sbrawoT Towards
gnirolqx3 Exploring
gnirolqx9 Parity
noitaloiV Violation
dtiw with
abits1 Lattice
GOQ QCD



Brian Tiburzi 30 July 2014 The City College of New York



#### Towards Exploring Parity Violation with Lattice QCD

- Hadronic Weak Interactions
- Lattice QCD calculations
- Hadronic Parity Violation
   isovector and isotensor



Goal: provide a sense of what challenges lattice QCD computations must confront

### Quark Interactions to Hadronic Couplings

- **Textbook**: gauge theories defined in perturbation theory
- **QCD**: short distance perturbative, long distance non-perturbative

 $\overline{\psi} \left( D + m_q \right) \psi + \frac{1}{4} G_{\mu\nu} G_{\mu\nu}$  Many Technicalities

Wilson Lattice Action Wilson Fermions

Non-perturbative definition of asymptotically free gauge theories'  $\delta_{NN}(k)$ 

 $\mathbf{Q}$ 

**Spectrum** Interactions

 $M_N \quad \epsilon_b(D)$ 

Strong interaction observables

Quarks couple to other fundamental interactions: e.g. weak interaction

 $J(x)D(x,0)J(0) = \sum C_i(\mu)\mathcal{O}_i(x,\mu)$ Wilson Operator Product Expansion, Wilson Coefficients, Wilson Renormalization Group

Hadronic weak (& BSM) interactions require all the Wilson brand names 



1936-2013

#### Weak Interactions

• Leptonic weak interaction

• Semi-leptonic weak interaction





• Non-leptonic (hadronic) weak interaction



### Example: $K \rightarrow \pi\pi$ and $\Delta I = 1/2$ Rule



- Old Puzzle: I = 0 weak decay channel experimentally observed ~500x over I = 2
- Amplitude level: A0 / A2 ~ 22.5 pQCD contributes a factor of ~2 Rest non-perturbative?

#### PRL 110, 152001 (2013)

• Almost There? C. Lehner,<sup>5</sup> Q  ${\cal A}_0/{\cal A}_2(m_\pi=330\,{
m MeV})=12.0(1.7)$ 

# $\mathcal{A} = \sum_{i} C_{i}(\mu) \langle \pi \pi | \mathcal{O}_{i}(\mu) | K \rangle_{\text{Lattice}}$

Emerging understanding of the  $\Delta I=1/2$  Rule from Lattice QCD

P.A. Boyle,<sup>1</sup> N.H. Christ,<sup>2</sup> N. Garron,<sup>3</sup> E.J. Goode,<sup>4</sup> T. Janowski,<sup>4</sup> C. Lehner,<sup>5</sup> Q. Liu,<sup>2</sup> A.T. Lytle,<sup>4</sup> C.T. Sachrajda,<sup>4</sup> A. Soni,<sup>6</sup> and D. Zhang<sup>2</sup> (1 7) (The RBC and UKQCD Collaborations)

Theoretical Challenges ΔS = 1 Processes

| Usual Suspects: pion ma | ass, lattice spacing, lattice volume                 | underway     |
|-------------------------|------------------------------------------------------|--------------|
| Additional Challenges:  | Physical Kinematics                                  | underway     |
|                         | Multi-Hadron States and Normalization                | $\checkmark$ |
|                         | <b>Operator Renormalization &amp; Scale Invarian</b> | ce 🗸         |
|                         | Statistically Noisy Operator Self-Contractions       | $\checkmark$ |
| Can such success        | carry over to weak nuclear processes?                |              |

### Dirtiest Corner of Standard Model



### Example: $N \rightarrow (N\pi)_s$ and $\Delta I = 1$ Parity Violation

• Old Problem: hadronic neutral weak interaction is the least constrained SM current



• Theoretical Challenges  $\Delta I = 1$  Processes

| Usual Suspects: pion ma | to be done                                     |                |
|-------------------------|------------------------------------------------|----------------|
| Additional Challenges:  | Physical Kinematics                            | largely solved |
|                         | Multi-Hadron States and Normalization          | to be done     |
|                         | to be done                                     |                |
|                         | Statistically Noisy Operator Self-Contractions | to be done     |
|                         |                                                |                |

How many lattice advances carry over to weak nuclear processes?

