

Bound states and resonances in Effective Field Theories and Lattice QCD calculations

2014, Jul 20 - Aug 01

(日) (同) (日) (日) (日)

Centro de Ciencias de Benasque Pedro Pascual

Determining the three-nucleon force from three-nucleon data

Luca Girlanda

Università del Salento & INFN Lecce

work in progress

in collaboration with Alejandro Kievsky and Michele Viviani (INFN Pisa)

L. Girlanda (Univ. Salento)

Determining the three-nucleon force from three-nucleon data

providing a realistic three-nucleon force

L. Girlanda (Univ. Salento)

Determining the three-nucleon force from three-nucleon data

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

providing a realistic three-nucleon force we are not yet there: A_y puzzle

and other problems in the 3N continuum

two options

consistent scheme: ChPT, Δ-full, pionless,...
 perhaps predictive (convergence?) → not necessarily *realistic*

providing a realistic three-nucleon force we are not yet there: A_y puzzle

and other problems in the 3N continuum

two options

- consistent scheme: ChPT, Δ-full, pionless,... perhaps predictive (convergence?) → not necessarily realistic
- phenomenological scheme: build a realistic 3NF associated to a given realistic NN potential but a guidance is needed from theory

providing a realistic three-nucleon force we are not yet there: A_y puzzle

and other problems in the 3N continuum

two options

- consistent scheme: ChPT, Δ-full, pionless,... perhaps predictive (convergence?) → not necessarily realistic
- phenomenological scheme: build a realistic 3NF associated to a given realistic NN potential but a guidance is needed from theory

we explore the second option

providing a realistic three-nucleon force we are not yet there: A_y puzzle

and other problems in the 3N continuum

two options

- consistent scheme: ChPT, Δ-full, pionless,...
 perhaps predictive (convergence?) → not necessarily *realistic*
- phenomenological scheme: build a realistic 3NF associated to a given realistic NN potential but a guidance is needed from theory

we explore the second option in particular, since A_y is a puzzle only at very low-energy, we focus on the subleading contact 3NF

A_y puzzles

 notice that p⁻³He A_y is almost solved by chiral 3NF at N2LO (or by AV18+IL7)
 [Viviani et al. PRL111 (2013) 172302]

イロト 不得 トイヨト イヨト 二日

A_y puzzles

 notice that p⁻³He A_y is almost solved by chiral 3NF at N2LO (or by AV18+IL7)

[Viviani et al. PRL111 (2013) 172302]

▶ for p − d the discrepancy remains at the ~ 20% level

L. Girlanda (Univ. Salento)

- A TE N - A TE N

 ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs
- is should be seen whether this will change at N3LO? is convergence fast enough? (cfr. H. Krebs' talk)

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs
- is should be seen whether this will change at N3LO? is convergence fast enough? (cfr. H. Krebs' talk)
- ▶ prospects for definite improvements at N4LO: 10 new LECs for contact interaction, unconstrained by *X*S [LG et al. PRC78 (2011) 014001]

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs
- is should be seen whether this will change at N3LO? is convergence fast enough? (cfr. H. Krebs' talk)
- ▶ prospects for definite improvements at N4LO: 10 new LECs for contact interaction, unconstrained by XS [LG et al. PRC78 (2011) 014001]
- consistency would require to consider them together with other pion-exchange 3NF at N4LO (and with a N4LO NN potential), or within #EFT

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs
- is should be seen whether this will change at N3LO? is convergence fast enough? (cfr. H. Krebs' talk)
- ▶ prospects for definite improvements at N4LO: 10 new LECs for contact interaction, unconstrained by *X*S [LG et al. PRC78 (2011) 014001]
- consistency would require to consider them together with other pion-exchange 3NF at N4LO (and with a N4LO NN potential), or within #EFT

we treat the 10 subleading contact terms as remainders that can bring a given model of NN+3NF in closer agreement with data, with $\chi^2\sim 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- ChEFT is not predictive enough to provide a realistic 3NF at N2LO, with just 2 LECs
- is should be seen whether this will change at N3LO? is convergence fast enough? (cfr. H. Krebs' talk)
- ▶ prospects for definite improvements at N4LO: 10 new LECs for contact interaction, unconstrained by *X*S [LG et al. PRC78 (2011) 014001]
- consistency would require to consider them together with other pion-exchange 3NF at N4LO (and with a N4LO NN potential), or within #EFT

we treat the 10 subleading contact terms as remainders that can bring a given model of NN+3NF in closer agreement with data, with $\chi^2\sim 1$

we start with the AV18 NN potential, in the absence of further 3NF

Contact terms - leading order

At leading order (no derivatives) the most general effective Lagrangian satisfying rotational, parity, time-reversal and isospin symmetry is

$$\mathcal{L} \equiv -\sum_{i}^{6} E_{i}O_{i} = -E_{1}N^{\dagger}NN^{\dagger}NN^{\dagger}N - E_{2}N^{\dagger}\sigma^{i}NN^{\dagger}\sigma^{i}NN^{\dagger}N$$
$$-E_{3}N^{\dagger}\tau^{a}NN^{\dagger}\tau^{a}NN^{\dagger}N - E_{4}N^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}N$$
$$-E_{5}N^{\dagger}\sigma^{i}NN^{\dagger}\sigma^{j}\tau^{a}NN^{\dagger}\tau^{a}N - E_{6}\epsilon^{ijk}\epsilon^{abc}N^{\dagger}\sigma^{j}\tau^{a}NN^{\dagger}\sigma^{j}\tau^{b}NN^{\dagger}\sigma^{k}\tau^{c}N$$

Contact terms - leading order

At leading order (no derivatives) the most general effective Lagrangian satisfying rotational, parity, time-reversal and isospin symmetry is

$$\mathcal{L} \equiv -\sum_{i}^{6} E_{i}O_{i} = -E_{1}N^{\dagger}NN^{\dagger}NN^{\dagger}N - E_{2}N^{\dagger}\sigma^{i}NN^{\dagger}\sigma^{i}NN^{\dagger}N$$
$$-E_{3}N^{\dagger}\tau^{a}NN^{\dagger}\tau^{a}NN^{\dagger}N - E_{4}N^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}N$$
$$-E_{5}N^{\dagger}\sigma^{i}NN^{\dagger}\sigma^{j}\tau^{a}NN^{\dagger}\tau^{a}N - E_{6}\epsilon^{ijk}\epsilon^{abc}N^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\sigma^{j}\tau^{b}NN^{\dagger}\sigma^{k}\tau^{c}N$$

but the 6 operators are redundant. Ultimately, this is due to the anticommuting nature of the nucleon fields N(x) and to Fierz-like identities

