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Università del Salento & INFN Lecce

work in progress

in collaboration with Alejandro Kievsky and Michele Viviani (INFN Pisa)

L. Girlanda (Univ. Salento) Determining the three-nucleon force from three-nucleon data 1



The problem:

providing a realistic three-nucleon force

we are not yet there: Ay puzzle

and other problems in the 3N continuum

two options

I consistent scheme: ChPT, ∆-full, pionless,...
perhaps predictive (convergence?) −→ not necessarily realistic

I phenomenological scheme: build a realistic 3NF associated to a given
realistic NN potential
but a guidance is needed from theory

we explore the second option in particular, since Ay is a puzzle only at very
low-energy, we focus on the subleading contact 3NF
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Ay puzzles

I notice that p−3He Ay is almost
solved by chiral 3NF at N2LO
(or by AV18+IL7)
[Viviani et al. PRL111 (2013) 172302]

I for p − d the discrepancy remains at
the ∼ 20% level
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The pragmatic approach

I ChEFT is not predictive enough to provide a realistic 3NF at N2LO,
with just 2 LECs

I is should be seen whether this will change at N3LO? is convergence
fast enough? (cfr. H. Krebs’ talk)

I prospects for definite improvements at N4LO: 10 new LECs for
contact interaction, unconstrained by χS [LG et al. PRC78 (2011) 014001]

I consistency would require to consider them together with other
pion-exchange 3NF at N4LO (and with a N4LO NN potential), or
within π/EFT

we treat the 10 subleading contact terms as remainders that can bring a
given model of NN+3NF in closer agreement with data, with χ2 ∼ 1

we start with the AV18 NN potential, in the absence of further 3NF
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Contact terms - leading order

At leading order (no derivatives) the most general effective Lagrangian
satisfying rotational, parity, time-reversal and isospin symmetry is

L ≡ −
6∑
i

EiOi = −E1N
†NN†NN†N − E2N

†σiNN†σiNN†N

−E3N
†τ aNN†τ aNN†N − E4N

†σiτ aNN†σiτ aNN†N

−E5N
†σiNN†σiτ aNN†τ aN − E6ε

ijkεabcN†σiτ aNN†σjτbNN†σkτ cN

but the 6 operators are redundant. Ultimately, this is due to the
anticommuting nature of the nucleon fields N(x) and to Fierz-like
identities

(1)[1] = 1
2

(1][1) + 1
2

(σ] · [σ)

(σi )[1] = 1
2

(σi ][1) + 1
2

(1][σi )− i
2
εijk (σj ][σk )

(σi )[σj ] = 1
2

{
δij (1][1)− δij (σ] · [σ) + (σi ][σj ) + (σj ][σi ) + iεijk (σk ][1)− iεijk (1][σk )

}
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Redundancies of contact operators
Simultaneous Fierz rearrangements of spin and isospin indeces of a given
pair of nucleon fields allow to derive linear relations, e.g.

O1 = − 1
4

(O1 + O2 + O3 + O4)

O2 = − 1
2

(O2 + O5)

O3 = − 1
2

(O3 + O5)

O4 = − 1
4

(2O4 + 2O5 − O6)

O5 = − 1
2

(3O2 − O5)
O6 = 2 (O4 − O5)

As a result, there is only one independent operator and one can choose
anyone of those, e.g. V = E

∑
ijk τi · τj

Transforming to coordinate space,
we need a momentum cutoff, e.g.