#### Particle Physics (B=0) vs. Nuclear Physics (B>0)

Statistical nature of lattice QCD two-point correlation functions (*Parisi, Lepage*)

#### **Pion Correlation Function**

Signal

Signal
$$\sum_{\{A_{\mu}\}} \langle q\overline{q}(t)q\overline{q}(0) \rangle \sim e^{-m_{\pi}t}$$
Signal/NoiseNoise^2
$$\sum_{\{A_{\mu}\}} \langle q\overline{q}(t)q\overline{q}(t)q\overline{q}(0)q\overline{q}(0) \rangle \sim e^{-2m_{\pi}t}$$
 $\sim \text{const}$ 

#### **Nucleon Correlation Function**

Signal 
$$\sum_{\{A_{\mu}\}} \langle qqq(t) \overline{qqq}(0) \rangle \sim e^{-Mt}$$
  
Noise^2 
$$\sum_{\{A_{\mu}\}} \langle qqq(t) \overline{qqq}(t) qqq(0) \overline{qqq}(0) \rangle \sim e^{-3m_{\pi}t}$$

Baryons are statistically noisy.... nuclear physics has an extra hurdle

Higher statistics **Optimal operators** 

 $\sim e^{-(M-\frac{3}{2}m_{\pi})t}$ 

Signal/Noise

#### (Un)Physical Kinematics in $N \rightarrow (N\pi)_s$

Lattice states are created on-shell

$$G(\tau) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle N(\vec{x},\tau)N^{\dagger}(0,0) \rangle = Z e^{-\sqrt{\vec{p}^2 + M_N^2} \tau} + \cdots \text{ ground-state saturation}$$

Hadronic transition matrix elements have energy insertion

$$E_N = M_N$$
  

$$E_{(\pi N)_s} = M_N + m_{\pi}$$

$$\langle (\pi N)_s | \mathcal{O}_i(\mu) | N \rangle_{\text{Lattice}} = h_{\pi NN}^1(\Delta E)$$

• Partial solution implemented (due to Beane, Bedaque, Parreno, Savage, NUPHA:747, 55 (2005))

**Consequence**: remove via chiral extrapolation but then only can determine chiral limit coupling Likely small: only~10% at 400 MeV pion mass. Precision demands in nuclear physics typically not as great as particle physics

• Full solution: determine energy dependence, extrapolate to zero, e.g. TwBCs

### Example: $N \rightarrow (N\pi)_s$ and $\Delta I = 1$ Parity Violation

• Old Problem: hadronic neutral weak interaction is the least constrained SM current



• Theoretical Challenges  $\Delta I = 1$  Processes

| Usual Suspects: pion ma | to be done                                             |                |
|-------------------------|--------------------------------------------------------|----------------|
| Additional Challenges:  | Physical Kinematics                                    | largely solved |
|                         | Multi-Hadron States and Normalization                  | to be done     |
|                         | <b>Operator Renormalization &amp; Scale Invariance</b> | to be done     |
|                         | Statistically Noisy Operator Self-Contractions         | to be done     |
|                         |                                                        |                |

How many lattice advances carry over to weak nuclear processes?

#### Multi-Hadron States and Normalization



• Finite volume and infinite volume states have different normalizations

Lellouch, Lüscher, Commun. Math. Phys. 291, 31 (2001)

Computed

Lellouch-Lüscher factor requires two-particle energy

Not Computed

#### Lellouch-Lüscher Factor

• Single Particle Energy Quantization:  $E = \sqrt{\vec{p}^2 + M^2}$   $\vec{p} = \frac{2\pi}{T}\vec{n}$  $E_{\text{total}} = \sqrt{k^2 + M^2} + \sqrt{k^2 + m^2}$   $\vec{P} = 0$ **Two Particle Energy Quantization:**  $n\pi - \delta_0(k) = \phi(k)$  $\rho_V(E) = \frac{dn}{dE} = \frac{\phi'(k) + \delta'(k)}{4\pi k} E$ (known function for a torus)  $|2\rangle_{\infty} = 4\pi \sqrt{\frac{V E \rho_V(E)}{l}} \,|2\rangle_V$ **One-to-Two Particle Amplitude:**  $|\mathcal{M}_{\infty}|^{2} = \frac{8\pi V^{2} M E_{\text{total}}^{2}}{k^{2}} \left[\delta'(k) + \phi'(k)\right] |\mathcal{M}_{V}|^{2}$ Computed  $|(h_{\pi NN}^1)_V|^2$ **Not Computed** 

Generalization for energy insertion:

Lin, Martinelli, Pallante, Sachrajda, Villadoro **NuPhB:**650, 301 (2003) Kim, Sachrajda, Sharpe **NuPhB:**727, 218 (2005)

### Example: $N \rightarrow (N\pi)_s$ and $\Delta I = 1$ Parity Violation

• Old Problem: hadronic neutral weak interaction is the least constrained SM current



• Theoretical Challenges  $\Delta I = 1$  Processes

| Usual Suspects: pion ma | to be done                                             |               |
|-------------------------|--------------------------------------------------------|---------------|
| Additional Challenges:  | Physical Kinematics                                    | argely solved |
|                         | Multi-Hadron States and Normalization                  | to be done    |
|                         | <b>Operator Renormalization &amp; Scale Invariance</b> | to be done    |
|                         | Statistically Noisy Operator Self-Contractions         | to be done    |
|                         |                                                        |               |

How many lattice advances carry over to weak nuclear processes?