 $\begin{aligned} &(\mathbf{1})[\mathbf{1}] = \frac{1}{2}(\mathbf{1})[\mathbf{1}) + \frac{1}{2}(\boldsymbol{\sigma}) \cdot [\boldsymbol{\sigma}) \\ &(\sigma^{i})[\mathbf{1}] = \frac{1}{2}(\sigma^{i})[\mathbf{1}) + \frac{1}{2}(\mathbf{1}][\sigma^{i}) - \frac{i}{2}\epsilon^{ijk}(\sigma^{j}][\sigma^{k}) \\ &(\sigma^{i})[\sigma^{j}] = \frac{1}{2}\left\{\delta^{ij}(\mathbf{1})[\mathbf{1}) - \delta^{ij}(\boldsymbol{\sigma}) \cdot [\boldsymbol{\sigma}) + (\sigma^{i}][\sigma^{j}) + (\sigma^{j}][\sigma^{i}) + i\epsilon^{ijk}(\sigma^{k}][\mathbf{1}) - i\epsilon^{ijk}(\mathbf{1}][\sigma^{k})\right\} \end{aligned}$

L. Girlanda (Univ. Salento)

(日) (周) (三) (三) (三) (○) (○)

Redundancies of contact operators

Simultaneous Fierz rearrangements of spin and isospin indeces of a given pair of nucleon fields allow to derive linear relations, e.g.

$$\begin{array}{l} O_1 = -\frac{1}{4} \left(O_1 + O_2 + O_3 + O_4 \right) \\ O_2 = -\frac{1}{2} \left(O_2 + O_5 \right) \\ O_3 = -\frac{1}{2} \left(O_3 + O_5 \right) \\ O_4 = -\frac{1}{4} \left(2O_4 + 2O_5 - O_6 \right) \\ O_5 = -\frac{1}{2} \left(3O_2 - O_5 \right) \\ O_6 = 2 \left(O_4 - O_5 \right) \end{array}$$

As a result, there is only one independent operator and one can choose anyone of those, e.g. $V = E \sum_{ijk} \tau_i \cdot \tau_j$

Redundancies of contact operators

Simultaneous Fierz rearrangements of spin and isospin indeces of a given pair of nucleon fields allow to derive linear relations, e.g.

$$\begin{array}{l} O_1 = -\frac{1}{4} \left(O_1 + O_2 + O_3 + O_4 \right) \\ O_2 = -\frac{1}{2} \left(O_2 + O_5 \right) \\ O_3 = -\frac{1}{2} \left(O_3 + O_5 \right) \\ O_4 = -\frac{1}{4} \left(2O_4 + 2O_5 - O_6 \right) \\ O_5 = -\frac{1}{2} \left(3O_2 - O_5 \right) \\ O_6 = 2 \left(O_4 - O_5 \right) \end{array}$$

As a result, there is only one independent operator and one can choose anyone of those, e.g. $V = E \sum_{ijk} \tau_i \cdot \tau_j$ Transforming to coordinate space, we need a momentum cutoff, e.g.

$$V\sim \sum_{ijk} au_i\cdot au_j Z_0(r_{ik})Z_0(r_{jk})$$

which introduces a difference between the choices of the operator.

L. Girlanda (Univ. Salento)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

Redundancies of contact operators

Simultaneous Fierz rearrangements of spin and isospin indeces of a given pair of nucleon fields allow to derive linear relations, e.g.

$$\begin{array}{l} O_1 = -\frac{1}{4} \left(O_1 + O_2 + O_3 + O_4 \right) \\ O_2 = -\frac{1}{2} \left(O_2 + O_5 \right) \\ O_3 = -\frac{1}{2} \left(O_3 + O_5 \right) \\ O_4 = -\frac{1}{4} \left(2O_4 + 2O_5 - O_6 \right) \\ O_5 = -\frac{1}{2} \left(3O_2 - O_5 \right) \\ O_6 = 2 \left(O_4 - O_5 \right) \end{array}$$

As a result, there is only one independent operator and one can choose anyone of those, e.g. $V = E \sum_{ijk} \tau_i \cdot \tau_j$ Transforming to coordinate space, we need a momentum cutoff, e.g.

$$V\sim \sum_{ijk} au_i\cdot au_j Z_0(r_{ik})Z_0(r_{jk})$$

which introduces a difference between the choices of the operator. Such difference is a cutoff effect, beyond the reach of a leading order description, to be regarded as a theoretical uncertainty

L. Girlanda (Univ. Salento)

Contact terms - subleading order

Parity invariance requires that the subleading 3*N* contact Lagrangian contain 2 gradients

Using translational invariance the possible space-structures are

$$\begin{split} X^{+}_{A,ij} &= (N^{\dagger} \overleftarrow{\nabla}_{i} N) (N^{\dagger} \overleftarrow{\nabla}_{j} N) (N^{\dagger} N) \\ X^{+}_{B,ij} &= \nabla_{i} (N^{\dagger} N) \nabla_{j} (N^{\dagger} N) (N^{\dagger} N) \\ X^{-}_{C,ij} &= i \nabla_{i} (N^{\dagger} N) (N^{\dagger} \overleftarrow{\nabla}_{j} N) (N^{\dagger} N) \\ X^{+}_{D,ij} &= (N^{\dagger} \overleftarrow{\nabla}_{i} \overleftarrow{\nabla}_{j} N) (N^{\dagger} N) (N^{\dagger} N), \end{split}$$

to be combined with all possible isospin invariant structures

$$\mathcal{T}^+ = \mathbf{1}, \hspace{1em} au_1 \cdot au_2, \hspace{1em} au_1 \cdot au_3, \hspace{1em} au_2 \cdot au_3, \hspace{1em} \mathcal{T}^- = au_1 imes au_2 \cdot au_3$$

