Determining the three-nucleon force from three-nucleon data

Luca Girlanda

Università del Salento \& INFN Lecce

work in progress
in collaboration with Alejandro Kievsky and Michele Viviani (INFN Pisa)

The problem:

providing a realistic three-nucleon force

The problem:

providing a realistic three-nucleon force we are not yet there: A_{y} puzzle and other problems in the 3 N continuum
two options

- consistent scheme: ChPT, Δ-full, pionless,... perhaps predictive (convergence?) \longrightarrow not necessarily realistic

The problem:

providing a realistic three-nucleon force we are not yet there: A_{y} puzzle and other problems in the 3 N continuum
two options

- consistent scheme: ChPT, Δ-full, pionless,... perhaps predictive (convergence?) \longrightarrow not necessarily realistic
- phenomenological scheme: build a realistic 3NF associated to a given realistic NN potential
but a guidance is needed from theory

The problem:

providing a realistic three-nucleon force we are not yet there: A_{y} puzzle and other problems in the 3 N continuum
two options

- consistent scheme: ChPT, Δ-full, pionless,... perhaps predictive (convergence?) \longrightarrow not necessarily realistic
- phenomenological scheme: build a realistic 3NF associated to a given realistic NN potential but a guidance is needed from theory
we explore the second option

The problem:

providing a realistic three-nucleon force we are not yet there: A_{y} puzzle
and other problems in the 3 N continuum
two options

- consistent scheme: ChPT, Δ-full, pionless,... perhaps predictive (convergence?) \longrightarrow not necessarily realistic
- phenomenological scheme: build a realistic 3NF associated to a given realistic NN potential but a guidance is needed from theory
we explore the second option in particular, since A_{y} is a puzzle only at very low-energy, we focus on the subleading contact 3NF

Ay puzzles

- notice that $p-{ }^{3} \mathrm{He} A_{y}$ is almost solved by chiral 3NF at N2LO (or by AV18+IL7)
[Viviani et al. PRL111 (2013) 172302]

Ay puzzles

- notice that $p-{ }^{3} \mathrm{He} A_{y}$ is almost solved by chiral 3NF at N2LO (or by AV18+IL7)
[Viviani et al. PRL111 (2013) 172302]

- for $p-d$ the discrepancy remains at the $\sim 20 \%$ level

The pragmatic approach

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs

The pragmatic approach

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs
- is should be seen whether this will change at N3LO? is convergence fast enough? (cfr. H. Krebs' talk)

The pragmatic approach

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs
- is should be seen whether this will change at N3LO? is convergence fast enough? (cfr. H. Krebs' talk)
- prospects for definite improvements at N4LO: 10 new LECs for contact interaction, unconstrained by $\chi \mathrm{S}$ [LG et al. PRC78 (2011) 014001]

The pragmatic approach

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs
- is should be seen whether this will change at N3LO? is convergence fast enough? (cfr. H. Krebs' talk)
- prospects for definite improvements at N4LO: 10 new LECs for contact interaction, unconstrained by $\chi \mathrm{S}$ [LG et al. PRC78 (2011) 014001]
- consistency would require to consider them together with other pion-exchange 3NF at N4LO (and with a N4LO NN potential), or within $A E F T$

The pragmatic approach

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs
- is should be seen whether this will change at N3LO? is convergence fast enough? (cfr. H. Krebs' talk)
- prospects for definite improvements at N4LO: 10 new LECs for contact interaction, unconstrained by $\chi \mathrm{S}$ [LG et al. PRC78 (2011) 014001]
- consistency would require to consider them together with other pion-exchange 3NF at N4LO (and with a N4LO NN potential), or within $\mathbb{A E F T}$
we treat the 10 subleading contact terms as remainders that can bring a given model of NN+3NF in closer agreement with data, with $\chi^{2} \sim 1$

The pragmatic approach

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs
- is should be seen whether this will change at N3LO? is convergence fast enough? (cfr. H. Krebs' talk)
- prospects for definite improvements at N4LO: 10 new LECs for contact interaction, unconstrained by $\chi \mathrm{S}$ [LG et al. PRC78 (2011) 014001]
- consistency would require to consider them together with other pion-exchange 3NF at N4LO (and with a N4LO NN potential), or within $A E F T$
we treat the 10 subleading contact terms as remainders that can bring a given model of NN+3NF in closer agreement with data, with $\chi^{2} \sim 1$
we start with the AV18 NN potential, in the absence of further 3NF

Contact terms - leading order

At leading order (no derivatives) the most general effective Lagrangian satisfying rotational, parity, time-reversal and isospin symmetry is

$$
\begin{aligned}
\mathcal{L} \equiv & -\sum_{i}^{6} E_{i} O_{i}=-E_{1} N^{\dagger} N N^{\dagger} N N^{\dagger} N-E_{2} N^{\dagger} \sigma^{i} N N^{\dagger} \sigma^{i} N N^{\dagger} N \\
& -E_{3} N^{\dagger} \tau^{a} N N^{\dagger} \tau^{a} N N^{\dagger} N-E_{4} N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} N \\
& -E_{5} N^{\dagger} \sigma^{i} N N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \tau^{a} N-E_{6} \epsilon^{i j k} \epsilon^{a b c} N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \sigma^{j} \tau^{b} N N^{\dagger} \sigma^{k} \tau^{c} N
\end{aligned}
$$