**Tree Level** 





**Tree Level** 

$$\mathcal{L}_{\mathrm{PV}}^{I=1} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $\sin^2 \theta_W$  Non-Strange

1 vs. Strange

**One Loop Results** 

 $C_i(\mu = 1 \, \text{GeV}) \, / \, C_1^{\text{Tree}}$ 

(Fierz)

LO

0.264

0.981

-0.592

0

5.97

-2.30

5.12

-3.29

TO

|                                                                                                  | l | LO     |
|--------------------------------------------------------------------------------------------------|---|--------|
| $O_1 = (\bar{u}u - dd)_A (\bar{u}u + dd)_V,$ $O_1 = (\bar{u}u - \bar{d}d) [\bar{u}u + \bar{d}d]$ | 1 | 0.403  |
| $O_2 = (uu - aa]_A [uu + aa)_V,$ $O_2 = (\bar{u}u - \bar{d}d)_2 (\bar{u}u + \bar{d}d)_3$         | 2 | 0.765  |
| $O_3 = (uu - du)_V (uu + du)_A,$ $O_4 = (\bar{u}u - \bar{d}d)_V [\bar{u}u + \bar{d}d)_A,$        | 3 | -0.463 |
| $O_4 = (uu  uu_{JV} [uu + uu)_A,$                                                                | 4 | 0      |
| $O_5 = (\overline{u}u - \overline{d}d)_A(\overline{s}s)_V$                                       | 5 | 5.61   |
| $O_6 = (\overline{u}u - \overline{d}d)_A [\overline{s}s)_V$                                      | 6 | -1.90  |
| $O_7 = (\overline{u}u - \overline{d}d)_V(\overline{s}s)_A$                                       | 7 | 4.74   |
| $O_8 = (\overline{u}u - \overline{d}d]_V[\overline{s}s)_A$                                       | 8 | -2.67  |
|                                                                                                  |   |        |

•

• Discrepancies

DSLS provide only ratios  $\alpha_s(m_c)/\alpha_s(m_b) = 1.44$ 

\*\*Using their ratios, I get their values\*\*

No heavy quark masses quoted in 1990 **PDG** 

Dia, Savage, Liu, Springer PLB **271**, 403 (1991)

Tiburzi, PRD 85 054020 (2012)

**Tree Level** 

$$\mathcal{L}_{\mathrm{PV}}^{I=1} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $\sin^2 \theta_W$  Non-Strange

1 vs. Strange

**One Loop Results** 

 $C_i(\mu = 1 \, \mathrm{GeV}) \, / \, C_1^{\mathrm{Tree}}$ 

|                                                                                      | ı | LO     | LO     | LO. 1992 <b>PDG</b> |
|--------------------------------------------------------------------------------------|---|--------|--------|---------------------|
| $O_1 = (\bar{u}u - \bar{d}d)_A(\bar{u}u + \bar{d}d)_V,$                              | 1 | 0.403  | 0.264  | 0.54(4)             |
| $O_2 = (\bar{u}u - dd]_A [\bar{u}u + dd)_V,$                                         | 2 | 0.765  | 0.981  | 0.55(6)             |
| $O_3 = (uu - dd)_V (uu + dd)_A,$ $O_4 = (\bar{u}u - \bar{d}d) [\bar{u}u + \bar{d}d)$ | 3 | -0.463 | -0.592 | -0.35(3)            |
| $O_4 = (uu - aa]_V [uu + aa)_A,$                                                     | 4 | 0 (Fie | erz) O | 0                   |
| $O_{5} = (\overline{u}u - \overline{d}d) \sqrt{(\overline{s}s)}_{V}$                 | 5 | 5.61   | 5.97   | 5.35(7)             |
| $O_6 = (\overline{u}u - \overline{d}d)_A (\overline{s}s)_V$                          | 6 | -1.90  | -2.30  | -1.57(10)           |
| $O_7 = (\overline{u}u - \overline{d}d)_V (\overline{s}s)_A$                          | 7 | 4.74   | 5.12   | 4.45(8)             |
| $O_8 = (\overline{u}u - \overline{d}d]_V [\overline{s}s)_A$                          | 8 | -2.67  | -3.29  | -2.12(15)           |
|                                                                                      |   |        |        |                     |

