Parity Violation in Nucleon-Deuteron Interactions

Jared Vanasse

Duke University

July 30, 2014

	THEORY	EXPERIMENT
A Small	Theory for small nuclei	Nuclei with A < 4 are
	A < 4 easier to calculate	difficult experimentally
17	less nuclear physics	and require high precision
1.1	modeling	A CONTRACTOR
A Large	Large nuclei $A > 4$ harder	Certain larger nuclei
12.34	to calculate require	possess enhanced
1997	nuclear physics modeling	parity-violating signals and
		are easier to measure

Lagrangian Dibaryon Propagators

Lagrangian

$$\begin{split} \mathcal{L} &= \hat{N}^{\dagger} \left(i\partial_{0} + \frac{\vec{\nabla}^{2}}{2M_{N}} \right) \hat{N} - \hat{t}_{i}^{\dagger} \left(i\partial_{0} + \frac{\vec{\nabla}^{2}}{4M_{N}} - \Delta_{(-1)}^{(3S_{1})} - \Delta_{(0)}^{(3S_{1})} \right) \hat{t}_{i} \\ &- \hat{s}_{a}^{\dagger} \left(i\partial_{0} + \frac{\vec{\nabla}^{2}}{4M_{N}} - \Delta_{(-1)}^{(1S_{0})} - \Delta_{(0)}^{(1S_{0})} \right) \hat{s}_{a} + y_{t} \left[\hat{t}_{i}^{\dagger} \hat{N}^{T} P_{i} \hat{N} + H.c. \right] \\ &+ y_{s} \left[\hat{s}_{a}^{\dagger} \hat{N}^{T} \bar{P}_{a} \hat{N} + H.c. \right]. \end{split}$$

The projector $P_i = \frac{1}{\sqrt{8}}\sigma_2\sigma_i\tau_2$ ($\bar{P}_a = \frac{1}{\sqrt{8}}\tau_a\tau_2\sigma_2$) projects out the spin-triplet iso-singlet (spin-singlet iso-triplet) combination of nucleons.

The LO dressed deuteron propagator is given by a bubble sum

(Z-parametrization) At LO coefficients are fit to reproduce the deuteron pole and at NLO to reproduce the residue about the deuteron pole.

$$\frac{1}{y_t^2} = \frac{M_N^2}{8\pi\gamma_t} \frac{Z_t - 1}{1 + (Z_t - 1)}, \quad \Delta_{(-1)}^{(3S_1)} = \frac{2y_t^2}{M_N} \frac{\gamma_t - \mu}{Z_t - 1}, \quad \Delta_{(0)}^{(3S_1)} = \frac{\gamma_t^2}{M_N}$$

Lagrangian Dibaryon Propagators

The spin-triplet ("deuteron") and spin-singlet dibaryon propagator to NLO in Z-parametrization are given by

$$iD_{t,s}^{NLO}(p_0, \vec{\mathbf{p}}) = \frac{4\pi i}{M_N y_{t,s}^2} \frac{1}{\gamma_{t,s} - \sqrt{\frac{\vec{\mathbf{p}}^2}{4} - M_N p_0 - i\epsilon}} \times \left[\underbrace{1}_{\text{LO}} + \underbrace{\frac{Z_{t,s} - 1}{2\gamma_{t,s}} \left(\gamma_{t,s} + \sqrt{\frac{\vec{\mathbf{p}}^2}{4} - M_N p_0 - i\epsilon}\right)}_{\text{NLO}} + \cdots \right]$$

Higher Orders Partial Resummation Technique New Technique

Quartet Channel (*nd* Scattering)

At LO in the quartet channel, *nd* scattering is given by an infinite sum of diagrams.

This infinite sum of diagrams can be represented by an integral equation.

Building Blocks Quartet Channel Doublet Channel Parity Violation Parity Violation

Projecting spin and isospin in the quartet channel and projecting out in angular momentum gives

$$\begin{split} t_{0,q}^{\ell}(k,p) &= -\frac{y_t^2 M_N}{pk} Q_{\ell} \left(\frac{p^2 + k^2 - M_N E - i\epsilon}{pk} \right) - \\ &+ \frac{2}{\pi} \int_0^{\Lambda} dq q^2 t_{0,q}^{\ell}(k,q) \frac{1}{\gamma_t - \sqrt{\frac{3\bar{\mathbf{q}}^2}{4}} - M_N E - i\epsilon} \frac{1}{qp} \times \\ & Q_{\ell} \left(\frac{p^2 + q^2 - M_N E - i\epsilon}{pq} \right), \end{split}$$

where

$$Q_{\ell}(a)=\frac{1}{2}\int_{-1}^{1}dx\frac{P_{\ell}(x)}{x+a}.$$

Higher Orders Partial Resummation Technique New Technique

Higher Orders

NLO correction is

NNLO corrections are

Note the second diagram contains full off-shell scattering amplitude.