and contracted in all possible time-reversal invariant ways with spin matrices

L. Girlanda (Univ. Salento)

As a result, we get a list of 146 operators

$\nabla_1 \cdot \nabla_2 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3]$	$i \overleftrightarrow{\nabla}_1 \cdot \overrightarrow{\sigma}_3 \overrightarrow{\nabla}_2 \cdot \overrightarrow{\sigma}_2 [\tau_1 \times \tau_2 \cdot \tau_3]$
$\overline{igvee}_1\cdot \overrightarrow{\sigma}_1 \overline{igvee}_2\cdot \overrightarrow{\sigma}_2 [1, oldsymbol{ au}_1\cdot oldsymbol{ au}_2, oldsymbol{ au}_1\cdot oldsymbol{ au}_3]$	$i \nabla_{\underline{1}} \cdot \nabla_{\underline{2}} \overrightarrow{\sigma}_2 \cdot \overrightarrow{\sigma}_3 [\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3]$
$\overline{igta}_1 \cdot \overrightarrow{\sigma}_2 \overline{ abla}_2 \cdot \overrightarrow{\sigma}_1 [1, oldsymbol{ au}_1 \cdot oldsymbol{ au}_2, oldsymbol{ au}_1 \cdot oldsymbol{ au}_3]$	$i \sum_{1} \times \overrightarrow{\nabla}_2 \cdot \overrightarrow{\sigma}_1 [1, \tau_1 \cdot \tau_2, \tau_1 \cdot \tau_3, \tau_2 \cdot \tau_3]$
$\bigvee_1 \cdot \bigvee_2 \overrightarrow{\sigma}_1 \cdot \overrightarrow{\sigma}_2 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3]$	$i \underbrace{\nabla}_1 \times \underbrace{\nabla}_2 \cdot \overrightarrow{\sigma}_2 [1, \tau_1 \cdot \tau_2, \tau_1 \cdot \tau_3, \tau_2 \cdot \tau_3]$
$\overline{\sum}_1 \cdot \overrightarrow{\sigma}_1 \overline{\sum}_2 \cdot \overrightarrow{\sigma}_3 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3, \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3]$	$i \overline{\nabla}_1 \times \overline{\nabla}_2 \cdot \overrightarrow{\sigma}_3 [1, \tau_1 \cdot \tau_2, \tau_1 \cdot \tau_3, \tau_2 \cdot \tau_3]$
$ \overline{\nabla}_1 \cdot \overrightarrow{\sigma}_3 \ \overline{\nabla}_2 \cdot \overrightarrow{\sigma}_1 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3, \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3] $	$i \overline{\nabla}_1 \cdot \overline{\nabla}_2 \overline{\sigma}_1 \times \overline{\sigma}_2 \cdot \overline{\sigma}_3 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3, \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3]$
$\nabla_1 \cdot \nabla_2 \overrightarrow{\sigma}_1 \cdot \overrightarrow{\sigma}_3 [1, \tau_1 \cdot \tau_2, \tau_1 \cdot \tau_3, \tau_2 \cdot \tau_3]$	$i \overline{\nabla}_1 \cdot \vec{\sigma}_1 \overline{\nabla}_2 \times \vec{\sigma}_2 \cdot \vec{\sigma}_3 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3, \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3]$
$\overline{ abla}_1 imes \overline{ abla}_2 \cdot \overline{\sigma}_1 [oldsymbol{ au}_1 imes oldsymbol{ au}_2 \cdot oldsymbol{ au}_3]$	$i \overline{\nabla}_1 \cdot \overrightarrow{\sigma}_2 \overline{\nabla}_2 \times \overrightarrow{\sigma}_1 \cdot \overrightarrow{\sigma}_3 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3, \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3]$
$\nabla_{\underline{1}} \times \nabla_{\underline{2}} \cdot \overrightarrow{\sigma}_{3} [\tau_{1} \times \tau_{2} \cdot \tau_{3}]$	$i \overline{\nabla}_1 \cdot \overrightarrow{\sigma}_3 \overline{\nabla}_2 \times \overrightarrow{\sigma}_1 \cdot \overrightarrow{\sigma}_2 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3, \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3]$
$\overline{ abla}_1 \cdot \overline{ abla}_2 \overrightarrow{\sigma}_1 imes \overrightarrow{\sigma}_2 \cdot \overrightarrow{\sigma}_3 [au_1 imes au_2 \cdot au_3]$	$i \overline{\nabla}_1 \times \overrightarrow{\sigma}_2 \cdot \overrightarrow{\sigma}_3 \overline{\nabla}_2 \cdot \overrightarrow{\sigma}_1 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3, \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3]$
$ abla_1 \cdot \vec{\sigma}_1 \vec{\sigma}_2 \times \vec{\sigma}_3 \cdot \sum_2 [\tau_1 \times \tau_2 \cdot \tau_3] $	$i \underbrace{\nabla}_1 \times \overrightarrow{\sigma}_1 \cdot \overrightarrow{\sigma}_3 \underbrace{\nabla}_2 \cdot \overrightarrow{\sigma}_2 [1, \tau_1 \cdot \tau_2, \tau_1 \cdot \tau_3, \tau_2 \cdot \tau_3]$
$ abla_1 \cdot \vec{\sigma}_2 \vec{\sigma}_1 imes \vec{\sigma}_3 \cdot \sum_2 [\tau_1 imes \tau_2 \cdot \tau_3] $	$i \underbrace{\nabla}_1 \times \overrightarrow{\sigma}_1 \cdot \overrightarrow{\sigma}_2 \nabla_2 \cdot \overrightarrow{\sigma}_3 [1, \tau_1 \cdot \tau_2, \tau_1 \cdot \tau_3, \tau_2 \cdot \tau_3]$
$\overline{\nabla}_1 \cdot \overrightarrow{\sigma}_3 \overrightarrow{\sigma}_1 \times \overrightarrow{\sigma}_2 \cdot \overline{\nabla}_2 [\tau_1 \times \tau_2 \cdot \tau_3]$	$i \overline{\nabla}_1 \times \overline{\nabla}_2 \cdot \overrightarrow{\sigma}_1 \overrightarrow{\sigma}_2 \cdot \overrightarrow{\sigma}_3 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3, \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3]$
$ abla_1 imes abla_2 \cdot \vec{\sigma}_1 \vec{\sigma}_2 \cdot \vec{\sigma}_3 [au_1 imes au_2 \cdot au_3] $	$i \underbrace{\nabla}_1 \times \underbrace{\nabla}_2 \cdot \overrightarrow{\sigma}_2 \overrightarrow{\sigma}_1 \cdot \overrightarrow{\sigma}_3 [1, \tau_1 \cdot \tau_2, \tau_1 \cdot \tau_3, \tau_2 \cdot \tau_3]$
$\nabla_1 \times \nabla_2 \cdot \vec{\sigma}_3 \vec{\sigma}_1 \cdot \vec{\sigma}_2 [\tau_1 \times \tau_2 \cdot \tau_3]$	$i \nabla_1 \times \nabla_2 \cdot \overrightarrow{\sigma}_3 \overrightarrow{\sigma}_1 \cdot \overrightarrow{\sigma}_2 [1, \tau_1 \cdot \tau_2, \tau_1 \cdot \tau_3, \tau_2 \cdot \tau_3]$
same as before with $\overline{ abla} \to \overline{ abla}$	$\nabla_1 \cdot \nabla_1 [1, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2, \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3]$
$\downarrow i \nabla_1 \cdot \nabla_2 [\tau_1 \times \tau_2 \cdot \tau_3]$	$\nabla_1 \cdot \nabla_1 \overrightarrow{\sigma}_1 \cdot \overrightarrow{\sigma}_2 [1, \tau_1 \cdot \tau_2, \tau_2 \cdot \tau_3, \tau_1 \cdot \tau_3]$
$i \bigtriangledown_1 \cdot \overrightarrow{\sigma}_1 \swarrow_2 \cdot \overrightarrow{\sigma}_2 [\tau_1 \times \tau_2 \cdot \tau_3]$	$\bigvee_1 \cdot \bigvee_1 \overrightarrow{\sigma}_2 \cdot \overrightarrow{\sigma}_3 [1, \tau_1 \cdot \tau_2, \tau_2 \cdot \tau_3]$
$i \nabla_1 \cdot \overrightarrow{\sigma}_2 \nabla_2 \cdot \overrightarrow{\sigma}_1 [\tau_1 \times \tau_2 \cdot \tau_3]$	$\forall_1 \cdot \vec{\sigma}_1 \forall_1 \cdot \vec{\sigma}_2 [1, \tau_1 \cdot \tau_2, \tau_2 \cdot \tau_3, \tau_1 \cdot \tau_3]$
$i \overline{\nabla}_1 \cdot \overline{\nabla}_2 \overline{\sigma}_1 \cdot \overline{\sigma}_2 [\tau_1 \times \tau_2 \cdot \tau_3]$	$\nabla_{\underline{1}} \cdot \overrightarrow{\sigma}_2 \nabla_{\underline{1}} \cdot \overrightarrow{\sigma}_3 [1, \tau_1 \cdot \tau_2, \tau_2 \cdot \tau_3]$
$i \underbrace{ abla}_1 \cdot \overrightarrow{\sigma}_1 \underbrace{ abla}_2 \cdot \overrightarrow{\sigma}_3 [\tau_1 imes au_2 \cdot au_3]$	$\underbrace{\nabla}_1 \cdot \nabla_1 \overrightarrow{\sigma}_1 \times \overrightarrow{\sigma}_2 \cdot \overrightarrow{\sigma}_3 [1, \tau_1 \cdot \tau_2, \tau_2 \cdot \tau_3]$
$i \underbrace{\nabla}_1 \cdot \overrightarrow{\sigma}_3 \nabla_2 \cdot \overrightarrow{\sigma}_1 [\tau_1 \times \tau_2 \cdot \tau_3]$	$\underbrace{\bigtriangledown}_{1} \cdot \overrightarrow{\sigma}_{1} \underbrace{\bigtriangledown}_{1} \times \overrightarrow{\sigma}_{2} \cdot \overrightarrow{\sigma}_{3} [1, \tau_{1} \cdot \tau_{2}, \tau_{2} \cdot \tau_{3}]$
$i \bigtriangledown_1 \cdot \bigtriangledown_2 \overrightarrow{\sigma}_1 \cdot \overrightarrow{\sigma}_3 [\tau_1 \times \tau_2 \cdot \tau_3]$	$orall_1 \cdot ec{\sigma}_2 abla_1 imes ec{\sigma}_1 \cdot ec{\sigma}_3 [1, oldsymbol{ au}_1 \cdot oldsymbol{ au}_2, oldsymbol{ au}_2 \cdot oldsymbol{ au}_3]$
$i \nabla_1 \cdot \vec{\sigma}_2 \nabla_2 \cdot \vec{\sigma}_3 [\boldsymbol{\tau}_1 \times \boldsymbol{\tau}_2 \cdot \boldsymbol{\tau}_3]$	

