara et al. PRL 104, 092001 $M = 3915 \pm 3 \pm 2 \Gamma = 17 \pm 10 \pm 3 \ e^+e^- \rightarrow e^+e^- \omega J/\psi$

Choi et al. PRL 94, 182002 $M = 3943 \pm 11 \pm 13 \ \Gamma = 87 \pm 22 \pm 26 \ B \rightarrow \omega J/\psi K$

Assumming $\Gamma_{\gamma\gamma}(X(3915)) \sim 1$ KeV and $\Gamma_{\gamma\gamma}(X(3915)) \times \mathcal{B}(X(3915)) \rightarrow J/\psi\omega) = 52 \pm 10 \pm 3$ eV implies $\Gamma_{J\psi\omega} \sim 1$ MeV too big for an OZI suppress decay

F.-K. Guo, Ulf-G. Meissner, PRD86, 091501(R)

For us $\Gamma_{\gamma\gamma}(X(3915)) \times \mathcal{B}(X(3915) \to J/\psi\omega) = 125 \text{ eV}$

The 1^{--} sector

Bare $c\bar{c} \ 3^3S_1$ (4097) and 2^3D_1 (4153)

Meson channels: $DD + DD^* + D^*D^* + D_sD_s + D_sD_s^* + D_s^*D_s^*$

$M\left(MeV ight)$	$3^{3}S_{1}$	$2^{3}D_{1}$	DD	DD^*	D^*D^*	$D_s D_s$	$D_s D_s^*$	$D_s^* D_s^*$
3994,6-i11,60	$31,\!56$	3,00	$2,\!49$	$36,\!44$	17,75	$7,\!53$	0,52	0,71
4048, 4 - i7, 54	$0,\!92$	$36,\!15$	$2,\!99$	$23,\!49$	$25,\!81$	8,86	$0,\!92$	$0,\!85$
4123,9-i71,11	$59,\!01$	$0,\!98$	$2,\!13$	$6,\!84$	19, 19	0,75	$3,\!37$	7,73
		E.J. Eic	hten et a	al. Phys. H	Rev. D 73 0	14014 (20	05) (C^3)	
4038 - i37	44,89	$0,\!16$	2,87	20,36	$23,\!10$	$0,\!98$	1,58	$1,\!08$
(4160) - i24,6	$0,\!09$	$47,\!61$	8,37	$4,\!24$	8,87	$0,\!55$	0,96	$1,\!31$

M	Г	$\Gamma(DD)$	$\Gamma(DD^*)$	$\Gamma(D^*D^*)$	$\Gamma(D_s D_s)$	$\Gamma(D_s D_s^*)$
3994, 6	$23,\!37$	0,12	19,09		$4,\!16$	235
4048, 4	15,09	0,51	$7,\!24$	$4,\!42$	$2,\!92$	
4123,9	$142,\!23$	4,73	7,51	100,03	$3,\!82$	$26,\!15$

The meson-baryon sector

The Λ_c spectrum

$$\Lambda_c^+ I(J^P) = 0(\frac{1}{2}^+) M = 2286,46 \pm 0,14 \text{ MeV}$$

$$\Lambda_c^+(2595) I(J^P) = 0(\frac{1}{2}^-) M = 2592,25 \pm 0,28 \text{ MeV} \Gamma = 2,59 \pm 0,30 \pm 0,47 \text{ MeV}$$

$$\Lambda_c^+(2625) I(J^P) = 0(\frac{3}{2}^-) M = 2628,11 \pm 0,19 \text{ MeV} \Gamma < 0,97 \text{ MeV}$$

$$\Lambda_c^+(2765) \text{ or } \Sigma_c(2765) I(J^P) =?(?^?) M = 2766,6 \pm 2,4 \text{ MeV} \Gamma = 50 \text{ MeV}$$

$$\Lambda_c^+(2880) I(J^P) = 0(\frac{5}{2}^+) M = 2881,53 \pm 0,35 \text{ MeV} \Gamma = 5,8 \pm 1,1 \text{ MeV}$$

$$\Lambda_c^+(2940) I(J^P) = 0(?^?) M = 2939,3^{+1,4}_{-1,5} \text{ MeV} \Gamma = 17^{+8}_{-6} \text{ MeV}$$