Contact terms - leading order

At leading order (no derivatives) the most general effective Lagrangian satisfying rotational, parity, time-reversal and isospin symmetry is

$$
\begin{aligned}
\mathcal{L} \equiv & -\sum_{i}^{6} E_{i} O_{i}=-E_{1} N^{\dagger} N N^{\dagger} N N^{\dagger} N-E_{2} N^{\dagger} \sigma^{i} N N^{\dagger} \sigma^{i} N N^{\dagger} N \\
& -E_{3} N^{\dagger} \tau^{a} N N^{\dagger} \tau^{a} N N^{\dagger} N-E_{4} N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} N \\
& -E_{5} N^{\dagger} \sigma^{i} N N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \tau^{a} N-E_{6} \epsilon^{i j k} \epsilon^{a b c} N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \sigma^{j} \tau^{b} N N^{\dagger} \sigma^{k} \tau^{c} N
\end{aligned}
$$

but the 6 operators are redundant. Ultimately, this is due to the anticommuting nature of the nucleon fields $N(x)$ and to Fierz-like identities

$$
\begin{aligned}
& (\mathbf{1})[\mathbf{1}]=\frac{1}{2}(\mathbf{1}][\mathbf{1})+\frac{1}{2}(\boldsymbol{\sigma}] \cdot[\boldsymbol{\sigma}) \\
& \left(\sigma^{i}\right)[\mathbf{1}]=\frac{1}{2}\left(\sigma^{i}\right][\mathbf{1})+\frac{1}{2}(\mathbf{1}]\left[\sigma^{i}\right)-\frac{i}{2} \epsilon^{i j k}\left(\sigma^{j}\right]\left[\sigma^{k}\right) \\
& \left(\sigma^{i}\right)\left[\sigma^{j}\right]=\frac{1}{2}\left\{\delta^{i j}(\mathbf{1}][\mathbf{1})-\delta^{i j}(\boldsymbol{\sigma}] \cdot[\boldsymbol{\sigma})+\left(\sigma^{i}\right]\left[\sigma^{j}\right)+\left(\sigma^{j}\right]\left[\sigma^{i}\right)+i \epsilon^{i j k}\left(\sigma^{k}\right][\mathbf{1})-i \epsilon^{i j k}(\mathbf{1}]\left[\sigma^{k}\right)\right\}
\end{aligned}
$$

Redundancies of contact operators

 Simultaneous Fierz rearrangements of spin and isospin indeces of a given pair of nucleon fields allow to derive linear relations, e.g.$$
\begin{aligned}
& O_{1}=-\frac{1}{4}\left(O_{1}+O_{2}+O_{3}+O_{4}\right) \\
& O_{2}=-\frac{1}{2}\left(O_{2}+O_{5}\right) \\
& O_{3}=-\frac{1}{2}\left(O_{3}+O_{5}\right) \\
& O_{4}=-\frac{1}{4}\left(2 O_{4}+2 O_{5}-O_{6}\right) \\
& O_{5}=-\frac{1}{2}\left(3 O_{2}-O_{5}\right) \\
& O_{6}=2\left(O_{4}-O_{5}\right)
\end{aligned}
$$

As a result, there is only one independent operator and one can choose anyone of those, e.g. $V=E \sum_{i j k} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}$

Redundancies of contact operators

 Simultaneous Fierz rearrangements of spin and isospin indeces of a given pair of nucleon fields allow to derive linear relations, e.g.$$
\begin{aligned}
& O_{1}=-\frac{1}{4}\left(O_{1}+O_{2}+O_{3}+O_{4}\right) \\
& O_{2}=-\frac{2}{2}\left(O_{2}+O_{5}\right) \\
& O_{3}=-\frac{1}{2}\left(O_{3}+O_{5}\right) \\
& O_{4}=-\frac{1}{4}\left(2 O_{4}+2 O_{5}-O_{6}\right) \\
& O_{5}=-\frac{1}{2}\left(3 O_{2}-O_{5}\right) \\
& O_{6}=2\left(O_{4}-O_{5}\right)
\end{aligned}
$$

As a result, there is only one independent operator and one can choose anyone of those, e.g. $V=E \sum_{i j k} \tau_{i} \cdot \tau_{j}$ Transforming to coordinate space, we need a momentum cutoff, e.g.

$$
V \sim \sum_{i j k} \tau_{i} \cdot \tau_{j} Z_{0}\left(r_{i k}\right) Z_{0}\left(r_{j k}\right)
$$

which introduces a difference between the choices of the operator.

Redundancies of contact operators

 Simultaneous Fierz rearrangements of spin and isospin indeces of a given pair of nucleon fields allow to derive linear relations, e.g.$$
\begin{aligned}
& O_{1}=-\frac{1}{4}\left(O_{1}+O_{2}+O_{3}+O_{4}\right) \\
& O_{2}=-\frac{1}{2}\left(O_{2}+O_{5}\right) \\
& O_{3}=-\frac{1}{2}\left(O_{3}+O_{5}\right) \\
& O_{4}=-\frac{1}{4}\left(2 O_{4}+2 O_{5}-O_{6}\right) \\
& O_{5}=-\frac{1}{2}\left(3 O_{2}-O_{5}\right) \\
& O_{6}=2\left(O_{4}-O_{5}\right)
\end{aligned}
$$

As a result, there is only one independent operator and one can choose anyone of those, e.g. $V=E \sum_{i j k} \tau_{i} \cdot \tau_{j}$ Transforming to coordinate space, we need a momentum cutoff, e.g.

$$
V \sim \sum_{i j k} \tau_{i} \cdot \tau_{j} Z_{0}\left(r_{i k}\right) Z_{0}\left(r_{j k}\right)
$$

which introduces a difference between the choices of the operator. Such difference is a cutoff effect, beyond the reach of a leading order description, to be regarded as a theoretical uncertainty