Building Blocks Quartet Channel Doublet Channel Parity Violation Party Violation

The NLO scattering amplitude is

$$egin{aligned} t^\ell_{0,q}(k,p) + t^\ell_{1,q}(k,p) &= B^\ell_0(k,p) + B^\ell_1(k,p) + \ &+ ig(\mathcal{K}^\ell_0(q,p,E) + \mathcal{K}^\ell_1(q,p,E) ig) \otimes (t^\ell_{0,q}(k,q) + t^\ell_{1,q}(k,q)), \end{aligned}$$

where

$$A(q)\otimes B(q)=rac{2}{\pi}\int_0^{\Lambda}dqq^2A(q)B(q).$$

The inhomogeneous and homogeneous terms are

$$B_0^\ell(k,p) = -\frac{y_t^2 M_N}{pk} Q_\ell\left(\frac{p^2 + k^2 - M_N E - i\epsilon}{pk}\right), B_1^\ell(k,p) = 0$$

$$\mathcal{K}_n^\ell(q,p,E) = -rac{M_N y_t^2}{4\pi} D_t^{(n)} \left(E - rac{q^2}{2M_N}, ec{\mathbf{q}}
ight) rac{1}{qp} Q_\ell \left(rac{q^2 + p^2 - M_N E - i\epsilon}{pq}
ight)$$

Higher Orders Partial Resummation Technique New Technique

Partial Resummation Technique

Denoting $t_{NLO}^{\ell} = t_{0,q}^{\ell} + t_{1,q}^{\ell}$, for the partial resummation technique one finds (Bedaque, Rupak, Grießhammer, and Hammer (2003))

$$t_{NLO}^{\ell}(k,p) = B_0^{\ell}(k,p) + B_1^{\ell}(k,p) + (K_0^{\ell}(q,p,E) + K_1^{\ell}(q,p,E)) \otimes t_{NLO}^{\ell}(k,q),$$

with the diagrammatic representation

Higher Orders Partial Resummation Technique New Technique

New Full Perturbative technique

Picking out only NLO pieces gives (Vanasse (2013))

$$t_{1,q}^\ell(k,p) = B_1^\ell(k,p) + \mathcal{K}_1^\ell(q,p,E) \otimes t_{0,q}^\ell(k,q) + \mathcal{K}_0^\ell(q,p,E) \otimes t_{1,q}^\ell(k,q).$$

Terms are reshuffled to inhomogeneous term. Kernel at each order is the same. Diagrammatically NLO correction is now given by

Note all corrections are half off-shell.

Doublet Channel nd scattering

At LO in the doublet channel, *nd* scattering is given by a coupled set of integral equations

Using the perturbative technique, the doublet *nd* scattering amplitude integral equation at LO is

$$\mathbf{t}^\ell_{0,d}(k,p) = \mathbf{B}^\ell_0(k,p) + \mathbf{K}^\ell_0(q,p,E) \otimes \mathbf{t}^\ell_{0,d}(k,q)$$

and at NLO

$$\mathbf{t}_{1,d}^\ell(k,p) = \mathbf{B}_1^\ell(k,p) + \mathbf{K}_1^\ell(q,p,E) \otimes \mathbf{t}_{0,d}^\ell(k,q) + \mathbf{K}_0^\ell(q,p,E) \otimes \mathbf{t}_{1,d}^\ell(k,q).$$

The Equations are the same as in quartet case but are now matrix equations in cluster configuration space (Grießhammer (2004)).