V ∼
∑
ijk

τi · τjZ0(rik)Z0(rjk)

which introduces a difference between the choices of the operator. Such
difference is a cutoff effect, beyond the reach of a leading order
description, to be regarded as a theoretical uncertainty
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Contact terms - subleading order

Parity invariance requires that the subleading 3N contact Lagrangian
contain 2 gradients
Using translational invariance the possible space-structures are

X+
A,ij = (N†

←→
∇ i N)(N†

←→
∇ j N)(N†N)

X+
B,ij = ∇i (N

†N)∇j(N
†N)(N†N)

X−C ,ij = i∇i (N
†N)(N†

←→
∇ j N)(N†N)

X+
D,ij = (N†

←→
∇ i
←→
∇ j N)(N†N)(N†N),

to be combined with all possible isospin invariant structures

T+ = 1, τ1 · τ2, τ1 · τ3, τ2 · τ3, T− = τ1 × τ2 · τ3

and contracted in all possible time-reversal invariant ways with spin
matrices
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As a result, we get a list of 146 operators
←→
∇ 1 ·

←→
∇ 2[1, τ1 · τ2, τ1 · τ3] i

←→
∇ 1 · −→σ 3

−→
∇2 · −→σ 2[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 1

←→
∇ 2 · −→σ 2[1, τ1 · τ2, τ1 · τ3] i

←→
∇ 1 ·

−→
∇2
−→σ 2 · −→σ 3[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 2

←→
∇ 2 · −→σ 1[1, τ1 · τ2, τ1 · τ3] i

←→
∇ 1 ×

−→
∇2 · −→σ 1[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 ·

←→
∇ 2
−→σ 1 · −→σ 2[1, τ1 · τ2, τ1 · τ3] i

←→
∇ 1 ×

−→
∇2 · −→σ 2[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 · −→σ 1

←→
∇ 2 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3] i

←→
∇ 1 ×

−→
∇2 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 · −→σ 3

←→
∇ 2 · −→σ 1[1, τ1 · τ2, τ1 · τ3, τ2 · τ3] i

←→
∇ 1 ·

−→
∇2
−→σ 1 ×−→σ 2 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 ·

←→
∇ 2
−→σ 1 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3] i

←→
∇ 1 · −→σ 1

−→
∇2 ×−→σ 2 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 ×

←→
∇ 2 · −→σ 1[τ1 × τ2 · τ3] i

←→
∇ 1 · −→σ 2
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∇2 ×−→σ 1 · −→σ 3[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]
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∇ 1 ×
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∇2 · −→σ 1[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

←→
∇ 1 · −→σ 1

−→σ 2 ×−→σ 3 ·
←→
∇ 2[τ1 × τ2 · τ3] i
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∇ 1 ×−→σ 1 · −→σ 3
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←→
∇ 1 ×

−→
∇2 · −→σ 3

−→σ 1 · −→σ 2[1, τ1 · τ2, τ1 · τ3, τ2 · τ3]

same as before with
←→
∇ →

−→
∇

←→
∇ 1 ·

←→
∇ 1[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 ·

−→
∇2[τ1 × τ2 · τ3]

←→
∇ 1 ·

←→
∇ 1
−→σ 1 · −→σ 2[1, τ1 · τ2, τ2 · τ3, τ1 · τ3]

i
←→
∇ 1 · −→σ 1

−→
∇2 · −→σ 2[τ1 × τ2 · τ3]

←→
∇ 1 ·

←→
∇ 1
−→σ 2 · −→σ 3[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 · −→σ 2

−→
∇2 · −→σ 1[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 1

←→
∇ 1 · −→σ 2[1, τ1 · τ2, τ2 · τ3, τ1 · τ3]

i
←→
∇ 1 ·

−→
∇2
−→σ 1 · −→σ 2[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 2

←→
∇ 1 · −→σ 3[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 · −→σ 1

−→
∇2 · −→σ 3[τ1 × τ2 · τ3]

←→
∇ 1 ·

←→
∇ 1
−→σ 1 ×−→σ 2 · −→σ 3[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 · −→σ 3

−→
∇2 · −→σ 1[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 1

←→
∇ 1 ×−→σ 2 · −→σ 3[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 ·

−→
∇2
−→σ 1 · −→σ 3[τ1 × τ2 · τ3]

←→
∇ 1 · −→σ 2

←→
∇ 1 ×−→σ 1 · −→σ 3[1, τ1 · τ2, τ2 · τ3]

i
←→
∇ 1 · −→σ 2

−→
∇2 · −→σ 3[τ1 × τ2 · τ3]
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Fierz constraints