Contact terms - subleading order

Parity invariance requires that the subleading 3 N contact Lagrangian contain 2 gradients
Using translational invariance the possible space-structures are

$$
\begin{aligned}
& X_{,, i j}^{+}=\left(N^{\dagger} \overleftrightarrow{\nabla}_{i} N\right)\left(N^{\dagger} \overleftrightarrow{\nabla}_{j} N\right)\left(N^{\dagger} N\right) \\
& X_{B, i j}^{+}=\nabla_{i}\left(N^{\dagger} N\right) \nabla_{j}\left(N^{\dagger} N\right)\left(N^{\dagger} N\right) \\
& x_{C, i j}^{-}=i \nabla_{i}\left(N^{\dagger} N\right)\left(N^{\dagger} \ddot{\nabla}_{j} N\right)\left(N^{\dagger} N\right) \\
& X_{D, i j}^{+}=\left(N^{\dagger} \overleftrightarrow{\nabla}_{i} \ddot{\nabla}_{j} N\right)\left(N^{\dagger} N\right)\left(N^{\dagger} N\right),
\end{aligned}
$$

to be combined with all possible isospin invariant structures

$$
T^{+}=\mathbf{1}, \quad \tau_{1} \cdot \tau_{2}, \quad \tau_{1} \cdot \tau_{3}, \quad \tau_{2} \cdot \tau_{3}, \quad T^{-}=\tau_{1} \times \tau_{2} \cdot \tau_{3}
$$

and contracted in all possible time-reversal invariant ways with spin matrices

As a result, we get a list of 146 operators

Fierz constraints

As before, a set of linear relations among the 146 operators can be found by using Fierz's reshuffling, which in this case also involves the fields' derivatives: e.g. under exchange of nucleons 1-2

$$
\overleftrightarrow{\nabla}_{1} \rightarrow \frac{1}{2}\left(\vec{\nabla}_{2}+\overleftrightarrow{\nabla}_{2}-\vec{\nabla}_{1}+\overleftrightarrow{\nabla}_{1}\right), \quad \vec{\nabla}_{1} \rightarrow \frac{1}{2}\left(\vec{\nabla}_{2}+\overleftrightarrow{\nabla}_{2}+\vec{\nabla}_{1}-\overleftrightarrow{\nabla}_{1}\right)
$$

Out of the 3×146 relations, 132 are linearly independent \Longrightarrow we are left with 14 independent operators

Constraints from relativity

We still have to impose the requirements of Poincaré covariance They can be implemented order by order in the low-energy expansion As a result, the subleading 3 N effective Hamiltonian consists of

- fixed terms (relativistic corrections to the lower order terms)
- free terms, which have to commute with the lowest order boost operator \mathbf{K}_{0}
with the choice $N(x)=\int \frac{d \mathbf{p}}{(2 \pi)^{3}} b_{s}(\mathbf{p}) \chi_{s} \mathrm{e}^{-i p \cdot x} \quad \mathbf{K}_{0}$ acts as

$$
\left[\mathbf{K}_{0}, b_{s}(\mathbf{p})\right]=-i m \nabla_{\mathbf{p}} b_{s}(\mathbf{p})
$$

and only 10 independent combinations of the 14 operators can be found to commute with \mathbf{K}_{0}

Subleading contact potential

Choosing a momentum cutoff depending only on momentum transfers the potential is local incoordinate space

$$
\begin{aligned}
V= & \sum_{i \neq j \neq k}\left(E_{1}+E_{2} \tau_{i} \cdot \tau_{j}+E_{3} \sigma_{i} \cdot \sigma_{j}+E_{4} \tau_{i} \cdot \tau_{j} \sigma_{i} \cdot \sigma_{j}\right)\left[Z_{0}^{\prime \prime}\left(r_{i j}\right)+2 \frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}}\right] Z_{0}\left(r_{i k}\right) \\
& +\left(E_{5}+E_{6} \tau_{i} \cdot \tau_{j}\right) S_{i j}\left[Z_{0}^{\prime \prime}\left(r_{i j}\right)-\frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}}\right] Z_{0}\left(r_{i k}\right) \\
& \left.+\left(E_{7}+E_{8} \tau_{i} \cdot \boldsymbol{\tau}_{k}\right)(\mathbf{L} \cdot \mathbf{S})\right)_{i j} \frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}} Z_{0}\left(r_{i k}\right) \\
& +\left(E_{9}+E_{10} \tau_{j} \cdot \tau_{k}\right) \sigma_{j} \cdot \hat{\mathbf{r}}_{i j} \sigma_{k} \cdot \hat{r}_{i k} Z_{0}^{\prime}\left(r_{i j}\right) Z_{0}^{\prime}\left(r_{i k}\right)
\end{aligned}
$$

Subleading contact potential

Choosing a momentum cutoff depending only on momentum transfers the potential is local incoordinate space

$$
\begin{aligned}
V= & \sum_{i \neq j \neq k}\left(E_{1}+E_{2} \tau_{i} \cdot \tau_{j}+E_{3} \sigma_{i} \cdot \sigma_{j}+E_{4} \tau_{i} \cdot \tau_{j} \sigma_{i} \cdot \sigma_{j}\right)\left[Z_{0}^{\prime \prime}\left(r_{i j}\right)+2 \frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}}\right] Z_{0}\left(r_{i k}\right) \\
& +\left(E_{5}+E_{6} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}\right) S_{i j}\left[Z_{0}^{\prime \prime}\left(r_{i j}\right)-\frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}}\right] Z_{0}\left(r_{i k}\right) \\
& +\left(E_{7}+E_{8} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{k}\right)(\mathbf{L} \cdot \mathbf{S})_{i j} \frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}} Z_{0}\left(r_{i k}\right) \\
& +\left(E_{9}+E_{10} \boldsymbol{\tau}_{j} \cdot \boldsymbol{\tau}_{k}\right) \boldsymbol{\sigma}_{j} \cdot \hat{\mathbf{r}}_{i j} \boldsymbol{\sigma}_{k} \cdot \hat{\mathbf{r}}_{i k} Z_{0}^{\prime}\left(r_{i j}\right) Z_{0}^{\prime}\left(r_{i k}\right)
\end{aligned}
$$

Some of the spin-isospin structures, which were equivalent up to cutoff effects, are resolved at the two-derivative level.