L. Girlanda (Univ. Salento)

Determining the three-nucleon force from three-nucleon data

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Fierz constraints

As before, a set of linear relations among the 146 operators can be found by using Fierz's reshuffling, which in this case also involves the fields' derivatives: e.g. under exchange of nucleons 1-2

$$\overleftrightarrow{\nabla}_1 \to \frac{1}{2} (\overrightarrow{\nabla}_2 + \overleftrightarrow{\nabla}_2 - \overrightarrow{\nabla}_1 + \overleftrightarrow{\nabla}_1), \quad \overrightarrow{\nabla}_1 \to \frac{1}{2} (\overrightarrow{\nabla}_2 + \overleftrightarrow{\nabla}_2 + \overrightarrow{\nabla}_1 - \overleftrightarrow{\nabla}_1)$$

Out of the 3×146 relations, 132 are linearly independent \implies we are left with 14 independent operators

イロト 不得 トイヨト イヨト 二日

Constraints from relativity

We still have to impose the requirements of Poincaré covariance They can be implemented order by order in the low-energy expansion As a result, the subleading 3N effective Hamiltonian consists of

- fixed terms (relativistic corrections to the lower order terms)
- \blacktriangleright free terms, which have to commute with the lowest order boost operator \textbf{K}_0

with the choice $N(x) = \int \frac{d\mathbf{p}}{(2\pi)^3} b_s(\mathbf{p}) \chi_s e^{-i\mathbf{p}\cdot x}$ \mathbf{K}_0 acts as

 $[\mathbf{K}_0, \, b_s(\mathbf{p})] = -i \, m \, \boldsymbol{\nabla}_{\mathbf{p}} \, b_s(\mathbf{p})$

and only 10 independent combinations of the 14 operators can be found to commute with ${\bf K}_0$

L. Girlanda (Univ. Salento)

Choosing a momentum cutoff depending only on momentum transfers the potential is local incoordinate space

$$V = \sum_{i \neq j \neq k} (E_1 + E_2 \tau_i \cdot \tau_j + E_3 \sigma_i \cdot \sigma_j + E_4 \tau_i \cdot \tau_j \sigma_i \cdot \sigma_j) \left[Z_0''(r_{ij}) + 2 \frac{Z_0'(r_{ij})}{r_{ij}} \right] Z_0(r_{ik}) \\ + (E_5 + E_6 \tau_i \cdot \tau_j) S_{ij} \left[Z_0''(r_{ij}) - \frac{Z_0'(r_{ij})}{r_{ij}} \right] Z_0(r_{ik}) \\ + (E_7 + E_8 \tau_i \cdot \tau_k) (\mathbf{L} \cdot \mathbf{S})_{ij} \frac{Z_0'(r_{ij})}{r_{ij}} Z_0(r_{ik}) \\ + (E_9 + E_{10} \tau_j \cdot \tau_k) \sigma_j \cdot \hat{\mathbf{r}}_{ij} \sigma_k \cdot \hat{\mathbf{r}}_{ik} Z_0'(r_{ij}) Z_0'(r_{ik})$$

Choosing a momentum cutoff depending only on momentum transfers the potential is local incoordinate space

$$V = \sum_{i \neq j \neq k} (E_1 + E_2 \tau_i \cdot \tau_j + E_3 \sigma_i \cdot \sigma_j + E_4 \tau_i \cdot \tau_j \sigma_i \cdot \sigma_j) \left[Z_0''(r_{ij}) + 2 \frac{Z_0'(r_{ij})}{r_{ij}} \right] Z_0(r_{ik}) + (E_5 + E_6 \tau_i \cdot \tau_j) S_{ij} \left[Z_0''(r_{ij}) - \frac{Z_0'(r_{ij})}{r_{ij}} \right] Z_0(r_{ik}) + (E_7 + E_8 \tau_i \cdot \tau_k) (\mathbf{L} \cdot \mathbf{S})_{ij} \frac{Z_0'(r_{ij})}{r_{ij}} Z_0(r_{ik}) + (E_9 + E_{10} \tau_j \cdot \tau_k) \sigma_j \cdot \hat{\mathbf{r}}_{ij} \sigma_k \cdot \hat{\mathbf{r}}_{ik} Z_0'(r_{ij}) Z_0'(r_{ik})$$

Some of the spin-isospin structures, which were equivalent up to cutoff effects, are resolved at the two-derivative level.