The vector
$$ec{\mathbf{t}}^\ell_{n,d}(k,q)$$
 is

$$\mathbf{t}^\ell_{n,d}(k,q) = \left(egin{array}{c} t^\ell_{n,Nt o Nt}(k,q)\ t^\ell_{n,Nt o Ns}(k,q) \end{array}
ight).$$

The inhomogeneous term is

$$\mathbf{B}_{0}^{\ell}(k,p) = \begin{pmatrix} \frac{y_{t}^{2}M_{N}}{pk}Q_{\ell}\left(\frac{p^{2}+k^{2}-M_{N}E-i\epsilon}{pk}\right) + \mathcal{H}_{0}(E,\Lambda)\delta_{\ell0} \\ -\frac{3y_{t}y_{s}M_{N}}{pk}Q_{\ell}\left(\frac{p^{2}+k^{2}-M_{N}E-i\epsilon}{pk}\right) - \mathcal{H}_{0}(E,\Lambda)\delta_{\ell0} \end{pmatrix}$$
$$\mathbf{B}_{1}^{\ell}(k,p) = \begin{pmatrix} \mathcal{H}_{1}(E,\Lambda)\delta_{\ell0} \\ -\mathcal{H}_{1}(E,\Lambda)\delta_{\ell0} \end{pmatrix}$$

The homogeneous term is

$$\begin{aligned} \mathbf{K}_{n}^{\ell}(q,p,E) = & \mathbf{D}^{(n)}(E,\vec{\mathbf{q}}) \frac{1}{qp} Q_{\ell} \left(\frac{q^{2} + p^{2} - M_{N}E - i\epsilon}{qp} \right) \begin{pmatrix} 1 & -3 \\ -3 & 1 \end{pmatrix} \\ & + \delta_{\ell 0} \sum_{j=0}^{n} \mathbf{D}^{(j)}(E,\vec{\mathbf{q}}) \mathcal{H}_{n-j}(E,\Lambda) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \end{aligned}$$

where

$$\mathbf{D}^{n}(E, \vec{\mathbf{q}}) = \left(egin{array}{cc} D_{t}^{(n)}(E - rac{q^{2}}{2M_{N}}, \vec{\mathbf{q}}) & 0 \ 0 & D_{s}^{(n)}(E - rac{q^{2}}{2M_{N}}, \vec{\mathbf{q}}) \end{array}
ight),$$

and the three-body force terms defined by

$$\mathcal{H}(E,\Lambda) = \frac{2H_0^{LO}(\Lambda)}{\Lambda^2} + \frac{2H_0^{NLO}(\Lambda)}{\Lambda^2}.$$

Two-Body Parity Violation Three-Body Parity Violation Observables pd Parity Violation

Two-Body Parity Violation

The LO PV Lagrangian in EFT_{π} has five LEC's

$$\begin{split} \mathcal{L}_{PV} &= -\left[g^{(^{3}S_{1}-^{1}P_{1})}t_{i}^{\dagger}\left(N^{t}\sigma_{2}\tau_{2}i\stackrel{\leftrightarrow}{\nabla}_{i}N\right)\right.\\ &+ g^{(^{1}S_{0}-^{3}P_{0})}s_{a}^{\dagger}\left(N^{T}\sigma_{2}\vec{\sigma}\cdot\tau_{2}\tau_{a}i\stackrel{\leftrightarrow}{\nabla}N\right)\\ &+ g^{(^{1}S_{0}-^{3}P_{0})}\epsilon^{3ab}(s^{a})^{\dagger}\left(N^{T}\sigma_{2}\vec{\sigma}\cdot\tau_{2}\tau^{b}\stackrel{\leftrightarrow}{\nabla}N\right)\\ &+ g^{(^{1}S_{0}-^{3}P_{0})}\mathcal{I}^{ab}(s^{a})^{\dagger}\left(N^{T}\sigma_{2}\vec{\sigma}\cdot\tau_{2}\tau^{b}i\stackrel{\leftrightarrow}{\nabla}N\right)\\ &+ g^{(^{3}S_{1}-^{3}P_{1})}\epsilon^{ijk}(t_{i})^{\dagger}\left(N^{T}\sigma_{2}\sigma^{k}\tau_{2}\tau_{3}\stackrel{\leftrightarrow}{\nabla}N\right)\right] + h.c., \end{split}$$
where $\mathcal{I}^{ab} = diag(1, 1, -2)$ and $a\stackrel{\leftrightarrow}{\nabla}b = a(\stackrel{\rightarrow}{\nabla}b) - (\stackrel{\rightarrow}{\nabla}a)b$. Contains all possible $S \to P$ transition operators and isospin structures

