

XLII International Meeting on Fundamental Physics Benasque, January 27-31, 2014

Beyond the Standard Model Physics and implications from recent high-pT LHC data

José Santiago (CAFPE and U. Granada)

Universidad de <mark>Granada</mark>

What is this (course)?

- The organizers asked me to give a course on BSM and implications from recent high-pT LHC data
- These are exciting times for BSM physics:
 - The LHC is probing for the first time (and quite exhaustively) the TeV scale
 - Null results so far force us to reconsider some of our assumptions/expectations
- I'll try to give an overview of how LHC data re-shape our ideas about BSM using specific examples, rather than trying to be comprehensive (either in the model-building or in the experimental side)

Outline

- The Standard Model
- New Physics searches: the effective way
- New Physics searches: model building
 - Supersymmetry
 - Simplified models
 - Composite Higgs
- Implications from recent high p_T data
 - Higgs Physics
 - Direct searches
- Some final thoughts

- The Standard Model of particle physics
 - Defined by
 - Symmetry: local $SU(3)_C \times SU(2)_L \times U(1)_Y$

- The Standard Model of particle physics
 - Defined by
 - Symmetry: local $SU(3)_C \times SU(2)_L \times U(1)_Y$
 - Particle content

$$q_{L} = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \quad (3,2)_{\frac{1}{6}}$$
$$u_{R} \quad (3,1)_{\frac{2}{3}}$$
$$d_{R} \quad (3,1)_{-\frac{1}{3}}$$
$$l_{L} = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \quad (1,2)_{-\frac{1}{2}}$$
$$e_{R} \quad (1,1)_{-1}$$

- The Standard Model of particle physics
 - Defined by
 - Symmetry: local $SU(3)_C \times SU(2)_L \times U(1)_Y$
 - Particle content
 - Renormalizable Lagrangian: only relevant or marginal operators (mass dimension ≤4)

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} i\gamma^{\mu} D_{\mu} \psi + (D_{\mu} \phi)^{\dagger} D^{\mu} \phi$$
$$- [\bar{q}_L \lambda^u \tilde{\phi} u_R + \bar{q}_L V \lambda^d \phi d_R + \bar{l}_L \lambda^e \phi e_R + \text{h.c.}]$$
$$- [\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2]$$

$$+ \theta \frac{g^3}{64\pi^2} F^a_{\mu\nu} \tilde{F}^a \overset{\mu\nu}{\checkmark}$$

J. Redondo's talk

- Some (successful) features of the SM
 - It is anomaly-free (and almost the minimal option)
 - Reproduces successfully EWSB
 - (Minimal) flavor (and CP) violation: GIM
 - Agrees with observation
- Some unsatisfactory features of the SM
 - Does not agree with all observations: dark matter (energy), baryon asymmetry, ...
 - Does not explain its structure: number of families, flavor, nature of neutrino masses ...

The Higgs: hierarchy problem, origin of EWSB

• Flavor in the SM:

- Flavor violation absent in neutral currents and mediated by unitary CKM in charged currents with a single CP violating phase
- Lepton and baryon number: accidental symmetries (not imposed, arise from gauge symmetries and particle content)
 - They are both anomalous but B-L is not
- Tested experimentally to an extreme precision

S. Descontes-Genon course

- EWSB in the SM: $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$
 - $SU(2)_L \times U(1)_Y \to U(1)_Q$ if $\mu^2 < 0$

$$\langle \phi^{\dagger}\phi \rangle = \frac{v^2}{2} = \frac{-\mu^2}{2\lambda} \qquad \phi = \begin{pmatrix} \pi^+ \\ \frac{v+h+i\pi^0}{\sqrt{2}} \end{pmatrix}$$

 $\pi^{\pm}, \pi^{0}, \text{ would-be GB, eaten by W}^{\pm}, Z$ h, physical scalar Higgs boson

$$V(h) = \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4 \Rightarrow m_h^2 = 2\lambda v^2$$

- EWSB in the SM: $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$
 - $SU(2)_L \times U(1)_Y \to U(1)_Q$ if $\mu^2 < 0$
 - *h* provides the right degree of freedom to unitarize longitudinal gauge boson scattering

$$\mathcal{M}(W_L^+ W_L^- \to W_L^+ W_L^-) = \frac{g^2}{4m_W^2} \left[s + t - \frac{s^2}{s - m_H^2} - \frac{t^2}{t - m_H^2} \right]$$
$$= -\frac{g^2}{4m_W^2} m_H^2 \left[\frac{s}{s - m_H^2} + \frac{t}{t - m_H^2} \right].$$

- EWSB in the SM: $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$
 - $SU(2)_L \times U(1)_Y \rightarrow U(1)_Q$ if $\mu^2 < 0$
 - h provides the right degree of freedom to unitarize longitudinal gauge boson scattering
 - Has approximate custodial symmetry

$$\Sigma = (\tilde{\phi} \phi) = \begin{pmatrix} \phi_0^* & \phi^+ \\ -\phi^- & \phi_0 \end{pmatrix} \to U_L \Sigma U_R^\dagger$$

br

$$\langle \Sigma
angle = egin{pmatrix} v & 0 \ 0 & \imath \end{pmatrix}$$

eaks
$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_{L+R}$$

 W^I_{μ} triplet under $SU(2)_{L+R} \Rightarrow \rho \equiv \frac{m^2_W}{m^2_Z c^2_W} = 1$

- EWSB in the SM: $V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$
 - $SU(2)_L \times U(1)_Y \to U(1)_Q$ if $\mu^2 < 0$
 - *h* provides the right degree of freedom to unitarize longitudinal gauge boson scattering
 - Has approximate custodial symmetry (explicitly broken by the top/bottom mass difference and hypercharge interactions)

$$\begin{pmatrix} t_L \\ b_L \end{pmatrix} \Sigma \begin{pmatrix} \lambda_t t_R \\ \lambda_b b_R \end{pmatrix}$$

$$\delta\rho = \frac{3G_F m_t^2}{8\sqrt{2}\pi}$$

 $Y = T_R^3 + Q_{B-L}$

 $\delta_{\rho} = -\frac{3g'^2 G_F m_W^2}{4\sqrt{2}\pi^2 g^2} \ln\left(\frac{m_h^2}{m_{h\ rof}^2}\right)$