L. Girlanda (Univ. Salento)

Choosing a momentum cutoff depending only on momentum transfers the potential is local incoordinate space

$$V = \sum_{i \neq j \neq k} (E_1 + E_2 \tau_i \cdot \tau_j + E_3 \sigma_i \cdot \sigma_j + E_4 \tau_i \cdot \tau_j \sigma_i \cdot \sigma_j) \left[Z_0''(r_{ij}) + 2 \frac{Z_0'(r_{ij})}{r_{ij}} \right] Z_0(\mathbf{r}_{ik}) + (E_5 + E_6 \tau_i \cdot \tau_j) S_{ij} \left[Z_0''(r_{ij}) - \frac{Z_0'(r_{ij})}{r_{ij}} \right] Z_0(\mathbf{r}_{ik}) + (E_7 + E_8 \tau_i \cdot \tau_k) (\mathbf{L} \cdot \mathbf{S})_{ij} \frac{Z_0'(r_{ij})}{r_{ij}} Z_0(\mathbf{r}_{ik}) + (E_9 + E_{10} \tau_j \cdot \tau_k) \sigma_j \cdot \hat{\mathbf{r}}_{ij} \sigma_k \cdot \hat{\mathbf{r}}_{ik} Z_0'(r_{ij}) Z_0'(r_{ik})$$

Some of the spin-isospin structures, which were equivalent up to cutoff effects, are resolved at the two-derivative level. Most terms are ordinary 2-body interactions between particles ij with a further dependence on the coordinate of particle k

L. Girlanda (Univ. Salento)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Choosing a momentum cutoff depending only on momentum transfers the potential is local incoordinate space

$$V = \sum_{i \neq j \neq k} (E_1 + E_2 \tau_i \cdot \tau_j + E_3 \sigma_i \cdot \sigma_j + E_4 \tau_i \cdot \tau_j \sigma_i \cdot \sigma_j) \left[Z_0''(r_{ij}) + 2 \frac{Z_0'(r_{ij})}{r_{ij}} \right] Z_0(r_{ik}) + (E_5 + E_6 \tau_i \cdot \tau_j) S_{ij} \left[Z_0''(r_{ij}) - \frac{Z_0'(r_{ij})}{r_{ij}} \right] Z_0(r_{ik}) + (E_7 + E_8 \tau_i \cdot \tau_k) (\mathbf{L} \cdot \mathbf{S})_{ij} \frac{Z_0'(r_{ij})}{r_{ij}} Z_0(r_{ik}) + (E_9 + E_{10} \tau_j \cdot \tau_k) \sigma_j \cdot \hat{\mathbf{r}}_{ij} \sigma_k \cdot \hat{\mathbf{r}}_{ik} Z_0'(r_{ij}) Z_0'(r_{ik})$$

Some of the spin-isospin structures, which were equivalent up to cutoff effects, are resolved at the two-derivative level.

Most terms are ordinary 2-body interactions between particles ij with a further dependence on the coordinate of particle kSpin-orbit terms suitable for the A_{y} puzzle [Kievsky PRC60 (1999) 034001]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Numerical implementation

The N-d scattering wave function is written as

 $\Psi_{LSJJ_z} = \Psi_C + \Psi_A$

with Ψ_C expanded in the HH basis

$$|\Psi_C
angle = \sum_\mu c_\mu |\Phi_\mu
angle$$

and Ψ_A describing the asymptotic relative motion

$$\Psi_A \sim \Omega_{LS}^R(k,r) + \sum_{L'S'} R_{LS,L'S'}(k) \Omega_{L'S'}'(k,r)$$

with the unknown c_{μ} and *R*-matrix elements (related to the *S*-matrix) to be determined so that the Kohn functional is stationary

$$[R_{LS,L'S'}] = R_{LS,L'S'} - \langle \Psi_C + \Psi_A | H - E | \Psi_C + \Psi_A \rangle$$

L. Girlanda (Univ. Salento)

imposing the Kohn functional to be stationary leads to a linear system

$$\sum_{L''S''} R_{LS,L''S''} X_{L'S',L''S''} = Y_{LS,L'S'}$$

with the matrices

$$\begin{split} X_{LS,L'S'} &= \langle \Omega_{LS}^{I} + \Psi_{C}^{I} | H - E | \Omega_{L'S'}^{I} \rangle \quad Y_{LS,L'S'} = -\langle \Omega_{LS}^{R} + \Psi_{C}^{R} | H - E | \Omega_{L'S'}^{I} \rangle \\ \text{and the } \Psi_{C}^{R/I} \text{ solutions of} \\ &\sum_{\mu'} c_{\mu} \langle \Phi_{\mu} | H - E | \Phi_{\mu'} \rangle = -D_{LS}^{R/I}(\mu) \end{split}$$
with

$$D_{LS}^{R/I}(\mu) = \langle \Phi_{\mu} | H - E | \Omega_{LS}^{R/I} \rangle$$

L. Girlanda (Univ. Salento)

Determining the three-nucleon force from three-nucleon data

imposing the Kohn functional to be stationary leads to a linear system

$$\sum_{L''S''} R_{LS,L''S''} X_{L'S',L''S''} = Y_{LS,L'S'}$$

with the matrices

$$\begin{split} X_{LS,L'S'} &= \langle \Omega_{LS}^{I} + \Psi_{C}^{I} | H - E | \Omega_{L'S'}^{I} \rangle \quad Y_{LS,L'S'} = -\langle \Omega_{LS}^{R} + \Psi_{C}^{R} | H - E | \Omega_{L'S'}^{I} \rangle \\ \text{and the } \Psi_{C}^{R/I} \text{ solutions of} \\ &\sum_{\mu'} c_{\mu} \langle \Phi_{\mu} | H - E | \Phi_{\mu'} \rangle = -D_{LS}^{R/I}(\mu) \end{split}$$

with

$$D_{LS}^{R/I}(\mu) = \langle \Phi_{\mu} | H - E | \Omega_{LS}^{R/I} \rangle$$

11 set of matrices are calculated once for all, and only linear systems are solved for each choice of E_i 's

L. Girlanda (Univ. Salento)

we thus have 11 LECs, $E = \frac{c_E}{F_{\pi}^4 \Lambda}$ (LO) and $E_{i=1,...,10} = \frac{e_i^{NN}}{F_{\pi}^4 \Lambda^3}$ (NLO) to be fitted to $B(^3H)$, $^2a_{nd}$, $^4a_{nd}$ and the p-d phaseshifts for different values of Λ