Subleading contact potential

Choosing a momentum cutoff depending only on momentum transfers the potential is local incoordinate space

$$
\begin{aligned}
V= & \sum_{i \neq j \neq k}\left(E_{1}+E_{2} \tau_{i} \cdot \tau_{j}+E_{3} \sigma_{i} \cdot \sigma_{j}+E_{4} \tau_{i} \cdot \tau_{j} \sigma_{i} \cdot \sigma_{j}\right)\left[Z_{0}^{\prime \prime}\left(r_{i j}\right)+2 \frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}}\right] Z_{0}\left(r_{i k}\right) \\
& +\left(E_{5}+E_{6} \tau_{i} \cdot \tau_{j}\right) S_{i j}\left[Z_{0}^{\prime \prime}\left(r_{i j}\right)-\frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}}\right] Z_{0}\left(r_{i k}\right) \\
& +\left(E_{7}+E_{8} \tau_{i} \cdot \boldsymbol{\tau}_{k}\right)(\mathbf{L} \cdot \mathbf{S})_{i j} Z_{0}^{\prime}\left(r_{i j}\right) Z_{0}\left(r_{i k}\right) \\
& +\left(E_{9}+E_{10} \tau_{j} \cdot \tau_{k}\right) \sigma_{j} \cdot \hat{\mathbf{r}}_{i j} \sigma_{k} \cdot \hat{r}_{i k} Z_{0}^{\prime}\left(r_{i j}\right) Z_{0}^{\prime}\left(r_{i k}\right)
\end{aligned}
$$

Some of the spin-isospin structures, which were equivalent up to cutoff effects, are resolved at the two-derivative level. Most terms are ordinary 2-body interactions between particles ij with a further dependence on the coordinate of particle k

Subleading contact potential

Choosing a momentum cutoff depending only on momentum transfers the potential is local incoordinate space

$$
\begin{aligned}
V= & \sum_{i \neq j \neq k}\left(E_{1}+E_{2} \tau_{i} \cdot \tau_{j}+E_{3} \sigma_{i} \cdot \sigma_{j}+E_{4} \tau_{i} \cdot \tau_{j} \sigma_{i} \cdot \sigma_{j}\right)\left[Z_{0}^{\prime \prime}\left(r_{i j}\right)+2 \frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}}\right] Z_{0}\left(r_{i k}\right) \\
& +\left(E_{5}+E_{6} \tau_{i} \cdot \tau_{j}\right) S_{i j}\left[Z_{0}^{\prime \prime}\left(r_{i j}\right)-\frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}}\right] Z_{0}\left(r_{i k}\right) \\
& \left.+\left(E_{7}+E_{8} \tau_{i} \cdot \tau_{k}\right)(L \cdot \mathbf{S})\right)_{i j} \frac{Z_{0}^{\prime}\left(r_{i j}\right)}{r_{i j}} Z_{0}\left(r_{i k}\right) \\
& +\left(E_{9}+E_{10} \tau_{j} \cdot \tau_{k}\right) \sigma_{j} \cdot \hat{r}_{i j} \sigma_{k} \cdot \hat{r}_{i k} Z_{0}^{\prime}\left(r_{i j}\right) Z_{0}^{\prime}\left(r_{i k}\right)
\end{aligned}
$$

Some of the spin-isospin structures, which were equivalent up to cutoff effects, are resolved at the two-derivative level. Most terms are ordinary 2-body interactions between particles ij with a further dependence on the coordinate of particle k Spin-orbit terms suitable for the A_{y} puzzle [Kievsky PRC60 (1999) 034001]

Numerical implementation

The N-d scattering wave function is written as

$$
\Psi_{L S J J_{z}}=\Psi_{C}+\Psi_{A}
$$

with Ψ_{C} expanded in the HH basis

$$
\left|\Psi_{C}\right\rangle=\sum_{\mu} c_{\mu}\left|\Phi_{\mu}\right\rangle
$$

and Ψ_{A} describing the asymptotic relative motion

$$
\Psi_{A} \sim \Omega_{L S}^{R}(k, r)+\sum_{L^{\prime} S^{\prime}} R_{L S, L^{\prime} S^{\prime}}(k) \Omega_{L^{\prime} S^{\prime}}^{\prime}(k, r)
$$

with the unknown c_{μ} and R-matrix elements (related to the S-matrix) to be determined so that the Kohn functional is stationary

$$
\left[R_{L S, L^{\prime} S^{\prime}}\right]=R_{L S, L^{\prime} S^{\prime}}-\left\langle\Psi_{C}+\Psi_{A}\right| H-E\left|\Psi_{C}+\Psi_{A}\right\rangle
$$

imposing the Kohn functional to be stationary leads to a linear system

$$
\sum_{L^{\prime \prime} S^{\prime \prime}} R_{L S, L^{\prime \prime} S^{\prime \prime}} X_{L^{\prime} S^{\prime}, L^{\prime \prime} S^{\prime \prime}}=Y_{L S, L^{\prime} S^{\prime}}
$$

with the matrices

$$
X_{L S, L^{\prime} S^{\prime}}=\left\langle\Omega_{L S}^{\prime}+\Psi_{C}^{\prime}\right| H-E\left|\Omega_{L^{\prime} '^{\prime}}^{\prime}\right\rangle \quad Y_{L S, L^{\prime} S^{\prime}}=-\left\langle\Omega_{L S}^{R}+\Psi_{C}^{R}\right| H-E\left|\Omega_{L^{\prime} S^{\prime}}^{\prime}\right\rangle
$$

and the $\Psi_{C}^{R / I}$ solutions of

$$
\sum_{\mu^{\prime}} c_{\mu}\left\langle\Phi_{\mu}\right| H-E\left|\Phi_{\mu^{\prime}}\right\rangle=-D_{L S}^{R / I}(\mu)
$$