The Λ_c spectrum

$$\Lambda_c^+ I(J^P) = 0(\frac{1}{2}^+) M = 2286,46 \pm 0,14 \text{ MeV}$$

$$\Lambda_c^+(2595) I(J^P) = 0(\frac{1}{2}^-) M = 2592,25 \pm 0,28 \text{ MeV} \Gamma = 2,59 \pm 0,30 \pm 0,47 \text{ MeV}$$

$$\Lambda_c^+(2625) I(J^P) = 0(\frac{3}{2}^-) M = 2628,11 \pm 0,19 \text{ MeV} \Gamma < 0,97 \text{ MeV}$$

$$\Lambda_c^+(2765) \text{ or } \Sigma_c(2765) I(J^P) =?(?^?) M = 2766,6 \pm 2,4 \text{ MeV} \Gamma = 50 \text{ MeV}$$

$$\Lambda_c^+(2880) I(J^P) = 0(\frac{5}{2}^+) M = 2881,53 \pm 0,35 \text{ MeV} \Gamma = 5,8 \pm 1,1 \text{ MeV}$$

$$\Lambda_c^+(2940) I(J^P) = 0(?^?) M = 2939,3^{+1,4}_{-1,5} \text{ MeV} \Gamma = 17^{+8}_{-6} \text{ MeV}$$

S. Capstick and N. Isgur, Phys. Rev. D 34

The Λ_c spectrum

$$\Lambda_c^+ I(J^P) = 0(\frac{1}{2}^+) M = 2286,46 \pm 0,14 \text{ MeV}$$

$$\Lambda_c^+(2595) I(J^P) = 0(\frac{1}{2}^-) M = 2592,25 \pm 0,28 \text{ MeV } \Gamma = 2,59 \pm 0,30 \pm 0,47 \text{ MeV}$$

$$\Lambda_c^+(2625) I(J^P) = 0(\frac{3}{2}^-) M = 2628,11 \pm 0,19 \text{ MeV } \Gamma < 0,97 \text{ MeV}$$

$$\Lambda_c^+(2765) \text{ or } \Sigma_c(2765) I(J^P) =?(?^?) M = 2766,6 \pm 2,4 \text{ MeV } \Gamma = 50 \text{ MeV}$$

$$\Lambda_c^+(2880) I(J^P) = 0(\frac{5}{2}^+) M = 2881,53 \pm 0,35 \text{ MeV } \Gamma = 5,8 \pm 1,1 \text{ MeV}$$

$$\Lambda_c^+(2940) I(J^P) = 0(?^?) M = 2939,3^{+1,4}_{-1,5} \text{ MeV } \Gamma = 17^{+8}_{-6} \text{ MeV}$$

S. Capstick and N. Isgur, Phys. Rev. D 34

The $\Lambda_c(2940)^+$

B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 012001 (2007)

FIG. 1. The solid points are the $D^0 p$ invariant mass distribution of the final sample. Also shown are (gray) the contribution from false D^0 candidates estimated from D^0 mass sidebands and (open points) the mass distribution from wrong-sign $\overline{D}^0 p$ candidates. The solid curve is the fit described in the text. The dashed curve is the portion of that fit attributed to combinatorial background.

FIG. 3. The invariant mass distribution of selected D^+p candidates. The curve is the result of the fit described in the text. The curves below are the line shapes of the $\Lambda_c(2880)^+$ and $\Lambda_c(2940)^+$ baryons obtained from the D^0p data, drawn approximately to scale after correcting for selection efficiency and D^0 and D^+ branching fractions.