As before, a set of linear relations among the 146 operators can be found
by using Fierz’s reshuffling, which in this case also involves the fields’
derivatives: e.g. under exchange of nucleons 1–2

←→
∇ 1 →

1

2
(
−→
∇2 +

←→
∇ 2−

−→
∇1 +

←→
∇ 1),

−→
∇1 →

1

2
(
−→
∇2 +

←→
∇ 2 +

−→
∇1−

←→
∇ 1)

Out of the 3× 146 relations, 132 are linearly independent
=⇒ we are left with 14 independent operators
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Constraints from relativity

We still have to impose the requirements of Poincaré covariance
They can be implemented order by order in the low-energy expansion
As a result, the subleading 3N effective Hamiltonian consists of

I fixed terms (relativistic corrections to the lower order terms)

I free terms, which have to commute with the lowest order boost
operator K0

with the choice N(x) =
∫ dp

(2π)3 bs(p)χs e−ip·x K0 acts as

[K0 , bs(p)] = −i m∇p bs(p)

and only 10 independent combinations of the 14 operators can be found
to commute with K0
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Subleading contact potential

Choosing a momentum cutoff depending only on momentum transfers the
potential is local incoordinate space

V =
∑
i 6=j 6=k

(E1 + E2τi · τj + E3σi · σj + E4τi · τjσi · σj )

[
Z ′′0 (rij ) + 2

Z ′0(rij )

rij

]
Z0(rik )

+(E5 + E6τi · τj )Sij
[
Z ′′0 (rij )−

Z ′0(rij )

rij

]
Z0(rik )

+(E7 + E8τi · τk )(L · S)ij
Z ′0(rij )

rij
Z0(rik )

+(E9 + E10τj · τk )σj · r̂ijσk · r̂ikZ ′0(rij )Z
′
0(rik )

Some of the spin-isospin structures, which were equivalent up to cutoff
effects, are resolved at the two-derivative level.
Most terms are ordinary 2-body interactions between particles ij with a
further dependence on the coordinate of particle k
Spin-orbit terms suitable for the Ay puzzle [Kievsky PRC60 (1999) 034001]
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Subleading contact potential

Choosing a momentum cutoff depending only on momentum transfers the
potential is local incoordinate space

V =
∑
i 6=j 6=k

(E1 + E2τi · τj + E3σi · σj + E4τi · τjσi · σj )

[
Z ′′0 (rij ) + 2

Z ′0(rij )

rij

]
Z0(rik )

+(E5 + E6τi · τj )Sij
[
Z ′′0 (rij )−

Z ′0(rij )

rij

]
Z0(rik )

+(E7 + E8τi · τk )(L · S)ij
Z ′0(rij )

rij
Z0(rik )

+(E9 + E10τj · τk )σj · r̂ijσk · r̂ikZ ′0(rij )Z
′
0(rik )
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Numerical implementation
The N-d scattering wave function is written as

ΨLSJJz = ΨC + ΨA

with ΨC expanded in the HH basis

|ΨC 〉 =
∑
µ

cµ|Φµ〉

and ΨA describing the asymptotic relative motion

ΨA ∼ ΩR
LS(k , r) +

∑
L′S ′

RLS ,L′S ′(k)ΩI
L′S ′(k , r)

with the unknown cµ and R-matrix elements (related to the S-matrix) to
be determined so that the Kohn functional is stationary

[RLS ,L′S ′ ] = RLS ,L′S ′ − 〈ΨC + ΨA|H − E |ΨC + ΨA〉

L. Girlanda (Univ. Salento) Determining the three-nucleon force from three-nucleon data 12



imposing the Kohn functional to be stationary leads to a linear system∑
L′′S ′′

RLS ,L′′S ′′XL′S ′,L′′S ′′ = YLS ,L′S ′

with the matrices

XLS,L′S′ = 〈ΩI
LS + ΨI

C |H − E |ΩI
L′S′〉 YLS,L′S′ = −〈ΩR

LS + ΨR
C |H − E |ΩI

L′S′〉

and the Ψ
R/I
C solutions of∑

µ′

cµ〈Φµ|H − E |Φµ′〉 = −DR/I
LS (µ)

with
D

R/I
LS (µ) = 〈Φµ|H − E |ΩR/I

LS 〉

11 set of matrices are calculated once for all, and only linear systems are
solved for each choice of Ei ’s
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Fit strategy
we thus have 11 LECs, E = cE