Tests of the SM

- Higgs discovery at the LHC: last remaining coupling measured in the SM $(\lambda \approx 0.13)$
- With interesting implications

Buttazzo et al '13; See also: Degrassi et al '12; Bezrukov et al '12

G. Degrassi's talk

Tests of the SM

- Higgs discovery at the LHC: last remaining coupling measured in the SM $(\lambda \approx 0.13)$
- Excellent agreement with data

Tests of the SM

- Higgs discovery at the LHC: last remaining coupling measured in the SM $(\lambda \approx 0.13)$
- Excellent agreement with data

• But:

- The SM does not explain dynamically the values of the different parameters (Why $\mu^2 < 0$? Why 3 families? Why $\lambda_e/\lambda_t \sim 10^{-6}$? ...)
- Does not address many questions: dark energy, dark matter, baryon asymmetry, origin of neutrino masses, strong CP problem, ...
- And ... the Higgs
 - It would be the first time an elementary scalar is observed in nature (not the first time for spontaneous symmetry breaking, though)
 - It suffers from the hierarchy problem

- The Hierarchy (or naturalness) problem:
 - The mass of an elementary scalar is a relevant operator not (obviously) protected by any symmetry
 - Any new scale in the UV will induce a correction to the Higgs mass proportional to the new scale

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 + \frac{1}{2} (\partial \Phi)^2 + \bar{\psi} i \, \partial \psi - \frac{1}{2} m_\phi^2 \phi^2 - \frac{1}{2} m_\Phi^2 \Phi^2 - m_\psi \bar{\psi} \psi \\ - \frac{\lambda}{4} \phi^2 \Phi^2 - \lambda_\phi \phi \bar{\psi} \psi - \lambda_\Phi \Phi \bar{\psi} \psi$$

1 loop mass shift in MS scheme

$$\delta m_{\phi}^2 = m_{\psi}^2 \frac{\lambda_{\phi}^2}{4\pi^2} \left[1 - 2\ln\frac{m_{\psi}^2}{\mu^2} + \mathcal{O}(m_{\phi}^2/m_{\psi}^2) \right] - m_{\Phi}^2 \frac{\lambda}{32\pi^2} \left[1 - \ln\frac{m_{\Phi}^2}{\mu^2} \right]$$

$$\delta m_{\psi} = m_{\psi} \frac{\lambda_{\phi}^2}{16\pi^2} \left| \frac{5}{4} - \frac{3}{2} \ln \frac{m_{\phi}^2}{\mu^2} + \mathcal{O}(m_{\psi}^2/m_{\phi}^2) \right| + (\phi \to \Phi)$$

- The Hierarchy (or naturalness) problem:
 - The mass of an elementary scalar is a relevant operator not (obviously) protected by any symmetry
 - Any new scale in the UV will induce a correction to the Higgs mass proportional to the new scale
 - It is difficult to understand the scale of EWSB unless some new structure appears around the TeV scale

- The Hierarchy (or naturalness) problem:
 - The mass of an elementary scalar is a relevant operator not (obviously) protected by any symmetry
 - Any new scale in the UV will induce a correction to the Higgs mass proportional to the new scale
 - It is difficult to understand the scale of EWSB unless some new structure appears around the TeV scale
 - Currently tested tuning is not yet dramatic

Crude estimate

$$\frac{\delta m_H^2}{m_H^2} \sim \frac{\Lambda^2}{4\pi^2 m_H^2} \le \Delta \Rightarrow \Lambda \lesssim \text{few } \sqrt{\Delta} m_H \sim \text{ few } \left\{ \begin{array}{l} 1 \text{ TeV, 0.01 tuning} \\ 3 \text{ TeV, 0.001 tuning} \end{array} \right.$$

• Searches for New Physics at the LHC

If the SM is not satisfactory and the hierarchy problem suggests that there should be new physics at the TeV scale ... we should find it at the LHC!