イロト 不得下 イヨト イヨト 二日

we thus have 11 LECs, $E = \frac{c_E}{F_{\pi}^4 \Lambda}$ (LO) and $E_{i=1,...,10} = \frac{e_i^{NW}}{F_{\pi}^4 \Lambda^3}$ (NLO) to be fitted to $B(^3H)$, $^2a_{nd}$, $^4a_{nd}$ and the p-d phaseshifts for different values of Λ

there should be a hierarchy: c_E gives the bulk of the 3NF, while E_i's contribute less

we thus have 11 LECs, $E = \frac{c_E}{F_{\pi}^4 \Lambda}$ (LO) and $E_{i=1,...,10} = \frac{e_i^{NN}}{F_{\pi}^4 \Lambda^3}$ (NLO) to be fitted to $B({}^3H)$, ${}^2a_{nd}$, ${}^4a_{nd}$ and the p-d phaseshifts for different values of Λ

- ► there should be a hierarchy: c_E gives the bulk of the 3NF, while E_i's contribute less
- ▶ we first find the LO value of c_E , by fitting $B(^{3}H)$ and $^{2}a_{nd}$ this is only possible up to ~ 10% of theoretical uncertainty

we thus have 11 LECs, $E = \frac{c_E}{F_{\pi}^4 \Lambda}$ (LO) and $E_{i=1,...,10} = \frac{e_i^{NN}}{F_{\pi}^4 \Lambda^3}$ (NLO) to be fitted to $B({}^3H)$, ${}^2a_{nd}$, ${}^4a_{nd}$ and the p-d phaseshifts for different values of Λ

- there should be a hierarchy: c_E gives the bulk of the 3NF, while E_i's contribute less
- ▶ we first find the LO value of c_E , by fitting $B(^{3}H)$ and $^{2}a_{nd}$ this is only possible up to ~ 10% of theoretical uncertainty
- we then add 1 among the other 10 LECs, and fix it to those observables

Λ(MeV)	200	300	400	500
c_E/χ^2	1.269/13	0.525/40	0.410/114	0.45/170
c_E/e_1	Х	1.335/-0.822	1.09/-0.99	0.894/-1.45
c_E/e_2	2.382/0.844	Х	1.701/2.016	0.896/2.02
c _E / e ₃	0.389/-0.954	0.888/0.511	0.807/0.828	0.654/1.27
c _E / e ₄	X	1.450/0.331	1.202/0.400	0.965/0.541
c _F / e ₅	1.519/1.237	0.152/-0.898	-0.491/-1.255	-1.47/-1.53
c_E/e_6	1.704/-0.648	-0.028/0.384	-0.785/0.470	-1.911/0.5238
c _E / e ₇	Х	Х	Х	Х
c _E / e ₈	0.647/986	0.925/-7.948	0.715/-10.944	Х
c_E/e_9	X	X	1.365/-7.292	1.262/-6.937
c _E / e ₁₀	Х	-0.029/-4.599	Х	-1.293/-3.032

L. Girlanda (Univ. Salento)

Determining the three-nucleon force from three-nucleon data

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

Sensitivity to e_i

Λ=300 MeV 3.5 (TP/sp) 5 x 2.5 € 100 • χ^2 from 2-parameter fit with (c_E, e_i) e; e, • strong sensitivity of A_v and iT_{11} to E_7 , E_8 and $\chi^2(T_{20})$ $\chi^2(T_{21})$ E₉ e; e, 2.6 001() x,(1) o e; e,

Determining the three-nucleon force from three-nucleon data

A B A A B A

3-parameter fits

• use c_E and E_3 to account for $B(^{3}H)$ and $^{2}a_{nd}$

L. Girlanda (Univ. Salento)

Determining the three-nucleon force from three-nucleon data

3-parameter fits

- use c_E and E_3 to account for $B(^{3}H)$ and $^{2}a_{nd}$
- use another one of the E_i to fit scattering observables at 3 MeV

L. Girlanda (Univ. Salento)

Determining the three-nucleon force from three-nucleon data

4-parameter fits

• the χ^2 can be reduced to 3-4 per d.o.f.

L. Girlanda (Univ. Salento)

Determining the three-nucleon force from three-nucleon data

Comparison with the pionful theory

$$\begin{split} E_1 &= \frac{755g_A^6}{24576\pi F_g^6 M_\pi} + \frac{g_A^4}{256\pi F_\pi^6 M_\pi} - \frac{g_A^4 C_T}{64\pi F_\pi^4 M_\pi} - \frac{g_A^2 C_T}{8m F_\pi^2 M_\pi^2} &\sim 0.10\\ E_2 &= \frac{601g_A^6}{36864\pi F_\pi^6 M_\pi} + \frac{23g_A^4 C_T}{384\pi F_\pi^4 M_\pi} - \frac{5g_A^2 C_T}{192\pi F_\pi^4 M_\pi} - \frac{g_A^2(5C_T + 2C_S)}{48m F_\pi^2 M_\pi^2} &\sim 0.06 \end{split}$$

$$E_{3} = -\frac{3g_{A}^{0}}{2048\pi f_{\pi}^{6}M_{\pi}} + \frac{3g_{A}^{4}C_{T}}{64\pi f_{\pi}^{4}M_{\pi}} + \frac{9g_{A}^{2}C_{T}}{16mF_{\pi}^{2}M_{\pi}^{2}} \sim 0.00$$

$$E_4 = -\frac{g_A}{1024\pi F_{\pi}^6 M_{\pi}} - \frac{3g_A c_T}{16m f_{\pi}^2 M_{\pi}^2} \sim 0.00$$

$$E_{5} = \frac{79g_{0}^{4}}{12288\pi F_{0}^{5}M_{\pi}} + \frac{g_{A}^{4}}{256\pi F_{0}^{5}M_{\pi}} - \frac{g_{A}^{4}C_{T}}{64\pi F_{\pi}^{4}M_{\pi}} - \frac{g_{A}^{2}C_{T}}{8mF_{\pi}^{2}M_{\pi}^{2}} \sim 0.02$$

$$F_{6} = \frac{319g_{0}^{4}}{28} + \frac{g_{A}^{4}}{28} - \frac{g_{A}^{2}(C_{S} - 2C_{T})}{8mF_{\pi}^{2}M_{\pi}^{2}} \sim 0.04$$

$$E_{0} = \frac{1}{36864\pi F_{\pi}^{6}M_{\pi}} + \frac{256\pi F_{\pi}^{6}M_{\pi}}{128\pi F_{\pi}^{6}M_{\pi}} + \frac{24m\pi F_{\pi}^{2}M_{\pi}^{2}}{4mF_{\pi}^{2}M_{\pi}^{2}} \qquad \qquad \sim -0.08$$