F 4
πΛ

(LO) and Ei=1,...,10 =
eNN
i

F 4
πΛ3 (NLO)

to be fitted to B(3H), 2and , 4and and the p-d phaseshifts for different
values of Λ

I there should be a hierarchy: cE gives the bulk of the 3NF, while Ei ’s
contribute less

I we first find the LO value of cE , by fitting B(3H) and 2and this is only
possible up to ∼ 10% of theoretical uncertainty

I we then add 1 among the other 10 LECs, and fix it to those
observables

Λ(MeV) 200 300 400 500

cE/χ
2 1.269/13 0.525/40 0.410/114 0.45/170

cE/e1 X 1.335/-0.822 1.09/-0.99 0.894/-1.45
cE/e2 2.382/0.844 X 1.701/2.016 0.896/2.02
cE/e3 0.389/-0.954 0.888/0.511 0.807/0.828 0.654/1.27
cE/e4 X 1.450/0.331 1.202/0.400 0.965/0.541
cE/e5 1.519/1.237 0.152/-0.898 -0.491/-1.255 -1.47/-1.53
cE/e6 1.704/-0.648 -0.028/0.384 -0.785/0.470 -1.911/0.5238
cE/e7 X X X X
cE/e8 0.647/986 0.925/-7.948 0.715/-10.944 X
cE/e9 X X 1.365/-7.292 1.262/-6.937
cE/e10 X -0.029/-4.599 X -1.293/-3.032
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Sensitivity to ei

I χ2 from 2-parameter
fit with (cE , ei )

I strong sensitivity of Ay

and iT11 to E7, E8 and
E9
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3-parameter fits

I use cE and E3 to account for B(3H) and 2and

I use another one of the Ei to fit scattering observables at 3 MeV
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4-parameter fits

I the χ2 can be reduced to 3-4 per d.o.f.
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Comparison with the pionful theory

E1 =
755g6

A
24576πF 6

πMπ
+

g4
A

256πF 6
πMπ
− g4

ACT

64πF 4
πMπ
− g2

ACT

8mF 2
πM2

π
∼ 0.10

E2 =
601g6

A
36864πF 6

πMπ
+

23g4
ACT

384πF 4
πMπ
− 5g2

ACT

192πF 4
πMπ
− g2

A(5CT +2CS )

48mF 2
πM2

π
∼ 0.06

E3 = − 3g6
A

2048πF 6
πMπ

+
3g4

ACT

64πF 4
πMπ

+
9g2

ACT

16mF 2
πM2

π
∼ 0.00

E4 = − g6
A

1024πF 6
πMπ
− 3g2

ACT

16mF 2
πM2

π
∼ 0.00

E5 =
79g6

A
12288πF 6

πMπ
+

g4
A

256πF 6
πMπ
− g4

ACT

64πF 4
πMπ
− g2

ACT

8mF 2
πM2

π
∼ 0.02

E6 =
319g6

A
36864πF 6

πMπ
+

g4
A

256πF 6
πMπ
− g2

A(CS−2CT )

24mπF 2
πM2

π
∼ 0.04

E7 = − 83g6
A

6144πF 6
πMπ
− 3g4

A
128πF 6

πMπ
+

3g2
ACT

4mF 2
πM2

π
∼ −0.08

E8 = − 7g6
A

3072πF 6
πMπ
− g4

A
128πF 6

πMπ
+

g2
ACT

4mF 2
πM2

π
∼ −0.02

E9 =
193g6

A
4096πF 6

πMπ
− 3g2

ACT

8mF 2
πM2

π
∼ 0.14

E10 =
c1g

2
A

2F 4
πM2

π
+ gAD

8F 2
πM2

π
+

427g6
A

12288πF 6
πMπ

+
9g4

A
512πF 6

πMπ
− g2

A(CS+CT )