• Searches for New Physics at the LHC

	ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)				
Large ED (ADD) : monoiet + E					
Large ED (ADD) : monophoton + E_{-}	$\frac{4.37167}{1.2667} \frac{1}{72} \frac{1}{1200.4891} \frac{4.37167}{1.262} \frac{1}{100} $				
$^{\circ}$ Large ED (ADD): diphoton & dilepton m	$\begin{array}{c} \textbf{L} = 0 \text{ for } T \text{ traces of } \textbf{L} = 0 \text{ for } \textbf{M}_{D} (0^{-2}) \\ \textbf{L} = 0 \text{ for } T \text{ traces of } \textbf{L} = 0 \text{ for } \textbf{M}_{D} (1^{-2}) \\ \textbf{L} = 0 \text{ for } \textbf{M}_{D} (1^{-2} \text{ for } \textbf{L} = 0 \text{ for }$				
UED ; diphoton + $E_{T_{radian}}$	L=4.6 ¹ TeV (1209 0753) 140 TeV Compact, scale R ⁻¹ Preliminary				
S ¹ /Z, ED : dilepton, m	L=5.0 fb ⁻¹ , 7 TeV [1209.2535] 4.71 TeV M _{vv} ~ R ⁻¹				
RS1 : dilepton, m	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017] 2.47 TeV Graviton mass (k/M _{Pl} = 0.1)				
RS1 : WW resonance, m	L=4.7 fb ⁻¹ , 7 TeV [1208.2880] 1.23 TeV Graviton mass (k/M _{Pl} = 0.1)				
Bulk RS : ZZ resonance, m	L=7.2 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-150] 850 GeV Graviton mass $(k/M_{Pl} = 1.0)$ $Ldt = (1 - 20) \text{ fb}^{-1}$				
$\overleftarrow{\varepsilon}$ RS $g_{\mu\nu} \rightarrow t\overline{t}$ (BR=0.925) : $t\overline{t} \rightarrow I+jets, m_{\mu\nu}$	L=4.7 fb ⁻¹ , 7 TeV [1305.2756] 2.07 TeV g _{xx} mass				
ADD BH (M _{TH} /M _D =3) : SS dimuon, N _{ch. part}	L=1.3 fb ⁻¹ , 7 TeV [1111.0080] 1.25 TeV $M_D (\delta=6)^{NN}$ IS = 7, 8 TeV				
ADD BH $(M_{TH} / M_D = 3)$: leptons + jets, Σp_T	L=1.0 fb ⁻¹ , 7 TeV [1204.4646] 1.5 TeV M_D (δ =6)				
Quantum black hole : dijet, F _y (m _{jj})	L=4.7 fb ² , 7 TeV [1210.1718] 4.11 TeV M _D (δ=6)				
qqqq contact interaction : $\chi(m)$	L=4.8 fb ⁻¹ , 7 TeV [1210.1718] 7.6 TeV Λ				
G qqll Cl : ee & μμ, m	L=5.0 fb ² , 7 TeV (1211.1150) 13.9 TeV Λ (constructive int.)				
uutt CI : SS dilepton + jets + $E_{T,miss}$	<u>L=14.3 fb⁻³, 8 TeV (ATLAS-CONF-2013-051)</u> <u>3.3 TeV</u> Λ (C=1)				
$Z'(SSM): m_{ee/\mu\mu}$	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017] 2.86 TeV Z' mass				
$Z'(SSM): m_{ee}$	L=4.7 fb ^{-*} , 7 TeV [1210.6604] 1.4 TeV Z [*] mass				
\geq 2' (leptophobic topcolor) : tt \rightarrow 1+jets, m	L=14.3 rb ⁻ , 8 TeV [ATLAS-CONF-2013-052] 1.8 TeV Z mass				
W (SSW)./// _{T,e/µ} W' (-> to o =1):m	L=4.7 fb ⁺ , 7 TeV [1209.4446] 2.55 TeV W mass				
$W' \rightarrow th LRSM : m$	L=4.7 tb .7 TeV [129:5593] 430 GeV W mass				
Scalar I O pair $(\beta=1)$; kin ware in coll ovi					
\odot Scalar LQ pair (β =1): kin. vars. in eejj, evjj					
Scalar LQ pair $(\beta = 1)$: kin, vars, in $\mu\mu jj$, $\mu\nu jj$	L=10 ⁻¹ (10 ⁻¹) (10				
A th constant : t't' > WhWh	L=4 10 ⁺⁷ TeV 1120 5461 656 66V ⁴ mass				
\geq 4th generation : b'b' \rightarrow SS dilepton + jets + E_	L=14.3 th ⁻¹ 8 TeV IATLAS-CONF-2013-0511 720 GeV b ⁺ mass				
Vector-like quark : TT→ Ht+X	L=14.3 tb ⁻¹ .8 TeV (ATLAS-CONF-2013-018) 790 GeV T mass (isospin doublet)				
Vector-like guark : CC, m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137] 1.12 TeV VLQ mass (charge -1/3, coupling $\kappa_{ro} = v/m_{o}$)				
Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580] 2.46 TeV g* mass				
Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ ,8 TeV [ATLAS-CONF-2012-148] 3.84 TeV q* mass				
Excited b quark : W-t resonance, m	L=4.7 fb ⁻¹ , 7 TeV [1301.1583] 870 GeV b* mass (left-handed coupling)				
Excited leptons : I-γ resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146] 2.2 TeV 1^* mass ($\Lambda = m(1^*)$)				
Techni-hadrons (LSTC) : dilepton, mee/µµ	Z=5.0 fb⁻⁷, 7 TeV [1209.2535] 850 GeV ρ_T/ω_T mass $(m(\rho_T/\omega_T) - m(\pi_T) = M_{vv})$				
Techni-hadrons (LSTC) : WZ resonance (IvII), m	L=13.0 fb ⁺ , 8 TeV [ATLAS-CONF-2013-015] 920 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{W}, m(a_{T}) = 1.1m(\rho_{T}))$				
Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420] 1.5 TeV N mass (m(W _p) = 2 TeV)				
Heavy lepton N [±] (type III seesaw) : Z-I resonance, m _{zi}	<u>L=5.8 fb[*], 8 TeV [ATLAS-CONF-20192018]</u> N ^x mass ($ V_e = 0.055$, $ V_{\mu} = 0.063$, $ V_{\mu} = 0$)				
H_{L}^{-} (DY prod., BR($H_{L}^{-} \rightarrow II$)=1) : SS ee ($\mu\mu$), m_{μ}	L=4.7 fb ⁺ , 7 TeV [1210.5070] 409 GeV H ^{±±} _L mass (limit at 398 GeV for μμ)				
Color octet scalar : dijet resonance, m	L=4.8 fb ² , 7 TeV [1210.1718] 1.86 TeV Scalar resonance mass				
Multi-charged particles (DY prod.) : highly ionizing tracks	L=4.4 fb ⁻ .7 TeV [1301.5272] 490 GeV mass (q = 4e)				
Magnetic monopoles (DY prod.) : highly ionizing tracks	12=2 of b , 7 TeV [1207.6413] 882 GeV mass				
	10" 1 10 10				
Mass scale [TeV]					