$$E_{7} = -\frac{83g_{A}^{6}}{6144\pi F_{\pi}^{6}M_{\pi}} - \frac{3g_{A}^{4}}{128\pi F_{\pi}^{6}M_{\pi}} + \frac{3g_{A}^{2}C_{T}}{4mF_{\pi}^{2}M_{\pi}^{2}} \qquad \sim -0.08$$

$$E_{9} = -\frac{7g_{A}^{9}}{614\pi F_{\pi}^{6}M_{\pi}} - \frac{g_{A}^{2}}{64\pi F_{\pi}^{6}M_{\pi}} + \frac{g_{A}^{2}C_{T}}{64\pi F_{\pi}^{2}M_{\pi}^{2}} \qquad \sim -0.02$$

$$E_8 = -\frac{1}{3072\pi F_m^6 M_\pi} - \frac{1}{128\pi F_m^6 M_\pi} + \frac{4}{4m F_\pi^2 M_\pi^2} \qquad \qquad \sim -0.02$$

$$E_9 = \frac{193g_0^6}{193g_0^6 M_\pi} - \frac{3g_A^2 C_T}{3g_A^2 C_T} \qquad \sim 0.14$$

$$E_{10} = \frac{c_{1}g_{A}^{2}}{2F_{\pi}^{4}M_{\pi}^{2}} + \frac{g_{A}D}{8F_{\pi}^{2}M_{\pi}^{2}} + \frac{427g_{A}^{6}}{12288\pi F_{\pi}^{6}M_{\pi}} + \frac{9g_{A}^{4}}{512\pi F_{\pi}^{6}M_{\pi}} - \frac{g_{A}^{2}(C_{S}+C_{T})}{8mF_{\pi}^{2}M_{\pi}^{2}} \\ - \frac{2g_{A}^{2}\tilde{e}_{14}}{F_{\pi}^{4}} + \frac{g_{A}^{2}(2c_{1}-c_{3})}{128\pi^{2}F_{\pi}^{6}} = -0.05 + 0.15$$
 ~ 0.09

numerical values are in units of $F_{\pi}^4 M_{\pi}^3$

L. Girlanda (Univ. Salento)

▶ in the 't Hooft limit g ~ 1/√N_c a leading connected baryon-baryon amplitude scales like O(N_c)

Determining the three-nucleon force from three-nucleon data

イロト 不得 トイヨト イヨト 二日

▶ in the 't Hooft limit g ~ 1/√N_c a leading connected baryon-baryon amplitude scales like O(N_c)

• each n - quark vertex scales like N_c^{1-n}

イロト 不得下 イヨト イヨト 二日

- ▶ in the 't Hooft limit g ~ 1/√N_c a leading connected baryon-baryon amplitude scales like O(N_c)
- each n quark vertex scales like N_c^{1-n}
- therefore, in the one-quark operator basis

$$T \sim N_c \sum_{l} \left(\frac{S}{N_c}\right)_{S}^{n} \left(\frac{I}{N_c}\right)_{I}^{n} \left(\frac{G}{N_c}\right)_{G}^{n}$$

$$\mathbf{G} \sim \sigma, \mathbf{I} \sim \tau, \mathbf{G} \sim \sigma \tau$$

[Kaplan, Savage, Dashen, Jenkins, Manohar,...]

- 4 周 ト 4 日 ト 4 日 ト

Determining the three-nucleon force from three-nucleon data

- ▶ in the 't Hooft limit g ~ 1/√N_c a leading connected baryon-baryon amplitude scales like O(N_c)
- each n quark vertex scales like N_c^{1-n}
- therefore, in the one-quark operator basis

$$T \sim N_c \sum_{l} \left(\frac{S}{N_c}\right)_{S}^{n} \left(\frac{I}{N_c}\right)_{I}^{n} \left(\frac{G}{N_c}\right)_{G}^{n}$$

$$\boldsymbol{S} \sim \sigma, \boldsymbol{I} \sim \tau, \boldsymbol{G} \sim \sigma \tau$$

[Kaplan, Savage, Dashen, Jenkins, Manohar,...]

12 N 4 12 N

as a result, one finds e.g.

$$\mathbf{1}\sim oldsymbol{\sigma}_1\cdotoldsymbol{\sigma}_2 au_1\cdotoldsymbol{ au}_2\sim O(N_c)$$

while

$$\sigma_1 \cdot \sigma_2 \sim au_1 \cdot au_2 \sim O(1/N_c)$$

L. Girlanda (Univ. Salento)

Determining the three-nucleon force from three-nucleon data

Large- N_c and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

Large-N_c and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

in an effective theory one obtains that amplitude from

 $\mathcal{L} = c_1 N^{\dagger} N N^{\dagger} N + c_2 N^{\dagger} \sigma_i N N^{\dagger} \sigma_i N + c_3 N^{\dagger} \tau^a N N^{\dagger} \tau^a N + c_4 N^{\dagger} \sigma_i \tau^a N N^{\dagger} \sigma_i \tau^a N \equiv \sum_i c_i o_i$

イロト 不得下 イヨト イヨト 三日

Large-N_c and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

in an effective theory one obtains that amplitude from

 $\mathcal{L} = c_1 N^{\dagger} N N^{\dagger} N + c_2 N^{\dagger} \sigma_i N N^{\dagger} \sigma_i N + c_3 N^{\dagger} \tau^a N N^{\dagger} \tau^a N + c_4 N^{\dagger} \sigma_i \tau^a N N^{\dagger} \sigma_i \tau^a N \equiv \sum_i c_i o_i$

▶ but from the identicality of N, o₃ = -o₂ - 2o₁, o₄ = -3o₁ which do not conform with the large-N_c scaling

イロト 不得 トイヨト イヨト 二日

Large- N_c and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

in an effective theory one obtains that amplitude from

 $\mathcal{L} = c_1 N^{\dagger} N N^{\dagger} N + c_2 N^{\dagger} \sigma_i N N^{\dagger} \sigma_i N + c_3 N^{\dagger} \tau^a N N^{\dagger} \tau^a N + c_4 N^{\dagger} \sigma_i \tau^a N N^{\dagger} \sigma_i \tau^a N \equiv \sum_i c_i o_i$

- ▶ but from the identicality of N, o₃ = -o₂ 2o₁, o₄ = -3o₁ which do not conform with the large-N_c scaling
- one way to implement the Pauli principle is to start with a redundant set of operators, and declare, by tree-level matching, $c_1 \sim c_4 \sim N_c$, $c_2 \sim c_3 \sim 1/N_c$

Large- N_c and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

in an effective theory one obtains that amplitude from

 $\mathcal{L} = c_1 N^{\dagger} N N^{\dagger} N + c_2 N^{\dagger} \sigma_i N N^{\dagger} \sigma_i N + c_3 N^{\dagger} \tau^a N N^{\dagger} \tau^a N + c_4 N^{\dagger} \sigma_i \tau^a N N^{\dagger} \sigma_i \tau^a N \equiv \sum_i c_i o_i$