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

Parity-violation at LO is given by set of coupled integral equations

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

Dropping terms second order in PV, the above coupled integral equations decouple and one finds

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

The integral equation gives the sum of diagrams

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

The sum of all diagrams gives the amplitude

$$\begin{split} (t_{PV}^{xw})_{\alpha a}^{\beta b}(\vec{\mathbf{k}},\vec{\mathbf{p}}) &= \frac{4M_N}{\sqrt{8}} \mathbf{v}_p^T \left(\mathcal{K}^{xw}\right)_{\alpha a}^{\beta b}(\vec{\mathbf{k}},\vec{\mathbf{p}}) \mathbf{v}_p \\ &- \frac{4M_N}{\sqrt{8}} \int \frac{d^3 q}{(2\pi)^3} \mathbf{v}_p^T \left(\mathcal{K}^{xy}\right)_{\gamma c}^{\beta b}(\vec{\mathbf{q}},\vec{\mathbf{p}}) \mathbf{D} \left(E - \frac{\vec{\mathbf{q}}^2}{2M_N},\vec{\mathbf{q}}\right) \left((\mathbf{t}^{yw})_{\alpha a}^{\gamma c}(\vec{\mathbf{k}},\vec{\mathbf{q}})\right) \\ &- \frac{4M_N}{\sqrt{8}} \int \frac{d^3 q}{(2\pi)^3} \left((\mathbf{t}^{xy})_{\gamma c}^{\beta b}(\vec{\mathbf{q}},\vec{\mathbf{p}})\right)^T \mathbf{D} \left(E - \frac{\vec{\mathbf{q}}^2}{2M_N},\vec{\mathbf{q}}\right) \left(\mathcal{K}^{yw})_{\alpha a}^{\gamma c}(\vec{\mathbf{k}},\vec{\mathbf{q}}) \mathbf{v}_p \\ &+ \frac{4M_N}{\sqrt{8}} \int \frac{d^3 q}{(2\pi)^3} \int \frac{d^3 \ell}{(2\pi)^3} \left((\mathbf{t}^{xz})_{\delta d}^{\beta b}(\vec{\ell},\vec{\mathbf{p}},)\right)^T \mathbf{D} \left(E - \frac{\vec{\mathbf{q}}^2}{2M_N},\vec{\mathbf{q}}\right) \\ &\quad \left(\mathcal{K}^{zy})_{\gamma c}^{\delta d}(\vec{\mathbf{q}},\vec{\ell})\mathbf{D} \left(E - \frac{\vec{\ell}^2}{2M_N},\vec{\ell}\right) \left((\mathbf{t}^{yw})_{\alpha a}^{\gamma c}(\vec{\mathbf{k}},\vec{\mathbf{q}})\right) \end{split}$$

 $\mathbf{v}_p = \left(\begin{array}{c} 1 \\ 0 \end{array}
ight).$

where

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

All angular dependence is contained in

$$\begin{aligned} (\mathcal{K}^{\mathrm{xw}})^{\beta b}_{\alpha a}(\vec{\mathbf{q}},\vec{\ell}) = & \frac{1}{\vec{\mathbf{q}}^2 + \vec{\mathbf{q}} \cdot \vec{\ell} + \vec{\ell}^2 - M_N E - i\epsilon} \times \\ & \times \begin{pmatrix} (\mathcal{K}^{11}_{PV})^{\alpha b}_{\alpha a}(\vec{\mathbf{q}},\vec{\ell}) & (\mathcal{K}^{12}_{PV})^{\beta b}_{\alpha a}(\vec{\mathbf{q}},\vec{\ell}) \\ (\mathcal{K}^{21}_{PV})^{\beta b}_{\alpha a}(\vec{\mathbf{q}},\vec{\ell}) & (\mathcal{K}^{22}_{PV})^{\beta b}_{\alpha a}(\vec{\mathbf{q}},\vec{\ell}) \end{pmatrix} \end{aligned}$$