*Only a selection of the available mass limits on new states or phenomena shown

ATI AS Preliminary

Searches for New Physics at the LHC

ATLAS SUSV Searches* - 95% CL Lower Limits

Status: SUSY 2013 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \sqrt{s} = 7, 8 \text{ TeV}$								
	Model	e, μ, τ, γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Mass limit	5	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \vec{q} \vec{q}, \vec{q} \rightarrow \vec{q}_{1}^{0} \\ \vec{x}_{2}^{\vec{x}}, \vec{g} \rightarrow \vec{q}_{1}^{\vec{x}_{1}} \\ \vec{x}_{2}^{\vec{x}}, \vec{g} \rightarrow \vec{q}_{1}^{\vec{x}_{1}} \\ \vec{x}_{2}^{\vec{x}}, \vec{g} \rightarrow \vec{q}_{1}^{\vec{x}_{1}} \rightarrow \vec{q}W^{\pm}\vec{y}_{1}^{0} \\ \vec{x}_{2}^{\vec{x}}, \vec{g} \rightarrow \vec{q}(\ell(\ell\nu/\nu))\vec{y}_{1}^{0} \\ \vec{x}_{3}^{\vec{x}}, \vec{g} \rightarrow \vec{q}(\ell(\ell\nu/\nu))\vec{y}_{1}^{0} \\ \text{GMSB}(\vec{\ell} \text{ NLSP}) \\ \text{GGM}(injo \text{ NLSP}) \\ \text{GGM}(injo \text{ NLSP}) \\ \text{GGM}(injo \text{ injon NLSP}) \\ \text{GGM}(injo \text{ injon NLSP}) \\ \text{Gravitino LSP} \\ \text{Gravitino LSP} \end{array}$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ r, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ r, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	G.g. 1. g 1.2 TeV g 1.1 TeV g 1.1 TeV g 1.1 TeV g 1.3 TeV g 1.1 TeV g 1.1 TeV g 1.1 TeV g 1.1 TeV g 1.18 TeV g 1.2 TeV g 1.24 TeV g 1.24 TeV g 619 GeV g 600 GeV g 6900 GeV g 6900 GeV g 645 GeV	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-026 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-145 ATLAS-CONF-2012-147
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	8 1.2 TeV 8 1.1 TeV 8 1.34 TeV 8 1.34 TeV 8 1.3 TeV	m(\tilde{k}_{1}^{0})<600 GeV m(\tilde{k}_{1}^{0}) <350 GeV m(\tilde{k}_{1}^{0})<400 GeV m(\tilde{k}_{1}^{0})<300 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\xi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{2} \rightarrow b\tilde{\xi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{2} \rightarrow b\tilde{\xi}_{1}^{0} \\ \tilde{b}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b\tilde{\xi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \tilde{t}_{1} \rightarrow b\tilde{\xi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neduum}), \tilde{t}_{1} \rightarrow \tilde{\xi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neav}), \tilde{t}_{1} \rightarrow \tilde{\xi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neav}), \tilde{t}_{1} \rightarrow \tilde{\xi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{neav}), \tilde{t}_{1} \rightarrow \tilde{\xi}_{1}^{0} \\ \tilde{t}_{1}(\text{neav}), \tilde{t}_{1} \rightarrow \tilde{\xi}_{1}^{0} \\ \tilde{t}_{1}(\text{neav}), \tilde{t}_{1} \rightarrow \tilde{\xi}_{1}^{0} \\ \tilde{t}_{2}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow \tilde{\xi}_{1}^{0} \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0\\ 2\ e,\mu\ ({\rm SS})\\ 1{-}2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 0\\ 1\ e,\mu\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	b1 100-620 GeV b1 275-430 GeV b1 110-167 GeV b1 130-220 GeV b1 225-525 GeV b1 200-610 GeV b1 200-610 GeV b1 320-660 GeV b1 90-200 GeV b1 500 GeV b1 500 GeV	$\begin{split} m(\tilde{\xi}_1^0) <& 90 \text{GeV} \\ m(\tilde{\xi}_1^0) &=& 2 m(\tilde{\xi}_1^0) \\ m(\tilde{\xi}_1^0) &=& 56 \text{GeV} \\ m(\tilde{\xi}_1^0) &=& m(\tilde{\xi}_1) - m(VV) \\ >& 0 \text{GeV} \\ m(\tilde{\xi}_1^0) &=& 00 \text{GeV} \\ m(\tilde{\xi}_1^0) &=& 0 \text{GeV} \\ m(\tilde{\xi}_1^0) &=& 150 \text{GeV} \\ m(\tilde{\xi}_1^0) &=& 150 \text{GeV} \end{split}$	1308.2631 ATLAS-CONF-2013-007 1208.4305,1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-045 1308.2631 ATLAS-CONF-2013-042 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-045
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu}(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{1}\nu\tilde{\ell}_{1}(\ell\tilde{\nu}), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\ell}(\ell\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0}\tilde{h}\tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	Image: Constraint of the system State of the system <thstate of="" system<="" th="" the=""> State of the s</thstate>	$\begin{split} m(\tilde{t}_{1}^{0}) &= 0 \text{ GeV } \\ m(\tilde{t}_{1}^{0}) &= 0 \text{ GeV } m(\tilde{t}, \tilde{v}) &= 0.5(m(\tilde{t}_{1}^{+}) + m(\tilde{t}_{1}^{0})) \\ m(\tilde{t}_{1}^{0}) &= 0 \text{ GeV } m(\tilde{t}, \tilde{v}) &= 0.5(m(\tilde{t}_{1}^{+}) + m(\tilde{t}_{1}^{0})) \\ m(\tilde{t}_{1}^{0}) &= m(\tilde{t}_{2}^{0}) , m(\tilde{t}_{1}^{0}) &= 0.5(m(\tilde{t}_{1}^{0}) + m(\tilde{t}_{1}^{0})) \\ m(\tilde{t}_{1}^{0}) &= m(\tilde{t}_{2}^{0}) , m(\tilde{t}_{1}^{0}) &= 0.5(m(\tilde{t}_{1}^{0}) + m(\tilde{t}_{1}^{0})) \\ m(\tilde{t}_{1}^{0}) &= m(\tilde{t}_{2}^{0}) , m(\tilde{t}_{1}^{0}) &= 0.5(m(\tilde{t}_{1}^{0}) + m(\tilde{t}_{1}^{0})) \\ \end{split}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-033
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + r(GMSB, \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, long-lived \tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets	Yes Yes Yes -	20.3 22.9 15.9 4.7 20.3	X [±] 270 GeV 832 GeV B 832 GeV 832 GeV X ⁰ 475 GeV X ¹ Q 230 GeV 1.0 TeV	$\begin{array}{l} m(\tilde{k}_1^0)\!-\!m(\tilde{k}_1^0)\!=\!\!160 \ {\rm MeV}, \tau(\tilde{k}_1^+)\!=\!\!0.2 \ {\rm ns} \\ m(\tilde{k}_1^0)\!=\!\!100 \ {\rm GeV}, 10 \ \mu \!$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_\tau + X, \ \tilde{v}_\tau \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_\tau + X, \ \tilde{v}_\tau \rightarrow e, \mu \\ IFV \ pp \rightarrow \tilde{v}_\tau + X, \ \tilde{v}_\tau \rightarrow e + \mu \\ EV \ pp \rightarrow \tilde{v}_\tau + X, \ \tilde{v}_\tau \rightarrow e + \mu \\ \tilde{v}_\tau^1 \tilde{x}_\tau, \ \tilde{x}_\tau^1 \rightarrow WV_\tau^0, \ \tilde{x}_\tau^0 \rightarrow e \tilde{v}_\mu, e \mu \tilde{v} \\ \tilde{x}_\tau^1 \tilde{x}_\tau, \ \tilde{x}_\tau^1 \rightarrow WV_\tau^0, \ \tilde{x}_\tau^0 \rightarrow e \tilde{v}_\mu, e \mu \tilde{v} \\ \tilde{x}_\tau^1 \tilde{x}_\tau, \ \tilde{x}_\tau^1 \rightarrow WV_\tau^0, \ \tilde{x}_\tau^0 \rightarrow \tau \tilde{v}_e, e \tau \tilde{v} \\ \tilde{x} \rightarrow q q \\ \tilde{x} \rightarrow q q \\ \tilde{x} \rightarrow \tilde{t}_\tau, \ \tilde{t}_\tau \rightarrow b s \end{array} $	$ \begin{array}{c} \hline 2 e, \mu \\ 1 e, \mu + \tau \\ 1 e, \mu \\ \phi_e & 4 e, \mu \\ \tau & 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (\text{SS}) \end{array} $	7 jets - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.7	Pr 1.61 Pr 1.1 TeV 8,8 1.2 TeV χ_1^+ 760 GeV χ_1^- 350 GeV 8 916 GeV 8 880 GeV	$\begin{array}{c} \textbf{TeV} & J_{311}^{*}=0.10, J_{132}=0.05 \\ & J_{311}^{*}=0.10, J_{123}=0.05 \\ & \textbf{m}(\tilde{q})=\textbf{m}(\tilde{q}), c_{125}<\textbf{m}(\tilde{q}) \\ & \textbf{m}(\tilde{q})^{*}=0.05 \\ & \textbf{m}(\tilde{q})^{*}=0$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 e, μ (SS) 0	4 jets 1 b mono-jet	Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi){<}80~\text{GeV}, \text{limit of}{<}687~\text{GeV} \text{ for D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	√s = 7 TeV full data	vs = 8 TeV artial data	r√s = full	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Where do we stand?