with

$$
D_{L S}^{R / I}(\mu)=\left\langle\Phi_{\mu}\right| H-E\left|\Omega_{L S}^{R / I}\right\rangle
$$

imposing the Kohn functional to be stationary leads to a linear system

$$
\sum_{L^{\prime \prime} S^{\prime \prime}} R_{L S, L^{\prime \prime} S^{\prime \prime}} X_{L^{\prime} S^{\prime}, L^{\prime \prime} S^{\prime \prime}}=Y_{L S, L^{\prime} S^{\prime}}
$$

with the matrices

$$
X_{L S, L^{\prime} S^{\prime}}=\left\langle\Omega_{L S}^{\prime}+\Psi_{C}^{\prime}\right| H-E\left|\Omega_{L^{\prime} S^{\prime}}^{\prime}\right\rangle \quad Y_{L S, L^{\prime} S^{\prime}}=-\left\langle\Omega_{L S}^{R}+\Psi_{C}^{R}\right| H-E\left|\Omega_{L^{\prime} S^{\prime}}^{\prime}\right\rangle
$$

and the $\Psi_{C}^{R / I}$ solutions of

$$
\sum_{\mu^{\prime}} c_{\mu}\left\langle\Phi_{\mu}\right| H-E\left|\Phi_{\mu^{\prime}}\right\rangle=-D_{L S}^{R / I}(\mu)
$$

with

$$
D_{L S}^{R / I}(\mu)=\left\langle\Phi_{\mu}\right| H-E\left|\Omega_{L S}^{R / I}\right\rangle
$$

11 set of matrices are calculated once for all, and only linear systems are solved for each choice of E_{i} 's

Fit strategy

we thus have $11 \mathrm{LECs}, \quad E=\frac{c_{E}}{F_{\pi} \Lambda}(\mathrm{LO})$ and $E_{i=1, \ldots, 10}=\frac{\frac{e}{1}_{N_{N}}^{F_{\pi}^{4 \Lambda^{3}}}}{}$ (NLO) to be fitted to $B\left({ }^{3} H\right),{ }^{2} a_{n d},{ }^{4} a_{n d}$ and the p-d phaseshifts for different values of Λ

Fit strategy

we thus have $11 \mathrm{LECs}, \quad E=\frac{c_{E}}{F_{\pi} \Lambda}(\mathrm{LO})$ and $E_{i=1, \ldots, 10}=\frac{\frac{e}{1}_{N_{N}}^{F_{\pi}^{4 \Lambda^{3}}}}{}$ (NLO) to be fitted to $B\left({ }^{3} H\right),{ }^{2} a_{n d},{ }^{4} a_{n d}$ and the p-d phaseshifts for different values of Λ

- there should be a hierarchy: c_{E} gives the bulk of the 3 NF , while E_{i} 's contribute less

Fit strategy

we thus have $11 \mathrm{LECs}, \quad E=\frac{c_{E}}{F_{\pi \Lambda} \Lambda}(\mathrm{LO})$ and $E_{i=1, \ldots, 10}=\frac{\frac{e}{1}_{N_{N}}^{F_{\pi}^{4 \Lambda^{3}}}}{}$ (NLO) to be fitted to $B\left({ }^{3} \mathrm{H}\right),{ }^{2} a_{n d},{ }^{4} a_{n d}$ and the p -d phaseshifts for different values of Λ

- there should be a hierarchy: c_{E} gives the bulk of the $3 N F$, while E_{i} 's contribute less
- we first find the LO value of c_{E}, by fitting $B\left({ }^{3} \mathrm{H}\right)$ and ${ }^{2} a_{n d}$ this is only possible up to $\sim 10 \%$ of theoretical uncertainty

Fit strategy

we thus have $11 \mathrm{LECs}, \quad E=\frac{c_{E}}{F_{\pi}^{4} \Lambda}(\mathrm{LO})$ and $E_{i=1, \ldots, 10}=\frac{e_{i}^{N N}}{F_{\pi}^{4 \Lambda^{3}}}$ (NLO) to be fitted to $B\left({ }^{3} H\right),{ }^{2} a_{n d},{ }^{4} a_{n d}$ and the p-d phaseshifts for different values of Λ

- there should be a hierarchy: c_{E} gives the bulk of the $3 N F$, while E_{i} 's contribute less
- we first find the LO value of c_{E}, by fitting $B\left({ }^{3} \mathrm{H}\right)$ and ${ }^{2} a_{n d}$ this is only possible up to $\sim 10 \%$ of theoretical uncertainty
- we then add 1 among the other 10 LECs, and fix it to those observables

$\Lambda(\mathrm{MeV})$	200	300	400	500
c_{E} / χ^{2}	$1.269 / 13$	$0.525 / 40$	$0.410 / 114$	$0.45 / 170$
c_{E} / e_{1}	X	$1.335 /-0.822$	$1.09 /-0.99$	$0.894 /-1.45$
c_{E} / e_{2}	$2.382 / 0.844$	X	$1.701 / 2.016$	$0.896 / 2.02$
c_{E} / e_{3}	$0.389 /-0.954$	$0.888 / 0.511$	$0.807 / 0.828$	$0.654 / 1.27$
c_{E} / e_{4}	X	$1.450 / 0.331$	$1.202 / 0.400$	$0.965 / 0.541$
c_{E} / e_{5}	$1.519 / 1.237$	$0.152 /-0.898$	$-0.491 /-1.255$	$-1.47 /-1.53$
c_{E} / e_{6}	$1.704 /-0.648$	$-0.028 / 0.384$	$-0.785 / 0.470$	$-1.911 / 0.5238$
c_{E} / e_{7}	X	X	X	X
c_{E} / e_{8}	$0.647 / 986$	$0.925 /-7.948$	$0.715 /-10.944$	X
c_{E} / e_{9}	X	X	$1.365 /-7.292$	$1.262 /-6.937$
c_{E} / e_{10}	X	$-0.029 /-4.599$	X	$-1.293 /-3.032$

Sensitivity to e_{i}

- χ^{2} from 2-parameter fit with $\left(c_{E}, e_{i}\right)$

- strong sensitivity of A_{y} and $i T_{11}$ to E_{7}, E_{8} and E_{9}

3-parameter fits

- use c_{E} and E_{3} to account for $B\left({ }^{3} \mathrm{H}\right)$ and ${ }^{2} a_{n d}$

3-parameter fits

- use c_{E} and E_{3} to account for $B\left({ }^{3} \mathrm{H}\right)$ and ${ }^{2} a_{n d}$
- use another one of the E_{i} to fit scattering observables at 3 MeV

4-parameter fits

- the χ^{2} can be reduced to $3-4$ per d.o.f.

