Strange decays at LHCb

Carla Marin Benito

XLII INTERNATIONAL MEETING ON FUNDAMENTAL PHYSICS

Benasque, January 2014

Outline

• Introduction.

- Motivation
- LHCb detector for strange decays.
- LHCb trigger for strange decays.
- Public results: $K_s \rightarrow \mu \mu$.

• Future prospects:

[All from Rare'n'strange Workshop, CERN, 06/12/13]

- $K_s \rightarrow \mu \mu$
- $K_s \rightarrow \pi^0 \mu \mu$
- $K_s \rightarrow 4\ell$

▶ K⁺

▶ $\Sigma^+ \rightarrow p \mu \mu$

Not covered in this talk:

• $K_S \rightarrow \pi \pi \mu \mu$

► K_L

イロト 不得下 イヨト イヨト

- 31

Motivation

- Strange mesons have played a major role in the history of particle physics.
 - ▶ Long life of $K^0 \Rightarrow$ much better understanding of the weak interaction.
 - Charge-parity violation (CPV) first observed in a strange decay: $K_L \rightarrow \pi \pi$ [Brookhaven National Laboratory, 1964] It was completely unexpected at that moment!
- They can still teach us many things:
 - Precision measurements of CP violation.
 - Search for new physics (NP) in rare strange decays: lepton-flavour violation (LFV).
- Why strange?
 - Theoretically clean as few final states are allowed.
 - Relatively easy to produce.
 - Large CKM suppression ($V_{ts}V_{td} \sim 10^{-4}$) \Rightarrow large sensitivity to NP.

2 / 22

イロト 不得下 イヨト イヨト

LHCb detector

Luminosity

- Low to ease secondary vertex reconstruction.
- Current data:
 - ▶ 2011: 1 fb⁻¹ data.
 - ▶ 2012: 2 fb⁻¹ data.

LHCb Integrated Luminosity pp collisions 2010-2012

Detector shape

- b quarks are produced very boosted.
- Single arm forward spectrometer:

LHCb detector for strange decays

LHCb is not optimized for the study of strange mesons: lower m, larger τ .

Long tracks(LL): $\sim 10^{13} \ K_s/fb^{-1}$ decay in LHCb acceptance.

Carla Marin (cmarin@ecm.ub.edu)

Strange decays at LHCb

(△ > < ≥ > < ≥ > ≥ Benasque, January 2014

4 / 22

LHCb detector for strange decays

LHCb is not optimized for the study of strange mesons: lower m, larger τ .

Long tracks(LL): $\sim 10^{13} K_s/fb^{-1}$ decay in LHCb acceptance. Downstream (DD) tracks: more statistics but worse vertex and momentum resolution. VELO segment matching for charged mothers to improve it.

Carla Marin (cmarin@ecm.ub.edu)

Strange decays at LHCb

LHCb trigger for strange decays

Not designed to select strange decays \Rightarrow selected in the underlying event!

- They have larger τ and lower daugther's p_T .
- However, 1/3 events contain a reconstructible $K_S \rightarrow \pi \pi$.

- L0: calorimeters and muon chambers.
- HLT1: adds tracking and vertexing.
- HLT2: performs full event reconstruction.
 - Current $m_{\mu\mu}$ range doesn't include m_{K_S} .
 - \blacktriangleright New line added in 2012 \Rightarrow x3 total efficiency \checkmark

- Only $\sim 1\%$ of the offline selected $K_S \rightarrow \mu\mu$ passed the whole trigger. The rest were selected in the underlying event.
- Run2: studying to include an exclusive di- μ line at Hlt1.

Strange decays at LHCb

Carla Marin (cmarin@ecm.ub.edu)

Strange decays at LHCb

Benasque, January 2014 6 / 22

- 2

イロト イポト イヨト イヨト

$K_s \rightarrow \mu \mu$ introduction

- $\bullet\,$ No tree-level contribution in SM \to FCNC sensitive to NP.
- 2 contributions to the amplitude: Long-distance (LD)
 Short-distance (SD)

 ^{*}
 ^{*}

Dominates $K_s \rightarrow \mu \mu$.

Dominates $K_L \rightarrow \mu \mu$.