The $\Lambda_c(2940)^+$

R. Mizuk et al. (Belle Collaboration), Phys. Rev. Lett. 98, 262001 (2007)

FIG. 1 (color online). The invariant mass of the $\Lambda_c^+ \pi^+ \pi^-$ combinations for the $\Sigma_c(2455)$ signal region (histogram) and scaled sidebands (dots with error bars). The fit result (solid curve) and its combinatorial component (dashed curve) are also presented.

The $\Lambda_c(2940)^+$

The $X_c(3250)$

J.P.Lees et al. (BaBar Collaboration), Phys. Rev. D 86, 091102 (2012)

D $\Sigma_c^{++}\pi^-\pi^-$ invariant mass distribution with peaks at 3.25 GeV/c², 3.8 GeV/c² and 4.2 GeV/c² **D** Preliminary Breit-Wigner fit

$$M = 3245 \pm 20 \,\mathrm{MeV/c^2}$$
 $\Gamma = 108 \pm 6 \,\mathrm{MeV}$

The $X_c(3250)$

The $X_c(3250)$

$ND_0^*(2400)$ molecule?

- J. He *et al.*, Eur. Phys. J C 72 (2012)
 - **Effective Lagrangian with** σ , ρ and ω .
 - $\Box I = 1$ and $J^P = 1/2^+$ with $\Lambda \sim 1,2$ GeV.
 - $\Box I = 0$ with $\Lambda \sim 4,2$ GeV.
- J-R. Zhang, Phys. Rev. D 87 (2013)
 - **QCD** sum rules.
 - Realesed the OPE convergence criterion.
 - $\Box I = 1 \ M = 3,18 \pm 0,51 \ \text{GeV.}$
 - **Only weak conclusions can be obtained for the** ND_0^* hypothesis.

The BM system

 $\blacksquare \ Quark \ interactions \rightarrow Cluster \ interaction.$

\square For the ND^* system only direct RGM Potential:

■ $\phi_C(\vec{p}_C)$ is the wave function for cluster *C* solution of Schrödinger's equation using Gaussian Expansion Method.

The BM system

 $\blacksquare \ Quark \ interactions \rightarrow Cluster \ interaction.$

\square For the ND^* system only direct RGM Potential:

■ $\phi_C(\vec{p}_C)$ is the wave function for cluster *C* solution of Schrödinger's equation using Gaussian Expansion Method.

Rearrangement processes (like $ND^* \rightarrow \Sigma_c \pi$)

Charm sector $J^P = 3/2^-$

BaBar				Belle
$M = 2939.8 \pm 1.3 \pm 1.0 MeV/c^2$	29	M	=	$2938,0 \pm 1,3^{+2,0}_{-4,0} MeV/c^{2}$
$1 = 17,5 \pm 5,2 \pm 5,9 MeV/c$		1	=	$13_{-5}^{+}_{-7}$ MeV/C

$M\left(MeV ight)$	$\mathcal{P}_{4_{S_3/2}}$	$\mathcal{P}_{2}{}_{D_3/2}$	$\mathcal{P}_{4}{}_{D_3/2}$	$\mathcal{P}_{D^{*0}p}$	\mathcal{P}_{D^*+n}	$\mathcal{P}_{I=0}$	$\mathcal{P}_{I=1}$
2938.8	96.22	0.86	2.92	63.93	36.07	97.52	2.48

Decay channel	Width(MeV)	decay channel	Width(keV)
$\Lambda_c^+ \to D^0 p$	9.42	$\Lambda_c^+ \to \Sigma_c^{++} \pi^-$	29.7
$\Lambda_c^+ \to D^+ n$	10.74	$\Lambda_c^+ \to \Sigma_c^+ \pi^0$	25.2
		$\Lambda_c^+ \to \Sigma_c^0 \pi^+$	21.1
$\Gamma(total)$	20.2		