Dia, Savage, Liu, Springer PLB **271**, 403 (1991)

Tiburzi, PRD 85 054020 (2012)

# $\mathcal{A} = \sum C_i(\mu) \langle (\pi N)_s | \mathcal{O}_i(\mu) | N \rangle$



(11)

(12)

(13)

### QCD Renormalization of Isovector Parity Violation

**Results** ('t Hooft-Veltman scheme)

$$\mathcal{L}_{\mathrm{PV}}^{I=1} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $\Delta I = 1$ 

| Alleged: 95% probe of<br>hadronic neutral current |             |   | $C_i(\mu=1{ m GeV})$ | $) / C_1^{\text{Tree}}$ |                         |               |
|---------------------------------------------------|-------------|---|----------------------|-------------------------|-------------------------|---------------|
|                                                   |             | i | LO                   | LO                      | NLO (Z)                 | NLO $(Z + W)$ |
|                                                   |             | 1 | 0.403                | 0.264                   | -0.054                  | -0.055        |
| $\sin^2	heta_W$                                   | Non-Strange | 2 | 0.765                | 0.981                   | 0.803                   | 0.810         |
|                                                   |             | 3 | -0.463               | -0.592                  | -0.629                  | -0.627        |
|                                                   |             | 4 | 0 (Fierz             | ) 0                     | (Fierz) <b>(</b> Fierz) | 0             |
|                                                   | VS.         | 5 | 5.61                 | 5.97                    | 4.85                    | 5.09          |
|                                                   |             | 6 | -1.90                | -2.30                   | -2.14                   | -2.55         |
| 1                                                 | Strange     | 7 | 4.74                 | 5.12                    | 4.27                    | 4.51          |
| 80 - 100%                                         |             | 8 | -2.67                | -3.29                   | -2.94                   | -3.36         |
| <b>Dynamical</b>                                  | Question!   |   |                      |                         |                         |               |

Tiburzi, PRD 85 054020 (2012)

### QCD Renormalization of Isovector Parity Violation

| Results ('t H              | Hooft-Veltmai  | n sc | heme)                      | Ĺ                                                  | $\mathcal{L}_{\mathrm{PV}}^{I=1} = \sum_{i} \mathcal{L}_{i}$ | $C_i(\mu)\mathcal{O}_i(\mu)$ |
|----------------------------|----------------|------|----------------------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------|
|                            | $\Delta I = 1$ |      | Additi<br>chiral<br>(conse | onal finding:<br>basis reveals o<br>quence of nor  | only <b>5</b> independent<br>n-singlet chiral sym            | operators<br>metry)          |
|                            |                |      |                            |                                                    |                                                              | $L\otimes L-R\otimes R$      |
| Alleged: 95%               | 6 probe of     |      | $C_i(\mu = 1$              | $\operatorname{\tt GeV})/C_1^{\operatorname{Tre}}$ | e                                                            | $L\otimes R-R\otimes L$      |
| hadronic net               | utral current  | i    | LO                         | LO                                                 | NLO (Z                                                       | NLO (Z + W)                  |
|                            |                | 1    | 0.403                      | 0.26                                               | 4 -0.054                                                     | 4 -0.055                     |
| $\sin^2	heta_W$            | Non-Strange    | 2    | 0.765                      | 0.98                                               | 1 0.803                                                      | 0.810                        |
|                            |                | 3    | -0.463                     | -0.59                                              | -0.629                                                       | -0.627                       |
|                            | VS             | 4    | 0                          | (Fierz) 0                                          | (Fierz) 0                                                    | (Fierz) 0                    |
|                            | v <b>3</b> .   | 5    | 5.61                       | 5.97                                               | 4.85                                                         | 5.09                         |
|                            |                | 6    | -1.90                      | -2.3                                               | 0 -2.14                                                      | -2.55                        |
| 1                          | Strange        | 7    | 4.74                       | 5.12                                               | 2. 4.27                                                      | 4.51                         |
| 80 - 100%                  |                | 8    | -2.67                      | -3.2                                               | .9 -2.94                                                     | -3.36                        |
| <b>Dynamical Question!</b> |                |      |                            | Tibu                                               | ırzi, PRD <b>85</b> 054020                                   | (2012)                       |



computable in pQCD at high scale

computable on lattice at low scale

• Scale Invariance: requires same renormalization scheme

pQCD 't Hooft-Veltman scheme

5 independent PV operators in chiral basis

Anisotropic Lattice Regularization + Wilson Fermions

14 independent PV operators

Unphysical + unphysical chiral mixing

• Matching calculation required...