- BR($K_L \rightarrow \mu\mu$)= (6.84 ± 0.11) \cdot 10⁻⁹ [J. Beringer et al. (PDG)], in agreement with SM.
- BR($K_S \rightarrow \mu \mu$) still can have NP contributions.
 - ▶ In SM: BR($K_S \rightarrow \mu\mu$) = (5.1 ± 0.2) \cdot 10⁻¹² [Nucl.Phys.B366(1991)189].
 - ▶ Previous best measurement: BR($K_S \rightarrow \mu\mu$) < 3.2 · 10⁻⁷ in 1973!! [Phys.Lett. B 44 (1973) 217–220]

 $\mathcal{K}_s
ightarrow \mu \mu$ analysis: 1 fb⁻¹ 2011 data at 7 TeV

- Reconstruct di-muon pairs.
- Boosted Decision Tree with geometrical and kinematical variables.
- Backgrounds: combinatorial and material interaction.
- Control channel: $K_S \rightarrow \pi \pi$, well separated from signal.

${\it K_s} ightarrow \mu\mu$ results with 1 fb $^{-1}$ 2011 data

BR $(K_s \rightarrow \mu \mu) < 11(9) \cdot 10^{-9}$ at 95(90)% CL

Previous best measurement: BR($K_S \rightarrow \mu\mu$) < 3.2 \cdot 10⁻⁷. 30 times better!!

- LHCb result greatly improves previous best measurement.
- Still 3 orders of magnitude to search for NP.
- Most interesting region is below 10^{-10} .
- Only 1/3 of the available data (1 fb⁻¹) has been analysed!

$\textit{K}_{\textit{s}} ightarrow \mu \mu$ prospects

Main bottleneck for statistics is the trigger.

- $\bullet~{\rm Only}\sim 1\%$ of total efficiency in last analysis.
- Trigger already improved to $\sim 3\%$ efficiency. \checkmark
- Still much room for improvement.

Expected range sensitivity from last analysis and trigger improvement:

✓ Can go below 10⁻¹⁰ with the LHCb upgrade!

 $\checkmark\,$ Optimistically, extra gain $\sim 15\%\,$ using DD tracks.

$K_s \rightarrow \pi^0 \mu \mu$ prospects

Carla Marin (cmarin@ecm.ub.edu)

Strange decays at LHCb

- $K_I \rightarrow \pi^0 \mu \mu$ is a hot channel in Kaon physics as it is sensitive to NP.
- CP violating amplitude that enters BR($K_I \rightarrow \pi^0 \mu \mu$) could be constrained from $K_{S} \rightarrow \pi^{0} \mu \mu$.
- Previous measurement from NA48 [Phys. Lett. B 599: 197-211, 2004]: $BF(K_5 \rightarrow \pi^0 \mu \mu) = (2.9^{+1.5}_{-1.2} \pm 0.2) \cdot 10^{-9} \sim 50\%$ uncertainty!
- Could LHCb improve this result?
 - LHCb is not designed for K_s decays.
 - π^0 makes it more challenging due to difficult reconstruction.

$K_S ightarrow \pi^0 \mu \mu$ prospects

• Different options to reconstruct π^0 studied with MC:

	BR	Efficiency	Advantadge	Problems
$\pi^0 \to \gamma\gamma$	$\sim 99\%$	low	Most common	Combinatorial γ 's
$\pi^0 ightarrow ee$	$\ll 1\%$	very low	Allows vertexing	Too low efficiency
No π^0	-	high	Forget about π^0	Mass not peaking

- Most feasible is $\pi^0 \to \gamma \gamma$:
 - ▶ few events expected in 3 fb⁻¹.
 - may be observed after LS1 or after the upgrade.
- Backgrounds:
 - Combinatorial, $K_S \rightarrow \pi\pi$ and $K_S \rightarrow \pi\mu\nu$.
 - Selection should be tightened to fight them.
 - This could diminish the signal efficiency.

$K_s \rightarrow 4\ell$ prospects

Carla Marin (cmarin@ecm.ub.edu)

Strange decays at LHCb

▲ □ → ▲ □ → ▲ ■ → ▲ ■ → ▲ ■ → ④ へ ○
Benasque, January 2014 14 / 22

$K_S \rightarrow 4\ell$ prospects

- Growing interest after publication of $K_s \rightarrow \mu\mu$ paper.
- Recent publication of SM and NP contributions to $K_{L,S} \rightarrow 4\ell$. [arXiv:1309.5736v3]
 - ► BR in SM can reach: $K_s \rightarrow eeee \sim 10^{-10}$ $K_s \rightarrow ee\mu\mu \sim 10^{-11}$ $K_s \rightarrow \mu\mu\mu\mu \sim 10^{-14}$
- No experimental results so far.