Bottom sector $J^P = 3/2^-$

$M\left(MeV ight)$	$\mathcal{P}_{4_{S_3/2}}$	$\mathcal{P}_{2}{}_{D_3/2}$	$\mathcal{P}_{4}{}_{D_3/2}$	$\mathcal{P}_{B^{*-}p}$	$\mathcal{P}_{\bar{B}^{*0}n}$	$\mathcal{P}_{I=0}$	$\mathcal{P}_{I=1}$
6248.3	95.15	1.08	3.77	52.56	47.44	99.91	0.09

Decay channel	Width(MeV)	Decay channel	Width(keV)
$\Lambda_b \to B^- p$	3.69	$\Lambda_b \to \Sigma_b^+ \pi^-$	40.9
$\Lambda_b \to \bar{B}^0 n$	3.75	$\Lambda_b \to \Sigma_b^0 \pi^0$	39.5
		$\Lambda_b \to \Sigma_b^- \pi^+$	38.1
$\Gamma(total)$	7.56		

$ND^{(\ast)}$ and $N\bar{B}^{(\ast)}$ states

J^P	Isospin	Molecule	Mass(MeV)	$E_b(MeV)$	$P_{max}(Channel)$
$\frac{1}{2}$ -	0	DN	2805,24	-1,70	$98,08(^2S_{1/2})$
$\frac{1}{2}$ -	1	D^*N	$2947,\!61$	-0,48	$99,93(^2S_{1/2})$
$\frac{3}{2}$ -	0	D^*N	$2940,\!06$	-8,02	$96,05(^4S_{3/2})$
$\frac{1}{2}^{-}$	0	$\bar{B}N$	6206,11	-12,09	$87,61(^2S_{1/2})$
$\frac{1}{2}^{-}$	1	$\bar{B}N$	$6217,\!83$	-0,36	$99,05(^2S_{1/2})$
$\frac{1}{2}^{-}$	1	\bar{B}^*N	$6260,\!58$	-3,43	$99,86(^2S_{1/2})$
$\frac{3}{2}$ -	0	\bar{B}^*N	$6248,\!87$	$-15,\!15$	$95,07(^4S_{3/2})$

 $\Delta D^{(*)}$ and $\Delta \bar{B}^{(*)}$ states

J^P	Isospin	Molecule	Mass(MeV)	$E_b(MeV)$	$P_{max}(Channel)$
$\frac{1}{2}$ -	2	$D^*\Delta$	3232,70	-6,47	$99,71(^2S_{1/2})$
$\frac{3}{2}$ -	1	$D\Delta$	$3097,\!14$	-0,88	$99,13(^4S_{3/2})$
$\frac{3}{2}$ -	2	$D^*\Delta$	$3238,\!19$	-0,98	$99,69(^2S_{1/2})$
$\frac{5}{2}$ -	1	$D^*\Delta$	$3226,\!05$	-13,12	$97,25(^6S_{5/2})$
$\frac{1}{2}^{-}$	2	$\bar{B}^*\Delta$	$6540,\!88$	-14,21	$99,69(^2S_{1/2})$
$\frac{3}{2}$ -	1	$ar{B}\Delta$	$6498,\!56$	-10,72	$88,14(^4S_{3/2})$
$\frac{3}{2}$ -	2	$ar{B}\Delta$	$6505,\!61$	$-3,\!67$	$94,72(^4S_{3/2})$
$\frac{3}{2}$ -	1	$\bar{B}^*\Delta$	6554,71	-0,39	$97,10(^4S_{3/2})$
$\frac{3}{2}$ -	2	$\bar{B}^*\Delta$	6550, 25	-4,85	$99,48(^4S_{3/2})$
$\frac{5}{2}$ -	1	$\bar{B}^*\Delta$	6531,94	-23,16	$96,76(^6S_{5/2})$