- The lack of new physics signals plus the good health of the SM has put some pressure on BSM practitioners
- Naturalness remains a good guiding principle:
 - Still at the ~ few per cent level
 - It is The One argument that points to the TeV scale (dark matter, baryon asymmetry, origin of flavor, ..., could be related to the TeV scale or to any other)
 - Discoveries perfectly possible at 13/14 TeV
- The Higgs can play a fundamental role in the discovery of new physics.

How do we proceed?

- Experimental collaborations are massive beasts
 - They have a lot of man-power but also a lot of inertia (plus politics, internal competition, ...)
- How do we search for new physics?
 - Use an effective Lagrangian description: general but assumes new particles are virtual
 - Guide searches by "well motivated" models: very efficient but suffers from theory bias
 - Use "simplified models": easy to reinterpret
 - Search for arbitrary new particles: general but highly inefficient (limited in practice by manpower)

• Facts:

- SM agrees very well with data
- Direct NP searches unsuccessful so far
- Effective Lagrangians. Model-independent description of NP with the following ingredients:
 - Low energy symmetries and degrees of freedom
 - Mass gap between experiment and NP scale
- Caveats:
 - No "light" new physics

• The Effective Lagrangian for the SM

- Choose how to incorporate the Higgs (linear vs non-linear realization)
 L. Merlo's talk
- Write all possible operators with the SM fields, respecting the SM symmetries

$$\mathcal{L}_{eff} = \mathcal{L}_{\mathrm{SM}} + \sum_{d \ge 6} \sum_{i} \frac{\alpha_d^{(i)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

Neglecting L violation

- General parameterization: incorporates all physics
- New terms are all "irrelevant" operators: Physics effect of $\mathcal{O}_i^{(d)}$ suppressed by $(E/\Lambda)^{d-4}$
- Renormalizability not an issue

• The Effective Lagrangian for the SM: practical issues

- We can focus on d=6
- There is a large number of ops at d=6
 - We can assume L and B conservation
 - Operators can be eliminated by field redefinitions or by use of SM equations of motion (redundant operators)
 - First attempt: 81 operators (x flavor)

Buchmüller, Wyler '86

• First non-redundant basis: 59 operators (x flavor)

Grzadkowski et al '10

- Basis choice (which 59 independent operators to use)
 - Physics is independent of the choice but some bases are more convenient than others:
 - Choice based on classification Grzadkowski et al '10
 - Choice based on physics arguments (relation to experiment and to models) Contino et al '13; Elias-Miró et al '13

Artz al '93

 Classify operators according to how they can be generated (tree-level vs non-tree level)

- Correlate them with experimental data
- Interpretation of LHC results in terms of Eff. Lags. should be done with caution: ensure the gap

- Sample use of effective Lagrangians at the LHC
 - Higgs physics

Elias-Miró et al '13 Pomarol, Riva '13

See also: Corbett et al '12-'13 Alonso et al '13 Contino et al '13 Brivio et al '13