where

$$\begin{aligned} \left(\mathcal{K}_{PV}^{11} \,^{xw} \right)_{\alpha a}^{\beta b} (\vec{\mathbf{k}}, \vec{\mathbf{p}}) &= y_t g^{^3S_1 - {}^{1}P_1} (\sigma^x)_{\alpha}^{\beta} \delta_a^b (\vec{\mathbf{k}} + 2\vec{\mathbf{p}})^w \\ &+ i y_t g^{^3S_1 - {}^{3}P_1} \epsilon^{w\ell y} (\sigma^y \sigma^x)_{\alpha}^{\beta} (\tau_3)_a^b (\vec{\mathbf{k}} + 2\vec{\mathbf{p}})^\ell \\ &+ y_t g^{^3S_1 - {}^{1}P_1} (\sigma^w)_{\alpha}^{\beta} \delta_a^b (2\vec{\mathbf{k}} + \vec{\mathbf{p}})^x \\ &- i y_t g^{^3S_1 - {}^{3}P_1} \epsilon^{x\ell y} (\sigma^w \sigma^y)_{\alpha}^{\beta} (\tau_3)_a^b (2\vec{\mathbf{k}} + \vec{\mathbf{p}})^\ell \end{aligned}$$

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

The amplitude can be projected in partial waves of $\vec{J}=\vec{L}+\vec{S}$

$$t_{PVL'S',LS}(k,p) = \frac{1}{4\pi} \int d\Omega_k \int d\Omega_p \left(\mathscr{Y}^M_{J,L'S'}(\hat{\mathbf{p}})\right)^* t_{PV}(\vec{\mathbf{k}},\vec{\mathbf{p}})\mathscr{Y}^M_{J,LS}(\hat{\mathbf{k}})$$

The projected amplitude is

$$\begin{split} t_{PVLJS',LS}(k,p) &= \frac{M_N}{\sqrt{8}\pi} \mathbf{v}_p^T \mathcal{K}(k,p)_{LJS',LS}^J \mathbf{v}_p + \\ &- \frac{M_N}{2\sqrt{8}\pi^3} \int_0^\infty dq q^2 \mathbf{v}_p^T \mathcal{K}(q,p)_{LJS',LS}^J \mathbf{D} \left(E - \frac{q^2}{2M_N}, \vec{\mathbf{q}} \right) \left(t_{PCLS,LS}(k,q) \right) \\ &- \frac{M_N}{2\sqrt{8}\pi^3} \int_0^\infty dq q^2 \left(t_{PCLJS',LJS'}(q,p) \right)^T \mathbf{D} \left(E - \frac{q^2}{2M_N}, \vec{\mathbf{q}} \right) \mathcal{K}(k,q)_{LJS',LS}^J \mathbf{v}_p \\ &+ \frac{M_N}{4\sqrt{8}\pi^5} \int_0^\infty dq q^2 \int_0^\infty d\ell \ell^2 \left(t_{PCLJS',LJS'}(p,\ell) \right)^T \mathbf{D} \left(E - \frac{q^2}{2M_N}, \vec{\mathbf{q}} \right) \\ &\mathcal{K}(q,\ell)_{LJS',LS}^{JM} \mathbf{D} \left(E - \frac{\ell^2}{2M_N}, \vec{\ell} \right) \left(t_{PCLS,LS}(k,q) \right) \end{split}$$

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

One term of projected $\mathcal{K}(k, p)_{L'S', LS}^{JM}$ is given by

$$\begin{split} \left[\mathcal{K}(k,p)_{L'S',LS}^{J} \right]_{22} &= -y_t \left(3g_{(\Delta I=0)}^{1\varsigma_0 - 3\rho_0} - 2g_{(\Delta I=1)}^{1\varsigma_0 - 3\rho_0} \right) 4\pi \sqrt{6} (-1)^{1/2 - L - J} \delta_{S^{1/2}} \delta_{S'^{1/2}} \sqrt{\bar{L'}} \\ &\times C_{L',1,L}^{0,0,0} \left\{ \begin{array}{cc} L' & 1 & L \\ S & J & S' \end{array} \right\} \frac{1}{kp} (kQ_{L'}(a) + pQ_L(a)) \end{split}$$

where

$$\bar{x} = 2x + 1$$

and

$$a = \frac{k^2 + p^2 - M_N E - i\epsilon}{kp}$$

All Projections given in (Vanasse (2012)). Agree with S to P projections in (Grießhammer, Schindler, and Springer (2012)).

Two-Body Parity Violation Three-Body Parity Violation Observables pd Parity Violation

NLO 3-Body PV

NLO PV amplitude is given by type of diagrams below. NLO box is the half off shell NLO amplitude.