8mF 2
πM2

π

− 2g2
A ē14

F 4
π

+
g2
A(2c1−c3)

128π2F 6
π

= −0.05 + 0.15 ∼ 0.09

numerical values are in units of F 4
πM

3
π
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Insight from the large-Nc limit
I in the ’t Hooft limit g ∼ 1/

√
Nc a

leading connected baryon-baryon
amplitude scales like O(Nc)

I each n − quark vertex scales like N1−n
c

I therefore, in the one-quark operator basis

T ∼ Nc

∑(
S

Nc

)n

S

(
I

Nc

)n

I

(
G

Nc

)n

G

S ∼ σ, I ∼ τ,G ∼ στ

[Kaplan, Savage, Dashen, Jenkins, Manohar,...]

I as a result, one finds e.g.

1 ∼ σ1 · σ2τ1 · τ2 ∼ O(Nc)

while
σ1 · σ2 ∼ τ1 · τ2 ∼ O(1/Nc)
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Large-Nc and Pauli principle
however, nowhere in the argument we have used that the baryons are
identical bosons or fermions!

I in an effective theory one obtains that amplitude from

L = c1N
†NN†N + c2N

†σiNN
†σiN + c3N

†τ aNN†τ aN + c4N
†σiτ

aNN†σiτ
aN ≡

∑
i

cioi

I but from the identicality of N, o3 = −o2 − 2o1, o4 = −3o1 which do
not conform with the large-Nc scaling

I one way to implement the Pauli principle is to start with a redundant
set of operators, and declare, by tree-level matching, c1 ∼ c4 ∼ Nc ,
c2 ∼ c3 ∼ 1/Nc

I observable quantities will depend on two combinations of LECs,

L = (c1 − 2c3 − 3c4)N†NN†N + (c2 − c3)N†σiNN
†σiN

reobtaining the well-established fact that CS >> CT
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I observable quantities will depend on two combinations of LECs,

L = (c1 − 2c3 − 3c4)N†NN†N + (c2 − c3)N†σiNN
†σiN

reobtaining the well-established fact that CS >> CT
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3NF and large-Nc

the generalization to 3 nucleon forces has been given recently
[D.R.Phillips and C.Schat, PRC88 (2013) 034002]

at the leading order one finds

L ≡ −
6∑
i

EiOi = −E1N
†NN†NN†N − E2N

†σiNN†σiNN†N

−E3N
†τ aNN†τ aNN†N − E4N

†σiτ aNN†σiτ aNN†N

−E5N
†σiNN†σiτ aNN†τ aN − E6ε

ijkεabcN†σiτ aNN†σjτbNN†σkτ cN

I only E1, E4 and E6 are O(Nc)

I but since the 6 operators are all proportional, the LEC associated to
any choice will be ∼ O(Nc)

I operators with different scaling properties in 1/Nc get mixed
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large-Nc constraints on subleading 3N contact interaction

I applying Phillips and Schat counting to our redundant operators we
get 13 leading structures

I using Fierz identities we find 7 leading operators, out of 10

I we thus have predictions for some of the Ei

E2 = 0 + O(1/Nc)

E3 = E5 + O(1/Nc)

E9 = 3E3 + O(1/Nc)
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Summary and outlook

I We advocate a pragmatic approach, in which the subleading 3N
contact interaction is treated as a sort of remainder, to fine-tune
existing realistic models

I We are in the middle of the fitting procedure to p − d elastic
scattering data

I We have started by adopting the AV18 NN interaction. The χ2 is
drastically reduced, until 3-4 per d.o.f., but the exploration of the
parameter space is not complete yet.

It will be interesting, in the near future

I to repeat the analysis using a realistic pionless NN potential;

I to extend the analysis to other energies, and to include the breakup
channel

I to implement the constraints from the large-Nc analysis
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