- Sample use of effective Lagrangians at the LHC
 - Higgs physics

Elias-Miró et al '13 Pomarol, Riva '13

$$\begin{aligned} \mathcal{O}_{H} &= \frac{1}{2} (\partial^{\mu} |H|^{2})^{2} \\ \mathcal{O}_{T} &= \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2} \\ \mathcal{O}_{6} &= \lambda |H|^{6} \\ \\ \mathcal{O}_{W} &= \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^{a}_{\mu\nu} \\ \mathcal{O}_{B} &= \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu} \end{aligned}$$

$$\mathcal{O}_{BB} = g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu}$$
$$\mathcal{O}_{GG} = g_s^2 |H|^2 G_{\mu\nu}^A G^{A\mu\nu}$$
$$\mathcal{O}_{HW} = ig(D^\mu H)^\dagger \sigma^a (D^\nu H) W^a_{\mu\nu}$$
$$\mathcal{O}_{HB} = ig'(D^\mu H)^\dagger (D^\nu H) B_{\mu\nu}$$
$$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\,\nu}_{\mu} W^b_{\nu\rho} W^{c\,\rho\mu}$$

$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \tilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	$\mathcal{O}_{y_e} = y_e H ^2 \bar{L}_L H e_R$
$\mathcal{O}_R^u = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_R^d = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^e = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R)$
$\mathcal{O}_L^q = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$		
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L \sigma^a \gamma^{\mu} Q_L)$		
$\mathcal{O}_{LL}^{(3)ql} = \left(\bar{Q}_L \sigma^a \gamma_\mu Q_L\right) \left(\bar{L}_L \sigma^a \gamma^\mu L_L\right)$		$\mathcal{O}_{LL}^{(3)l} = (\bar{L}_L \sigma^a \gamma^\mu L_L) \left(\bar{L}_L \sigma^a \gamma_\mu L_L \right)$

- Sample use of effective Lagrangians at the LHC
 - Higgs physics

- Relevant operators can be classified in three groups:
 - Ops constrained by EWPT

Correlations very important!

Elias-Miró et al '13 Pomarol, Riva '13

- Sample use of effective Lagrangians at the LHC
 - Higgs physics

Elias-Miró et al '13 Pomarol, Riva '13

- Relevant operators can be classified in three groups:
 - Ops constrained by EWPT
 - Ops constrained by triple gauge boson couplings

- Sample use of effective Lagrangians at the LHC
 - Higgs physics

Elias-Miró et al '13 Pomarol, Riva '13

- Relevant operators can be classified in three groups:
 - Ops constrained by EWPT
 - Ops constrained by triple gauge boson couplings
 - Ops only constrained by Higgs physics (strong for loop-mediated processes in the SM)

 $\kappa_{GG} \in [-0.8, 0.8] \times 10^{-3},$

 $\kappa_{Z\gamma} \in [-6, 12] \times 10^{-3}$

 $\kappa_{BB} \in [-1.3, 1.8] \times 10^{-3},$

Interference effects can be relevant Brivio et al '13

- Sample use of effective Lagrangians at the LHC
 - Higgs physics

Elias-Miró et al '13 Pomarol, Riva '13

- Relevant operators can be classified in three groups:
 - Ops constrained by EWPT
 - Ops constrained by triple gauge boson couplings
 - Ops only constrained by Higgs physics (strong for loop-mediated processes in the SM)
- Deviations in $h \to Z f \bar{f}$ are likely to be seen/constrained earlier in TGB coupling measurements

NP searches: model building

- We can instead explore ideas that solve the SM naturalness problem and use them to motivate LHC searches:
- Two main contenders (but many more proposed)
 - Supersymmetry
 - Weakly coupled (can be extrapolated to MP)
 - Many extras "for free" (unification, DM, dynamical EWSB, string completions, ...)
 - Compositeness
 - Already seen in Nature (in other examples)
 - Flavor realization, dynamical EWSB, new phase at TeV

Theorist-experimentalist interaction

- The story usually goes like this ...
 - Theorists have a great idea

Theorist-experimentalist interaction

- The story usually goes like this ...
 - Theorists have a great idea
 - Run to tell their experimental friends

It's a beautiful idea, it has to be right, it solves all our (my) problems!

and the second second

Ok, how do we look for it?

You'll find it immediately. My model predicts this amazing bump here and enormous departures from the background. It's impossible to miss! We'll be both famous!

Theorist-experimentalist interaction

- The story usually goes like this ...
 - Theorists have a great idea
 - Run to tell their experimental friends
 - Experimentalists go back to their experiment and find nothing ... and tell their theory friends

No significant departures observed, we exclude your model

Nah! That's 'cause you were looking only at the simplest possible realization of the model. You are just starting to explore the relevant parameter space of my model

But it is what you told me to look for!

Yep, I know, but what you should be really looking for is ...

Theorist-experimentalist interaction

- The story usually goes like this ...
 - Theorists have a great idea
 - Run to tell their experimental friends

- Experimentalists go back to their experiment and find nothing ... and tell their theory friends
- Theorists refine their predictions to comply with the minimal distance (to discovery) principle
- It is the natural procedure in science:
 - Explore first the most dramatic signatures, if nothing is found try to figure out what more elusive signatures might look like

This company may create sudden tweets and random blogs

SUSY: symmetry between particles with different spin

 $\delta B \sim \epsilon F, \quad \delta F \sim \epsilon B$

Not a new idea!

- SUSY: symmetry between particles with different spin
 - Many profound implications:
 - Spectrum gets doubled

- SUSY: symmetry between particles with different spin
 - Many profound implications:
 - Spectrum gets doubled, except for an extended Higgs sector: we need 2 different Higgs doublets (hint: Higgsinos are chiral fermions)

8 real components: 3 would be Goldstones plus 5 physical scalars

$$\phi_{d} = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_{d}^{0} + ia_{d}^{0} \\ \sqrt{2}\phi_{d}^{-} \end{pmatrix} \qquad h = -s_{\alpha}(\phi_{d}^{0} - v_{d}) + c_{\alpha}(\phi_{u}^{0} - v_{u}) \\ H = c_{\alpha}(\phi_{d}^{0} - v_{d}) + s_{\alpha}(\phi_{u}^{0} - v_{u}) \\ A = s_{\beta}a_{d}^{0} + c_{\beta}a_{u}^{0} \\ H^{\pm} = s_{\beta}\phi_{d}^{\pm} + c_{\beta}\phi_{u}^{\pm}$$

$$\tan \beta = \frac{\langle \phi_u^0 \rangle}{\langle \phi_d^0 \rangle} = \frac{v_u}{v_d} \qquad v_u^2 + v_d^2 = v^2$$