Comparison with the pionful theory

$$
\begin{align*}
& E_{1}=\frac{755 g_{A}^{6}}{24576 \pi F_{\pi}^{6} M_{\pi}}+\frac{g_{A}^{4}}{256 \pi F_{\pi}^{6} M_{\pi}}-\frac{g_{A}^{4} C_{T}}{64 \pi F_{\pi}^{4} M_{\pi}}-\frac{g_{A}^{2} C_{T}}{8 m F_{\pi}^{2} M_{\pi}^{2}} \\
& E_{2}=\frac{601 g_{A}^{6}}{36864 \pi F_{\pi}^{6} M_{\pi}}+\frac{23 g_{A}^{4} C_{T}}{384 \pi F_{\pi}^{4} M_{\pi}}-\frac{5 g_{A}^{2} C_{T}}{192 \pi F_{\pi}^{4} M_{\pi}}-\frac{g_{A}^{2}\left(5 C_{T}^{\pi}+2 C_{S}\right)}{48 m F_{\pi}^{2} M_{\pi}^{2}} \\
& E_{3}=-\frac{3 g_{A}^{6}}{2048 \pi F_{\pi}^{6} M_{\pi}}+\frac{3 g_{A}^{4} C_{T}}{64 \pi F_{\pi}^{4} M_{\pi}}+\frac{9 g_{A}^{2} C_{T}}{16 m F_{\pi}^{2} M_{\pi}^{2}} \\
& E_{4}=-\frac{g_{A}^{6}}{1024 \pi F_{\pi}^{6} M_{\pi}}-\frac{3 g_{A}^{2} C_{T}}{16 m F_{\pi}^{2} M_{\pi}^{2}} \\
& E_{5}=\frac{79 g_{A}^{6}}{12288 \pi F_{\pi}^{6} M_{\pi}}+\frac{g_{A}^{4}}{256 \pi F_{\pi}^{6} M_{\pi}}-\frac{g_{A}^{4} C_{T}}{64 \pi F_{\pi}^{4} M_{\pi}}-\frac{g_{A}^{2} C_{T}}{8 m F_{\pi}^{2} M_{\pi}^{2}} \\
& E_{6}=\frac{319 g_{A}^{6}}{36864 \pi F_{\pi}^{6} M_{\pi}}+\frac{g_{A}^{4}}{256 \pi F_{\pi}^{6} M_{\pi}}-\frac{g_{A}^{2}\left(C_{S}-2 C_{T}\right)}{24 m \pi F_{\pi}^{2} M_{\pi}^{2}} \\
& E_{7}=-\frac{83 g_{A}^{6}}{6144 \pi F_{\pi}^{6} M_{\pi}}-\frac{3 g_{A}^{4}}{128 \pi F_{\pi}^{6} M_{\pi}}+\frac{3 g_{A}^{2} C_{T}}{4 m F_{\pi}^{2} M_{\pi}^{2}} \\
& E_{8}=-\frac{7 g_{A}^{6}}{3072 \pi F_{\pi}^{6} M_{\pi}}-\frac{g_{A}^{4}}{128 \pi F_{\pi}^{6} M_{\pi}}+\frac{g_{A}^{2} C_{T}}{4 m F_{\pi}^{2} M_{\pi}^{2}} \\
& E_{9}=\frac{193 g_{A}^{6}}{4096 \pi F_{\pi}^{6} M_{\pi}}-\frac{3 g_{A}^{2} C_{T}}{8 m F_{\pi}^{2} M_{\pi}^{2}} \\
& E_{10}=\frac{c_{1} g_{A}^{2}}{2 F_{\pi}^{4} M_{\pi}^{2}}+\frac{g_{A} D}{8 F_{2^{\pi}}^{2} M_{\pi}^{2}}+\frac{427 g_{A}^{6}}{12288 \pi F_{\pi}^{6} M_{\pi}}+\frac{9 g_{A}^{4}}{512 \pi F_{\pi}^{6} M_{\pi}}-\frac{g_{A}^{2}\left(C_{S}+C_{T}\right)}{8 m F_{\pi}^{2} M_{\pi}^{2}} \\
& -\frac{2 g_{A}^{2} \bar{e}_{14}}{F_{\pi}^{4}}+\frac{g_{A}^{2}\left(2 c_{1}-c_{3}\right)}{128 \pi^{2} F_{\pi}^{6}}=-0.05+0.15
\end{align*}
$$

numerical values are in units of $F_{\pi}^{4} M_{\pi}^{3}$

Insight from the large- N_{c} limit

- in the 't Hooft limit $g \sim 1 / \sqrt{N_{c}}$ a leading connected baryon-baryon amplitude scales like $O\left(N_{c}\right)$

Insight from the large- N_{c} limit

- in the 't Hooft limit $g \sim 1 / \sqrt{N_{c}}$ a leading connected baryon-baryon amplitude scales like $O\left(N_{c}\right)$
- each n - quark vertex scales like N_{c}^{1-n}

Insight from the large- N_{c} limit

- in the 't Hooft limit $g \sim 1 / \sqrt{N_{c}}$ a leading connected baryon-baryon amplitude scales like $O\left(N_{c}\right)$
- each n - quark vertex scales like N_{c}^{1-n}

- therefore, in the one-quark operator basis

$$
T \sim N_{c} \sum\left(\frac{S}{N_{c}}\right)_{S}^{n}\left(\frac{I}{N_{c}}\right)^{n}\left(\frac{G}{N_{c}}\right)_{G}^{n} \quad S \sim \sigma, I \sim \tau, G \sim \sigma \tau
$$

[Kaplan, Savage, Dashen, Jenkins, Manohar,...]