$K_S \rightarrow 4\ell$ prospects

- Growing interest after publication of $K_s \rightarrow \mu \mu$ paper.
- Recent publication of SM and NP contributions to $K_{L,S} \rightarrow 4\ell$. [arXiv:1309.5736v3]
 - ► BR in SM can reach: $K_s \rightarrow eeee \sim 10^{-10}$ $K_s \rightarrow ee\mu\mu \sim 10^{-11}$ $K_s \rightarrow \mu\mu\mu\mu \sim 10^{-14}$
- No experimental results so far.
- LHCb prospects for $K_S \rightarrow 4\ell$ with electrons:
 - challenging due to e's reconstruction.
 - From MC studies:

	Mass peak	Mass	$K_S ightarrow \pi \pi e e$	Expected
	displacement	resolution	separation	BR limit
$K_s \rightarrow eeee$	\sim 30 MeV	$\sim 20 \text{ MeV}$	\sim 300 MeV	$\sim 10^{-6}$
$N_s \rightarrow ee \mu \mu$	\sim 10 MeV	\sim 10 lilev	\sim 10 liev	~ 10

K^+ prospects

Carla Marin (cmarin@ecm.ub.edu)

Strange decays at LHCb

▲ □ → ▲ □ → ▲ ■ → ▲ ■ → ▲ ■ → へ ○
Benasque, January 2014 16 / 22

K^+ prospects

- NA48 results [Phys. Lett. B 697 (2011) 107-115]:
 - 3k $K^+ \rightarrow \pi \mu \mu$ and 10⁹k $K^+ \rightarrow \pi \pi \pi$ (for normalization) observed.
 - BR($K^+ \to \pi \mu \mu$) = (9.4 ± 0.6) · 10⁻⁸.
 - Also search for lepton-flavor violation with same sign μ .
- Disagreement between most precise *K*⁺ mass measurements:
 - $K^+ \to \pi \pi \pi$ could give a competitive result
- LHCb approach:
 - Focus on $K^+ \rightarrow \pi \pi \pi$.
 - Use long tracks but also downstream with VELO matching.
 - ▶ 2011 data (1 fb⁻¹): \sim 2k of $K^+ \rightarrow \pi \pi \pi$.

イロト 不得下 イヨト イヨト

$\Sigma^+ ightarrow ho\mu\mu$ prospects

3

$\Sigma^+ ightarrow ho\mu\mu$ prospects

- HyperCP results [PRL 94 021801]:
 - ▶ 3 signal events observed with 0 background.
 - $\mathsf{BR}(\Sigma^+ \to p\mu\mu) = (8.6^{+6.6}_{-5.4} \pm 5.5) \cdot 10^{-8}$.
 - ► All 3 events have $m_{\mu\mu} \sim 214 \text{ MeV} \Rightarrow \text{possible new } X^0 \text{ state!!} \Rightarrow \Sigma^+ \rightarrow p X^0 (\rightarrow \mu\mu).$

$\Sigma^+ ightarrow ho\mu\mu$ prospects

- LHCb approach:
 - Purpose: find evidence of the decay and study $m_{\mu\mu}$.
 - Forward production of many Σ at LHCb (\sim 40% events contain one).
 - Normalization channel: $\Sigma^+ \rightarrow p\pi^0 (\rightarrow ee\gamma)$.
 - Use LL tracks but also DD with VELO matching.
- Preliminary results:
- MC studies: very good mass resolution: $\sigma \sim 2$ MeV.
- ► Full data (3 fb⁻¹): ~ 45k of $\Sigma^+ \rightarrow p\pi^0 (\rightarrow ee\gamma)$.
- Expected BR limit: $\sim 5 \cdot 10^{-9}$.

Summary

Carla Marin (cmarin@ecm.ub.edu)

Strange decays at LHCb

Benasque, January 2014 21 / 22

・ 何 ト ・ ヨ ト ・ ヨ ト

æ

- LHCb is not designed for strange physics but can provide very competitive results.
- Public result: BR($K_S \rightarrow \mu \mu$) < 9.0 \cdot 10⁻⁹, 30 times better than previous world best.
- Strange physics rising interest. Many prospects at LHCb:
 - $K_S \rightarrow \mu \mu$ update with 3 fb⁻¹.
 - $K_S \rightarrow \pi^0 \mu \mu$: feasible after LS1 or upgrade.
 - $K_S \rightarrow 4\ell$: BR limit $\sim 10^{-7} (10^{-6})$ for $K_S \rightarrow ee\mu\mu (K_S \rightarrow eeee)$.
 - K^+ decays: few in LHCb acceptance but worth to look at.
 - $\Sigma^+ \rightarrow p \mu \mu$: BR limit ~ 5 · 10⁻⁹.