- ▶ but from the identicality of N, o₃ = -o₂ 2o₁, o₄ = -3o₁ which do not conform with the large-N_c scaling
- one way to implement the Pauli principle is to start with a redundant set of operators, and declare, by tree-level matching, $c_1 \sim c_4 \sim N_c$, $c_2 \sim c_3 \sim 1/N_c$
- observable quantities will depend on two combinations of LECs,

$$\mathcal{L} = (c_1 - 2c_3 - 3c_4)N^{\dagger}NN^{\dagger}N + (c_2 - c_3)N^{\dagger}\sigma_iNN^{\dagger}\sigma_iN$$

Large-N_c and Pauli principle

however, nowhere in the argument we have used that the baryons are identical bosons or fermions!

in an effective theory one obtains that amplitude from

 $\mathcal{L} = c_1 N^{\dagger} N N^{\dagger} N + c_2 N^{\dagger} \sigma_i N N^{\dagger} \sigma_i N + c_3 N^{\dagger} \tau^a N N^{\dagger} \tau^a N + c_4 N^{\dagger} \sigma_i \tau^a N N^{\dagger} \sigma_i \tau^a N \equiv \sum_i c_i o_i$

- ▶ but from the identicality of N, o₃ = -o₂ 2o₁, o₄ = -3o₁ which do not conform with the large-N_c scaling
- one way to implement the Pauli principle is to start with a redundant set of operators, and declare, by tree-level matching, $c_1 \sim c_4 \sim N_c$, $c_2 \sim c_3 \sim 1/N_c$
- observable quantities will depend on two combinations of LECs,

 $\mathcal{L} = (c_1 - 2c_3 - 3c_4)N^{\dagger}NN^{\dagger}N + (c_2 - c_3)N^{\dagger}\sigma_iNN^{\dagger}\sigma_iN$

reobtaining the well-established fact that $C_{S} >> C_{T}$

L. Girlanda (Univ. Salento)

the generalization to 3 nucleon forces has been given recently [D.R.Phillips and C.Schat, PRC88 (2013) 034002]

Determining the three-nucleon force from three-nucleon data

the generalization to 3 nucleon forces has been given recently [D.R.Phillips and C.Schat, PRC88 (2013) 034002] at the leading order one finds

$$\mathcal{L} \equiv -\sum_{i}^{6} E_{i}O_{i} = -E_{1}N^{\dagger}NN^{\dagger}NN^{\dagger}N - E_{2}N^{\dagger}\sigma^{i}NN^{\dagger}\sigma^{i}NN^{\dagger}N$$
$$-E_{3}N^{\dagger}\tau^{a}NN^{\dagger}\tau^{a}NN^{\dagger}N - E_{4}N^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}N$$
$$-E_{5}N^{\dagger}\sigma^{i}NN^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\tau^{a}N - E_{6}\epsilon^{ijk}\epsilon^{abc}N^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\sigma^{j}\tau^{b}NN^{\dagger}\sigma^{k}\tau^{c}N$$

• only E_1 , E_4 and E_6 are $O(N_c)$

the generalization to 3 nucleon forces has been given recently [D.R.Phillips and C.Schat, PRC88 (2013) 034002] at the leading order one finds

$$\mathcal{L} \equiv -\sum_{i}^{6} E_{i}O_{i} = -E_{1}N^{\dagger}NN^{\dagger}NN^{\dagger}N - E_{2}N^{\dagger}\sigma^{i}NN^{\dagger}\sigma^{i}NN^{\dagger}N$$
$$-E_{3}N^{\dagger}\tau^{a}NN^{\dagger}\tau^{a}NN^{\dagger}N - E_{4}N^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}N$$
$$-E_{5}N^{\dagger}\sigma^{i}NN^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\tau^{a}N - E_{6}\epsilon^{ijk}\epsilon^{abc}N^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\sigma^{j}\tau^{b}NN^{\dagger}\sigma^{k}\tau^{c}N$$

- only E_1 , E_4 and E_6 are $O(N_c)$
- ▶ but since the 6 operators are all proportional, the LEC associated to any choice will be ~ O(N_c)

L. Girlanda (Univ. Salento)

the generalization to 3 nucleon forces has been given recently [D.R.Phillips and C.Schat, PRC88 (2013) 034002] at the leading order one finds

$$\mathcal{L} \equiv -\sum_{i}^{6} E_{i}O_{i} = -E_{1}N^{\dagger}NN^{\dagger}NN^{\dagger}N - E_{2}N^{\dagger}\sigma^{i}NN^{\dagger}\sigma^{i}NN^{\dagger}N$$
$$-E_{3}N^{\dagger}\tau^{a}NN^{\dagger}\tau^{a}NN^{\dagger}N - E_{4}N^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}N$$
$$-E_{5}N^{\dagger}\sigma^{i}NN^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\tau^{a}N - E_{6}\epsilon^{ijk}\epsilon^{abc}N^{\dagger}\sigma^{i}\tau^{a}NN^{\dagger}\sigma^{j}\tau^{b}NN^{\dagger}\sigma^{k}\tau^{c}N$$

- only E_1 , E_4 and E_6 are $O(N_c)$
- ▶ but since the 6 operators are all proportional, the LEC associated to any choice will be ~ O(N_c)
- operators with different scaling properties in $1/N_c$ get mixed

L. Girlanda (Univ. Salento)

large- N_c constraints on subleading 3N contact interaction

- applying Phillips and Schat counting to our redundant operators we get 13 leading structures
- using Fierz identities we find 7 leading operators, out of 10
- we thus have predictions for some of the E_i

 $E_2 = 0 + O(1/N_c)$ $E_3 = E_5 + O(1/N_c)$ $E_9 = 3E_3 + O(1/N_c)$

L. Girlanda (Univ. Salento)

Determining the three-nucleon force from three-nucleon data

Summary and outlook

- ► We advocate a pragmatic approach, in which the subleading 3N contact interaction is treated as a sort of remainder, to fine-tune existing realistic models
- ► We are in the middle of the fitting procedure to p − d elastic scattering data
- We have started by adopting the AV18 NN interaction. The χ² is drastically reduced, until 3-4 per d.o.f., but the exploration of the parameter space is not complete yet.

Summary and outlook

- ► We advocate a pragmatic approach, in which the subleading 3N contact interaction is treated as a sort of remainder, to fine-tune existing realistic models
- ► We are in the middle of the fitting procedure to p − d elastic scattering data
- ▶ We have started by adopting the AV18 NN interaction. The χ^2 is drastically reduced, until 3-4 per d.o.f., but the exploration of the parameter space is not complete yet.

It will be interesting, in the near future

- to repeat the analysis using a realistic pionless NN potential;
- to extend the analysis to other energies, and to include the breakup channel
- to implement the constraints from the large- N_c analysis

L. Girlanda (Univ. Salento)

◆□▶ ◆□▶ ◆三▶ ◆三▶ □ のへ⊙