Insight from the large- N_{c} limit

- in the 't Hooft limit $g \sim 1 / \sqrt{N_{c}}$ a leading connected baryon-baryon amplitude scales like $O\left(N_{c}\right)$
- each n - quark vertex scales like N_{c}^{1-n}

- therefore, in the one-quark operator basis

$$
T \sim N_{c} \sum\left(\frac{S}{N_{c}}\right)_{S}^{n}\left(\frac{I}{N_{c}}\right)_{I}^{n}\left(\frac{G}{N_{c}}\right)_{G}^{n} \quad S \sim \sigma, I \sim \tau, G \sim \sigma \tau
$$

[Kaplan, Savage, Dashen, Jenkins, Manohar,...]

- as a result, one finds e.g.

$$
\mathbf{1} \sim \sigma_{1} \cdot \boldsymbol{\sigma}_{2} \tau_{1} \cdot \tau_{2} \sim O\left(N_{c}\right)
$$

while

$$
\sigma_{1} \cdot \sigma_{2} \sim \tau_{1} \cdot \tau_{2} \sim O\left(1 / N_{c}\right)
$$

Large- N_{c} and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

Large- N_{c} and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

- in an effective theory one obtains that amplitude from

$$
\mathcal{L}=c_{1} N^{\dagger} N N^{\dagger} N+c_{2} N^{\dagger} \sigma_{i} N N^{\dagger} \sigma_{i} N+c_{3} N^{\dagger} \tau^{a} N N^{\dagger} \tau^{a} N+c_{4} N^{\dagger} \sigma_{i} \tau^{a} N N^{\dagger} \sigma_{i} \tau^{a} N \equiv \sum_{i} c_{i} o_{i}
$$

Large- N_{c} and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

- in an effective theory one obtains that amplitude from

$$
\mathcal{L}=c_{1} N^{\dagger} N N^{\dagger} N+c_{2} N^{\dagger} \sigma_{i} N N^{\dagger} \sigma_{i} N+c_{3} N^{\dagger} \tau^{a} N N^{\dagger} \tau^{a} N+c_{4} N^{\dagger} \sigma_{i} \tau^{a} N N^{\dagger} \sigma_{i} \tau^{a} N \equiv \sum_{i} c_{i} o_{i}
$$

- but from the identicality of $N, o_{3}=-o_{2}-2 o_{1}, o_{4}=-3 o_{1}$ which do not conform with the large- N_{c} scaling

Large- N_{c} and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

- in an effective theory one obtains that amplitude from

$$
\mathcal{L}=c_{1} N^{\dagger} N N^{\dagger} N+c_{2} N^{\dagger} \sigma_{i} N N^{\dagger} \sigma_{i} N+c_{3} N^{\dagger} \tau^{a} N N^{\dagger} \tau^{a} N+c_{4} N^{\dagger} \sigma_{i} \tau^{a} N N^{\dagger} \sigma_{i} \tau^{a} N \equiv \sum_{i} c_{i} o_{i}
$$

- but from the identicality of $N, o_{3}=-o_{2}-2 o_{1}, o_{4}=-3 o_{1}$ which do not conform with the large- N_{c} scaling
- one way to implement the Pauli principle is to start with a redundant set of operators, and declare, by tree-level matching, $c_{1} \sim c_{4} \sim N_{c}$, $c_{2} \sim c_{3} \sim 1 / N_{c}$

Large- N_{c} and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

- in an effective theory one obtains that amplitude from

$$
\mathcal{L}=c_{1} N^{\dagger} N N^{\dagger} N+c_{2} N^{\dagger} \sigma_{i} N N^{\dagger} \sigma_{i} N+c_{3} N^{\dagger} \tau^{a} N N^{\dagger} \tau^{a} N+c_{4} N^{\dagger} \sigma_{i} \tau^{a} N N^{\dagger} \sigma_{i} \tau^{a} N \equiv \sum_{i} c_{i} o_{i}
$$

- but from the identicality of $N, o_{3}=-o_{2}-2 o_{1}, o_{4}=-3 o_{1}$ which do not conform with the large- N_{c} scaling
- one way to implement the Pauli principle is to start with a redundant set of operators, and declare, by tree-level matching, $c_{1} \sim c_{4} \sim N_{c}$, $c_{2} \sim c_{3} \sim 1 / N_{c}$
- observable quantities will depend on two combinations of LECs,

$$
\mathcal{L}=\left(c_{1}-2 c_{3}-3 c_{4}\right) N^{\dagger} N N^{\dagger} N+\left(c_{2}-c_{3}\right) N^{\dagger} \sigma_{i} N N^{\dagger} \sigma_{i} N
$$

Large- N_{c} and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

- in an effective theory one obtains that amplitude from

$$
\mathcal{L}=c_{1} N^{\dagger} N N^{\dagger} N+c_{2} N^{\dagger} \sigma_{i} N N^{\dagger} \sigma_{i} N+c_{3} N^{\dagger} \tau^{a} N N^{\dagger} \tau^{a} N+c_{4} N^{\dagger} \sigma_{i} \tau^{a} N N^{\dagger} \sigma_{i} \tau^{a} N \equiv \sum_{i} c_{i} o_{i}
$$