### Example: $N \rightarrow (N\pi)_s$ and $\Delta I = 1$ Parity Violation

• Old Problem: hadronic neutral weak interaction is the least constrained SM current



• Theoretical Challenges  $\Delta I = 1$  Processes

| Usual Suspects: pion ma | to be done                                             |                |
|-------------------------|--------------------------------------------------------|----------------|
| Additional Challenges:  | Physical Kinematics                                    | largely solved |
|                         | Multi-Hadron States and Normalization                  | to be done     |
|                         | <b>Operator Renormalization &amp; Scale Invariance</b> | to be done     |
|                         | Statistically Noisy Operator Self-Contractions         | to be done     |

• How many lattice advances carry over to weak nuclear processes?

#### Statistically Noisy Operator Self-Contractions

 $G(\tau',\tau) = \langle 0|N(\tau')\mathcal{O}_i(\tau)N^{*\dagger}(0)|0\rangle$ 





#### Another notorious difficulty



quark disconnected diagrams

Vector and Axial-Vector self-contractions

Wilson coeffs.

Flavor dependence? ~  $\mathcal{M}_q$ Extend to SU(3) + chiral corrections?

Utilize Fierz redundancy?

 $\overline{s}s$   $\overline{s}\gamma_{\mu}s$  small nucleon strangeness

$$\langle \overline{s}\gamma_{\mu}s \rangle \ll \langle \overline{q}\gamma_{\mu}q \rangle?$$

0.16 from Adelaide

## Isotensor Parity Violation $\mathcal{O} = (\overline{q}\tau^3 q)_A (\overline{q}\tau^3 q)_V - \frac{1}{3} (\overline{q}\vec{\tau} q)_A \cdot (\overline{q}\vec{\tau} q)_V$

• Only one operator & without self-contractions

$$\mathcal{L}_{PV}^{\Delta I=2} = \frac{G_F}{\sqrt{2}} C(\mu) \mathcal{O}(\mu)$$

#### **Operator Renormalization**

Tiburzi, PRD86: 097501 (2012)

| LO                                                       | $C(1{ m GeV})/C^{(0)}$ | ]        |
|----------------------------------------------------------|------------------------|----------|
| LO [15]                                                  | 0.79                   | 1992 PDG |
| LO                                                       | 0.70                   | 0.78(1)  |
| NLO                                                      | $C(1{ m GeV})/C^{(0)}$ | ]        |
| 't Hooft-Veltman                                         | 0.58                   |          |
| Naïve Dim. Reg.                                          | 0.74                   |          |
| RI/MOM                                                   | 0.77                   |          |
| $\operatorname{RI}/\operatorname{SMOM}(\gamma_{\mu}, q)$ | 0.67                   |          |
| $\operatorname{RI/SMOM}(\gamma_{\mu}, \gamma_{\mu})$     | 0.75                   |          |
| RI/SMOM(q, q)                                            | 0.73                   |          |
| $RI/SMOM(q, \gamma_{\mu})$                               | 0.81                   |          |

[15] Kaplan Savage, NuPhA 556 (1993)

#### Wilson fermions still to do...

#### Better proving ground for Lattice QCD?

$$\mathcal{L}_{NN} = [\vec{\nabla} p^{\dagger} \cdot \vec{\sigma} \, \sigma_2 \, p^*] \cdot [n^T \sigma_2 \, n] + \dots$$

s- to p-wave NN interaction

Operator matrix element between 2 hadrons (one step beyond multi-hadron calculations done)

 $\pi N$  interactions

 $\mathcal{L}_{\pi\pi N} + \mathcal{L}_{\pi\gamma N}$ External fields could ``substitute'' for pions

#### πPV

Isotensor 3 pion interaction exists

Easier for lattice compute parameters in DDH model?

#### Summary

- Lattice QCD: Wilsonian machinery turns high-scale interactions (both SM & *Beyond*) into QCD-scale hadronic couplings
- After decades of dedicated work, trustworthy results emerging e.g.  $K \rightarrow \pi\pi$
- Some of this success will carry over to weak nuclear processes!

Challenges = Opportunity

• Hadronic Parity Violation:

 $\pi$ N-coupling more or less challenging than K $\rightarrow \pi \pi$ ? Use external axial fields for coupling to pions? Develop technology for isotensor NN-interaction? Isovector parity-violating lattices from auxiliary fields?