- LHCb is not designed for strange physics but can provide very competitive results.
- Public result: BR($K_S \rightarrow \mu \mu$) < 9.0 \cdot 10⁻⁹, 30 times better than previous world best.
- Strange physics rising interest. Many prospects at LHCb:
 - $K_S \rightarrow \mu \mu$ update with 3 fb⁻¹.
 - $K_S \rightarrow \pi^0 \mu \mu$: feasible after LS1 or upgrade.
 - $K_S \rightarrow 4\ell$: BR limit $\sim 10^{-7} (10^{-6})$ for $K_S \rightarrow ee\mu\mu (K_S \rightarrow eeee)$.
 - K^+ decays: few in LHCb acceptance but worth to look at.
 - $\Sigma^+ \rightarrow p \mu \mu$: BR limit ~ 5 · 10⁻⁹.

Stay tuned!!

BACK-UP

Carla Marin (cmarin@ecm.ub.edu)

Strange decays at LHCb

Benasque, January 2014 23 / 22

3

<ロ> (日) (日) (日) (日) (日)

- L0: high p_T signatures.
 - Only ~ 16% of µ in offline selected K_S → µµ were responsible to fire the L0 trigger (~ 90% for B decays).
- Hlt1: adds tracking and vertexing.
 - Only $\sim 20\%$ of L0 selected $K_S \rightarrow \mu\mu$ decays were responsible to fire the Hlt1 trigger (> 40% for other decays).
- Hlt2: performs full event reconstruction.
 - Current $m_{\mu\mu}$ range don't include m_{K_S} .
 - \blacktriangleright New line added in 2012 \Rightarrow x3 total efficiency. \checkmark

$K_s ightarrow \mu \mu$ results

- No signal observed over background expectation.
- CLs method used to set a limit on the BR.

BR $(K_s \rightarrow \mu \mu) < 11(9) \cdot 10^{-9}$ at 95(90)% CL

3

$K_s \rightarrow \mu \mu$ prospects

Long (LL) vs downstream (DD) tracks at LHCb.

- Using DD tracks could improve statistics a lot (only LL in last paper).
- But DD tracks have worse momentum and vertex resolution.
- \bullet Optimistically, effective extra gain $\sim 15\%$ using DD tracks.

Carla Marin (cmarin@ecm.ub.edu)

Strange decays at LHCb

- Could allow precise measurement of K^0 mass.
 - Low Q: $m_{K_S} (2 \cdot m_{\pi} + 2 \cdot m_{\mu}) \sim 10 \text{ MeV}/c^2$.
 - Minimize systematics due to momentum scale uncertainity.
- SM prediction:
 - BR($K_S \to \pi \pi \mu \mu$) = 4 · 10⁻¹⁴.
 - Good probe for NP.
- Starting preliminar studies at LHCb.

K^+ prospects

- LL (DD) tracks are tipically reconstructed in the region 0 < z < 40 cm (40 < z < 250 cm)
- K^+ with $p \sim 10~{
 m GeV}/c$ decay in average at $\sim 70~{
 m m}.$
- \bullet Use DD tracks with VELO segment matching, \checkmark

Carla Marin (cmarin@ecm.ub.edu)

Strange decays at LHCb

• K_L and K_S distinguishable by the decay time. But in LHCb acceptance:

The decay distributions will look like:

$$\begin{aligned} \epsilon(t) \sim e^{-\beta t} & \text{KS} \quad \mathbf{p}(t) \sim e^{-(\beta + \Gamma_S)t} = e^{-\Gamma_{S,eff}t} \\ \text{KL} \quad \mathbf{p}(t) \sim e^{-(\beta + \Gamma_L)t} = e^{-\Gamma_{L,eff}t} \end{aligned}$$

Using DD tracks, \sim 50% separation can be reached.

• The overall reconstruction efficiency is \sim 1000 times smaller than for the corresponding K_S decay.

29 / 22

イロト 不得下 イヨト イヨト