- but from the identicality of $N, o_{3}=-o_{2}-2 o_{1}, o_{4}=-3 o_{1}$ which do not conform with the large- N_{c} scaling
- one way to implement the Pauli principle is to start with a redundant set of operators, and declare, by tree-level matching, $c_{1} \sim c_{4} \sim N_{c}$, $c_{2} \sim c_{3} \sim 1 / N_{c}$
- observable quantities will depend on two combinations of LECs,

$$
\mathcal{L}=\left(c_{1}-2 c_{3}-3 c_{4}\right) N^{\dagger} N N^{\dagger} N+\left(c_{2}-c_{3}\right) N^{\dagger} \sigma_{i} N N^{\dagger} \sigma_{i} N
$$

reobtaining the well-established fact that $C_{S} \gg C_{T}$

3NF and large- N_{c}

the generalization to 3 nucleon forces has been given recently [D.R.Phillips and C.Schat, PRC88 (2013) 034002]

3NF and large- N_{c}

the generalization to 3 nucleon forces has been given recently [D.R.Phillips and C.Schat, PRC88 (2013) 034002] at the leading order one finds

$$
\begin{aligned}
\mathcal{L} \equiv & -\sum_{i}^{6} E_{i} O_{i}=-E_{1} N^{\dagger} N N^{\dagger} N N^{\dagger} N-E_{2} N^{\dagger} \sigma^{i} N N^{\dagger} \sigma^{i} N N^{\dagger} N \\
& -E_{3} N^{\dagger} \tau^{a} N N^{\dagger} \tau^{a} N N^{\dagger} N-E_{4} N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} N \\
& -E_{5} N^{\dagger} \sigma^{i} N N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \tau^{a} N-E_{6} \epsilon^{i j k} \epsilon^{a b c} N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \sigma^{j} \tau^{b} N N^{\dagger} \sigma^{k} \tau^{c} N
\end{aligned}
$$

- only E_{1}, E_{4} and E_{6} are $O\left(N_{c}\right)$

3NF and large- N_{c}

the generalization to 3 nucleon forces has been given recently [D.R.Phillips and C.Schat, PRC88 (2013) 034002] at the leading order one finds

$$
\begin{aligned}
\mathcal{L} \equiv & -\sum_{i}^{6} E_{i} O_{i}=-E_{1} N^{\dagger} N N^{\dagger} N N^{\dagger} N-E_{2} N^{\dagger} \sigma^{i} N N^{\dagger} \sigma^{i} N N^{\dagger} N \\
& -E_{3} N^{\dagger} \tau^{a} N N^{\dagger} \tau^{a} N N^{\dagger} N-E_{4} N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} N \\
& -E_{5} N^{\dagger} \sigma^{i} N N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \tau^{a} N-E_{6} \epsilon^{i j k} \epsilon^{a b c} N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \sigma^{j} \tau^{b} N N^{\dagger} \sigma^{k} \tau^{c} N
\end{aligned}
$$

- only E_{1}, E_{4} and E_{6} are $O\left(N_{c}\right)$
- but since the 6 operators are all proportional, the LEC associated to any choice will be $\sim O\left(N_{c}\right)$

3NF and large- N_{c}

the generalization to 3 nucleon forces has been given recently [D.R.Phillips and C.Schat, PRC88 (2013) 034002] at the leading order one finds

$$
\begin{aligned}
\mathcal{L} \equiv & -\sum_{i}^{6} E_{i} O_{i}=-E_{1} N^{\dagger} N N^{\dagger} N N^{\dagger} N-E_{2} N^{\dagger} \sigma^{i} N N^{\dagger} \sigma^{i} N N^{\dagger} N \\
& -E_{3} N^{\dagger} \tau^{a} N N^{\dagger} \tau^{a} N N^{\dagger} N-E_{4} N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} N \\
& -E_{5} N^{\dagger} \sigma^{i} N N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \tau^{a} N-E_{6} \epsilon^{i j k} \epsilon^{a b c} N^{\dagger} \sigma^{i} \tau^{a} N N^{\dagger} \sigma^{j} \tau^{b} N N^{\dagger} \sigma^{k} \tau^{c} N
\end{aligned}
$$

- only E_{1}, E_{4} and E_{6} are $O\left(N_{c}\right)$
- but since the 6 operators are all proportional, the LEC associated to any choice will be $\sim O\left(N_{c}\right)$
- operators with different scaling properties in $1 / N_{c}$ get mixed

large- N_{c} constraints on subleading 3 N contact interaction

- applying Phillips and Schat counting to our redundant operators we get 13 leading structures
- using Fierz identities we find 7 leading operators, out of 10
- we thus have predictions for some of the E_{i}

$$
\begin{gathered}
E_{2}=0+O\left(1 / N_{c}\right) \\
E_{3}=E_{5}+O\left(1 / N_{c}\right) \\
E_{9}=3 E_{3}+O\left(1 / N_{c}\right)
\end{gathered}
$$

Summary and outlook

- We advocate a pragmatic approach, in which the subleading 3 N contact interaction is treated as a sort of remainder, to fine-tune existing realistic models
- We are in the middle of the fitting procedure to $p-d$ elastic scattering data
- We have started by adopting the AV18 NN interaction. The χ^{2} is drastically reduced, until 3-4 per d.o.f., but the exploration of the parameter space is not complete yet.

Summary and outlook

- We advocate a pragmatic approach, in which the subleading 3 N contact interaction is treated as a sort of remainder, to fine-tune existing realistic models
- We are in the middle of the fitting procedure to $p-d$ elastic scattering data
- We have started by adopting the AV18 NN interaction. The χ^{2} is drastically reduced, until 3-4 per d.o.f., but the exploration of the parameter space is not complete yet.

It will be interesting, in the near future

- to repeat the analysis using a realistic pionless NN potential;
- to extend the analysis to other energies, and to include the breakup channel
- to implement the constraints from the large- N_{c} analysis