Decays of $\Delta D^{(*)}$ and $\Delta \bar{B}^{(*)}$ states

J^P	Ι		$\Gamma_{D\Delta}$	$\Gamma_{\Sigma_c \rho}$	$\Gamma_{\Sigma_c \pi \pi}$	Γ_{D^*N}	Γ_{DN}	$\Gamma_{D\pi\Delta}$	$\Gamma_{D^*N\pi}$	$\Gamma_{DN\pi}$
$\frac{1}{2}$ -	2	$D^*\Delta$	0,005	0,018	$2,\!60$	0	0	0	111	0
$\frac{3}{2}$ -	1	$D\Delta$	0	0	0	$1,\!31$	0,001	0	0,049	113
$\frac{3}{2}$ -	2	$D^*\Delta$	$6,\!18$	0,007	0	0	0	0,038	114	0
$\frac{5}{2}$ -	1	$D^*\Delta$	0,003	0	0	1,23	$0,\!64$	0	108	0

 $X_c(3250) \to (D^*N)\pi \to (\Sigma_c\pi)\pi$

J^P	Ι		$\Gamma_{\bar{B}\Delta}$	$\Gamma_{\Sigma_b \eta}$	$\Gamma_{\bar{B}^*N}$	$\Gamma_{\bar{B}N}$	$\Gamma_{\bar{B}\pi\Delta}$	$\Gamma_{\bar{B}^*N\pi}$	$\Gamma_{\bar{B}N\pi}$
$\frac{1}{2}$ -	2	$\bar{B}^*\Delta$	0,002	0	0	0	0	111	0
$\frac{3}{2}$ -	1	$\bar{B}\Delta$	0	$0,\!02$	$3,\!91$	$0,\!02$	0	10	98
$\frac{3}{2}$ -	2	$\bar{B}\Delta$	0	0	0	0	0	5	108
$\frac{3}{2}$ -	1	$ar{B}^*\Delta$	$12,\!5$	$0,\!12$	$0,\!224$	0,019	$0,\!076$	115	0
$\frac{3}{2}$ -	2	$\bar{B}^*\Delta$	$19,\!9$	0	0	0	0	114	0
$\frac{5}{2}$ -	1	$ar{B}^*\Delta$	0,001	$0,\!18$	0	0,90	0	108	0

Benasque 2014– p. 43

 $X_c \rightarrow \pi ND^*$ decay

Decay width

$$\begin{split} \Gamma_{X_c^{\Delta D^*} \to (\pi N)D^*} &= 2\pi \int q^2 dq |\langle \pi N D^* | \Gamma_{\pi N \Delta} | X_c^{\Delta D^*} \rangle |^2 \delta(E_f - E_i) \\ &= \int_0^{kmax} dk k^2 |\chi_{\Delta D^*}^{\alpha}(k)|^2 \Gamma_{\Delta}(q) \end{split}$$

with $\Gamma_{\Delta}(q) \sim \Gamma_{\Delta}$ or $\Gamma_{\Delta}(q) \sim \Gamma_{\Delta} \left(rac{q}{q_{\Delta}}
ight)^3$.

J^P	Ι	Mass (MeV/ c^2)	$\Gamma_D * {}_N \pi$ (MeV)	$\Gamma'_{D^*N\pi}$ (MeV)	$P_{max}(Channel)$
$\frac{1}{2}^{-}$	2	3232.7	111	78	99.71($^2S_{1/2}$)
$\frac{3}{2}$ -	2	3238.2	114	102	99.69(⁴ S _{3/2})
$\frac{5}{2}$ -	1	3226.1	108	63	97.25($^{6}S_{5/2}$)
	20	2. 69 - 18	1 8 A A A		

J^P	Ι	Mass (MeV/ c^2)	$\Gamma_{ar{B}^*N\pi}$ (MeV)	$\Gamma'_{\bar{B}^* N \pi}$ (MeV)	$P_{max}(Channel)$
$\frac{1}{2}$ -	2	6540.9	111	63	99.69(² S _{1/2})
$\frac{1}{2}$ -	1	6554.7	115	109	97.10(⁴ S _{3/2})
$\frac{1}{3}{\frac{1}{2}}$ -	2	6550.2	114	87	99.48(⁴ S _{3/2})
$\frac{1}{5} - \frac{1}{2}$	1	6531.9	108	49	96.76(⁶ S _{5/2})

Summary