(Note not all diagrams given here) As shown by (Schindler and Grießhammer (2010)) no NLO PV three-body force for *Nd* scattering should exist.
 Building Blocks
 Two-Body Parity Violation

 Quartet Channel
 Three-Body Parity Violation

 Doublet Channel
 Observables

 Parity Violation
 pd Parity Violation

Cutoff dependence seems to suggest three-body PV not properly renormalized at NLO. New PV 3-Body force?

$$C\Lambda^{.2166...}\sin\left(s_0\log\left(\frac{\Lambda}{\Lambda^*}\right)\right) + b$$

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

The asymptotic solution of the LO PC quartet P-wave is

$$t_{0,q}^{\ell=1}(q) = Bq^{-2.78334...}$$

Wigner basis for amplitudes is

$$t_+(k,p) = t_{Nt \rightarrow Nt}(k,p) + t_{Nt \rightarrow Ns}(k,p)$$

$$t_{-}(k,p) = t_{Nt \to Nt}(k,p) - t_{Nt \to Ns}(k,p)$$

The asymptotic solution to the LO PC doublet S-wave is

$$t_+^{^2 S_{1/2}-^2 S_{1/2}}(q) = C rac{\sin\left(s_0 \ln\left(rac{q}{\Lambda^*}
ight)
ight)}{q} + \cdots$$

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

$$\frac{\sin\left(s_0\ln\left(\frac{q}{\Lambda^*}\right)\right)}{q}$$

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

$$\frac{\sin\left(s_0\ln\left(\frac{q}{\Lambda^*}\right)\right)}{q}q^{-2.78334}$$

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

Building Blocks	Two-Body Parity Violation	
Quartet Channel	Three-Body Parity Violation	
Doublet Channel	Observables	
Parity Violation	pd Parity Violation	

$$\frac{\sin\left(s_0\ln\left(\frac{q}{\Lambda^*}\right)\right)}{q}q^{-2.78334}\frac{1}{q}q^0$$

Building Blocks	Two-Body Parity Violation	
Quartet Channel	Three-Body Parity Violation	
Doublet Channel	Observables	
Parity Violation	pd Parity Violation	

$$\frac{\sin\left(s_0\ln\left(\frac{q}{\Lambda^*}\right)\right)}{q}q^{-2.78334}\frac{1}{q}q^0q$$

Building Blocks	Two-Body Parity Violation	
Quartet Channel	Three-Body Parity Violation	
Doublet Channel	Observables	
Parity Violation	pd Parity Violation	

$$\frac{\sin\left(s_0\ln\left(\frac{q}{\Lambda^*}\right)\right)}{q}q^{-2.78334}\frac{1}{q}q^0q\frac{1}{q^2}$$

Building Blocks	Two-Body Parity Violation	
Quartet Channel	Three-Body Parity Violation	
Doublet Channel	Observables	
Parity Violation	pd Parity Violation	

$$\frac{\sin\left(s_{0}\ln\left(\frac{q}{\Lambda^{*}}\right)\right)}{q}q^{-2.78334}\frac{1}{q}q^{0}q\frac{1}{q^{2}}q^{6}$$

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

Finally one finds

$$\begin{aligned} \frac{\sin\left(s_0\ln\left(\frac{q}{\Lambda^*}\right)\right)}{q} q^{-2.78334} \frac{1}{q} q^0 q \frac{1}{q^2} q^6 &= \sin\left(s_0\ln\left(\frac{q}{\Lambda^*}\right)\right) \frac{q^7}{q^{6.78334}} \\ &= q^{.2166} \sin\left(s_0\ln\left(\frac{q}{\Lambda^*}\right)\right), \end{aligned}$$

which gives fitted numerical form of

$$C\Lambda^{.2166...}\sin\left(s_0\log\left(\frac{\Lambda}{\Lambda^*}\right)\right)+b.$$

Asymptotic analysis must be carried out more carefully.

Two-Body Parity Violation Three-Body Parity Violation Observables pd Parity Violation

Longitudinal Beam Asymmetry

Two-Body Parity Violation Three-Body Parity Violation Observables pd Parity Violation

Longitudinal Target Asymmetry

Two-Body Parity Violation Three-Body Parity Violation Observables pd Parity Violation

Neutron Spin Rotation on Deuteron Target

Building Blocks	Two-Body Parity Violation	
Quartet Channel	Three-Body Parity Violation	
Doublet Channel	Observables	
Parity Violation	pd Parity Violation	

Observables are given by

$$A_N = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \qquad A_D = \frac{\sigma_1 - \sigma_{-1}}{\sigma_1 + \sigma_{-1}}$$

$$\frac{d\phi}{dz} = -\frac{4M_NN}{27k} \text{Re}\left[M_{11/2,01/2}^{1/2} + 2\sqrt{2}M_{13/2,01/2}^{1/2} - 4M_{11/2,03/2}^{3/2} - 2\sqrt{5}M_{13/2,03/2}^{3/2}\right]$$

with partial wave amplitudes defined by

$$\begin{split} M_{m_{1}',m_{2}';m_{1},m_{2}} = & \sqrt{4\pi} \sum_{J} \sum_{L,L'} \sum_{S,S'} \sum_{m_{s},m_{S}'} \sum_{m_{L}'} \sqrt{2L+1} C_{1,1/2,S}^{m_{1},m_{2},m_{S}} \\ & C_{1,1/2,S'}^{m_{1}',m_{2}',m_{S}'} C_{L,S,J}^{0,m_{S},M} C_{L',S',J}^{m_{L}',m_{S}',M} Y_{L'}^{m_{L}'}(\theta,\phi) M_{L'S',LS}^{J} \end{split}$$

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

Building Blocks	Two-Body Parity Violation
Quartet Channel	Three-Body Parity Violation
Doublet Channel	Observables
Parity Violation	pd Parity Violation

Building Blocks	Two-Body Parity Violation	
Quartet Channel	Three-Body Parity Violation	
Doublet Channel	Observables	
Parity Violation	pd Parity Violation	

Spin rotation prediction in LO ${\rm EFT}_{\not \pi}$ is $1.8\times 10^{-8}~{\rm rad~cm^{-1}},$ cutoff variation minimal

Table: Comparison of EFT calculations for spin rotation $\frac{1}{\rho} \frac{d\phi}{dz}$.

Coefficient	LO [rad $MeV^{-1/2}$]	NLO [rad $MeV^{-1/2}$]
$g^{3}S_{1}-P_{1}$	10.4-10.7	7.2-7.8
$g^{3}S_{1}-{}^{3}P_{1}$	20.1 - 21.1	15.3-18.7
$3g_{(\Delta I=0)}^{1S_0-3P_0} - 2g_{(\Delta I=1)}^{1S_0-3P_0}$	1.9-3.1	1.8-2.8

LO EFT calculation (Vanasse (2012)), NLO EFT calculation (Grießhammer, Schindler, and Springer (2012)) using partial resummation technique.

Building Blocks	Two-Body Parity Violation	
Quartet Channel	Three-Body Parity Violation	
Doublet Channel	Observables	
Parity Violation	pd Parity Violation	

Amplitude including Coulomb effects is given by

$$\begin{split} M_{m'_{1},m'_{2};m_{1},m_{2}} = & f_{C}(\theta) \delta_{m_{2},m'_{2}} \delta_{m_{1},m'_{1}} \\ &+ \sqrt{4\pi} \sum_{J} \sum_{L,L'} \sum_{S,S'} \sum_{m_{s},m'_{S}} \sum_{m'_{L}} \sqrt{2L+1} C_{1,1/2,S}^{m_{1},m_{2},m_{S}} \\ &C_{1,1/2,S'}^{m'_{1},m'_{2},m'_{S}} C_{L,S,J}^{0,m_{S},M} C_{L',S',J}^{m'_{L},m'_{S},M} Y_{L'}^{m'_{L}}(\theta,\phi) M_{L'S',LS}^{J(sub)} \end{split}$$

where

$$M_{L'S',LS}^{J(sub)} = M_{L'S',LS}^{J}(Strong + Coulomb) - M_{L'S',LS}^{J}(Coulomb)$$

Two-Body Parity Violation Three-Body Parity Violation Observables pd Parity Violation

Conclusions and Future Directions

- Any PV observable of interest can be calculated for nd scattering at LO in EFT_#.
- Possible signal of PV three-body force needed at NLO. (Unfortunate)
- pd scattering via nd scattering with isospin changes and Coulomb added.
- Coulomb needs to be included in both the scattering amplitudes and corrections to two-body PV vertex.
- ▶ New perturbative technique can be used with external currents making calculations of PV in $nd \rightarrow {}^{3}H + \gamma$ and $pd \rightarrow {}^{3}He + \gamma$ feasible.