Large tan β : enhanced bottom/tau Yukawa couplings (α also relevant)

- SUSY: symmetry between particles with different spin
 - Many profound implications:
 - Spectrum gets doubled, except for an extended Higgs sector: we need 2 different Higgs doublets (hint: Higgsinos are chiral fermions)
 - Higgs potential strongly constrained by SUSY
 - Quartic coupling fixed by gauge interactions $m_h \leq m_Z$ at tree level (in MSSM)
 - Loop corrections improve the situation but introduce tension in minimal models: very sensitive to stop mass and mixing

- SUSY: symmetry between particles with different spin
 - Many profound implications:
 - Spectrum gets doubled, except for an extended Higgs sector: we need 2 different Higgs doublets (hint: Higgsinos are chiral fermions)
 - Higgs potential strongly constrained by SUSY
 - UV sensitivity of Higgs mass cancels:

- SUSY: symmetry between particles with different spin
 - Many profound implications:
 - Spectrum gets doubled, except for an extended Higgs sector: we need 2 different Higgs doublets (hint: Higgsinos are chiral fermions)
 - Higgs potential strongly constrained by SUSY
 - UV sensitivity of Higgs mass cancels:
 - SUSY partners degenerate:
 - Introduce soft (relevant operators) SUSY breaking terms: lifts mass degeneracy but preserves cancellations in H mass

- SUSY: symmetry between particles with different spin
 - Many profound implications:
 - Spectrum gets doubled, except for an extended Higgs sector: we need 2 different Higgs doublets (hint: Higgsinos are chiral fermions)
 - Higgs potential strongly constrained by SUSY
 - UV sensitivity of Higgs mass cancels:
 - SUSY partners degenerate:

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \widetilde{W} \widetilde{W} + M_1 \tilde{B} \tilde{B} + \text{c.c.} \right) - \left(\tilde{u} \mathbf{a}_{\mathbf{u}} \widetilde{Q} H_u - \tilde{d} \mathbf{a}_{\mathbf{d}} \widetilde{Q} H_d - \tilde{e} \mathbf{a}_{\mathbf{e}} \widetilde{L} H_d + \text{c.c.} \right) - \tilde{Q}^{\dagger} \mathbf{m}_{\mathbf{Q}}^2 \widetilde{Q} - \widetilde{L}^{\dagger} \mathbf{m}_{\mathbf{L}}^2 \widetilde{L} - \tilde{u} \mathbf{m}_{\overline{\mathbf{u}}}^2 \widetilde{u}^{\dagger} - \tilde{d} \mathbf{m}_{\overline{\mathbf{d}}}^2 \tilde{d}^{\dagger} - \tilde{e} \mathbf{m}_{\overline{\mathbf{e}}}^2 \tilde{e}^{\dagger} - m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}).$$

Many new parameters:

- A lot of freedom
- Difficult to parameterize

- SUSY: symmetry between particles with different spin
 - Many profound implications:
 - Spectrum gets doubled, except for an extended Higgs sector: we need 2 different Higgs doublets (hint: Higgsinos are chiral fermions)
 - Higgs potential strongly constrained by SUSY
 - UV sensitivity of Higgs mass cancels:
 - SUSY partners degenerate:
 - R-parity naturally implemented: Discrete symmetry, SM=even, Partners=odd
 - DM candidate, missing energy at colliders
 - New particles produced in pairs

- SUSY: symmetry between particles with different spin
 - Generic features:
 - New light, colored particles (squarks, gluinos)
 - Large cross sections
 - Cascade decays (many particles in the final state) with missing energy
 - Tops commonly among intermediate produced particles (bottoms and leptons in final state)
 - Extended Higgs sector
 - New neutral (CP even and CP odd) Higgses
 - New charged Higgses

- SUSY: symmetry between particles with different spin
 - Generic features ... but how generic?
 - The huge number of parameters makes it difficult to consider (classify) all relevant options. Even worse if we consider non-minimal models.
 - Constrained models: take simplifying assumptions (mSUGRA: 5 parameters)
 - Phenomenological approach: pMSSM
 - Choose your favorite model and region of parameter space
 - Use simplified models

Simplified Models

Alwall, Schuster, Toro '09; Alves et al '12

- Simplified models: what are they (useful for)?
 - Simple models based on a few assumptions
 - Only a small number of particles and parameters involved in the process of interest
 - Useful first characterization of NP
 - Easy to interpret results in different models
 - Already adopted by experimental collaborations
 - But many realistic models are not simple

- If the Higgs we have discovered is the SM Higgs, it would be the first time an elementary scalar has been observed in nature
- Known examples of SSB and/or light scalars involve composite scalars:
 - Superconductivity: electron (Cooper) pairs condense due to their interactions with the phonons in a crystal
 - The pions are composite pNGB of chiral symmetry breaking
- Maybe the Higgs is also a composite state of a new strongly interacting theory?

No starts

- The QCD lesson: in the limit $m_u = m_d = 0$ QCD has an $SU(2)_L \times SU(2)_R$ invariance, broken spontaneously to $SU(2)_{L+R}$
- The pions are the three associated NG bosons
- QED breaks $SU(2)_{L+R}$ explicitly. It weakly gauges a U(1) subgroup making the pions pseudo-NGB (they acquire mass at loop level)

$$m_{\pi^{\pm}}^2 - m_0^2 \approx \frac{3\alpha_{em}}{4\pi} \frac{m_{\rho}^2 m_{a_1}^2}{m_{a_1}^2 - m_{\rho}^2} \log\left(\frac{m_{a_1}^2}{m_{\rho}^2}\right)$$

Using vector-meson dominance and Weinberg sum rules

- A naturally light composite Higgs: Ingredients
 - H as a pNGB: Georgi, Kaplan '80, ...
 - A new strongly coupled sector condenses at a scale f~TeV spontaneously breaking a global symmetry: H is the NGB of the breaking
 - Partial compositeness:

Kaplan '91

- The global symmetry is explicitly broken by a weakly coupled elementary sector that mixes linearly with the strong sector

$$\mathcal{L}_{\text{mix}} = g A_{\mu} J^{\mu} + \left| \lambda_L \bar{q}_L \mathcal{O}_L + \lambda_R \bar{q}_R \mathcal{O}_R + \text{h.c.} \right|$$

 $\psi_{SM} = \cos\theta \ \psi_e + \sin\theta \ \psi_c$ $\psi_{\text{heavy}} = -\sin\theta \ \psi_e + \cos\theta \ \psi_c$

 $\tan \theta = \frac{\lambda f}{M}$ Degree of compositeness

- A naturally light composite Higgs: Ingredients
 - H as a pNGB: Georgi, Kaplan '80, ...
 - A new strongly coupled sector condenses at a scale f~TeV spontaneously breaking a global symmetry: H is the NGB of the breaking
 - Partial compositeness:

Kaplan '91

- The global symmetry is explicitly broken by a weakly coupled elementary sector that mixes linearly with the strong sector
- Flavor violation is proportional to the degree of compositeness (softens flavor constraints although some structure might be needed)

Csaki et al '08-'09; J.S. '08; Keren-Zur et al '13; ...

The revival of composite Higgs models

 Composite Higgs models have received a huge attention only in the last few years

The Minimal composite Higgs model

Kaustubh Agashe, Roberto Contino (Johns Hopkins U.), Alex Pomarol (Barcelona, IFAE). Dec 2004. 27 pp. Published in Nucl.Phys. B719 (2005) 165-187 UAB-FT-567 DOI: 10.1016/j.nuclphysb.2005.04.035 e-Print: hep-ph/0412089 | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service Detailed record - Cited by 534 records 5000

- The revival of composite Higgs models
 - Composite Higgs models have received a huge attention only in the last few years
 - Thanks to the AdS/CFT correspondence it was understood that CHM were duals to weakly coupled (calculable) models with warped extra dimensions
 - Higgs as a pNGB corresponds to gauge-Higgs unification models (H ~ A₅)
 - Partial compositeness is automatically realized
 - Pro: makes models calculable
 - Con: easy to keep prejudices from models with Xdims

- Realistic composite Higgs models
 - Need custodial symmetry Agashe, Contino, Pomarol '05
 - Need to protect $Zb_L\bar{b}_L$ coupling Agashe, Contino, Da Rold, Pomarol '06
- Can be minimal Agashe, Contino, Pomarol '05 $SO(5)/SO(4) \times P_{LR}$ Has 4 NGB transforming as a 4 of SO(4): just like the SM Higgs!
- Or have an extended Higgs sector
 - Singlets: SO(6)/SO(5)

A States

• Doublets: $\frac{SO(7)/G_2}{SO(6)/SO(4) \times SO(2)}$

Gripaios, Pomarol, Riva, Serra '09

Chala '13

Mrazek, Pomarol, Rattazzi, Redi, Serra, Wulzer '11

- General features at the LHC?
 - Higgs physics:
 - Higgs potential is dynamically generated and calculable: the observed Higgs mass has implications on the spectrum (from naturalness arguments)
 - Higgs couplings are modified (by v^2/f^2 terms)
 - Extended structures:
 - new resonances with ~TeV masses (fermions and bosons). Generically small couplings to light SM particles and large couplings to heavy SM particles and other massive resonances
 - New vector-like quarks, some with exotic charges (-4/3, -1/3, 2/3, 5/3, 8/3, ...), also possibly leptons

• How do we build Composite Higgs Models?

- Higgs is the NGB or G/H symmetry breaking pattern: non-linear realization (Callan), Coleman, Wess, Zumino '69
- Sometimes it is easier to use the Goldstone matrix to write directly a G-invariant effective Lagrangian

Explicit example: SO(5)/SO(4)

 $\Sigma_0 = (0,0,0,0,1)^{\mathrm{T}}$ SO(4) preserving vacuum (H singlet)

 $\Sigma = e^{i\sqrt{2}\pi^{\hat{a}}T^{\hat{a}}}\Sigma_0 = (0, 0, 0, \sin(h/f), \cos(h/f))^{T}$ Transforms as a 5 of SO(5)

Explicit breaking through spurions: embed SM fields in full SO(5) multiplets

$$\Psi_L = \begin{bmatrix} \begin{pmatrix} q' \\ q \\ u' \end{bmatrix}, \quad \Psi_R = \begin{bmatrix} \begin{pmatrix} \tilde{q}' \\ \tilde{q} \\ u \end{bmatrix}$$

 A_{μ} adjoint of SO(5)

How do we build Composite Higgs Models?

- Higgs is the NGB or G/H symmetry breaking pattern: non-linear realization (Callan), Coleman, Wess, Zumino '69
- Sometimes it is easier to use the Goldstone matrix to write directly a G-invariant effective Lagrangian
 Explicit example: SO(5)/SO(4)

Most general SO(5) invariant Lagrangian at quadratic level

Many relevant properties can be computed in terms of the form factors (that can in turn be computed in 5D models, large N limit, etc.): Gauge boson masses and couplings, fermion masses and couplings, Higgs potential, ...

How do we build Composite Higgs Models?

Explicit example: SO(5)/SO(4)

$$\mathcal{L} = (P_T)^{\mu\nu} \left\{ \frac{1}{2} \left(\frac{f^2 \sin^2(\langle h \rangle / f)}{4} \right) \left(B_\mu B_\nu + W^3_\mu W^3_\nu - 2W^3_\mu B_\nu \right) \right. \\ \left. + \left(\frac{f^2 \sin^2(\langle h \rangle / f)}{4} \right) W^+_\mu W^-_\nu \right. \\ \left. + \frac{q^2}{2} \left[\Pi'_0(0) W^{a_L}_\mu W^{a_L}_\nu + \left(\Pi'_0(0) + \Pi^X_0'(0) \right) B_\mu B_\nu \right] + \dots \right]$$

 $v = f \sin(\langle h \rangle / f)$

$$\mathcal{L} = \sum_{r=L,R} \bar{t}_r \not q \left[\Pi_0^r + \frac{s_h^2}{2} \Pi_1^r \right] t_r + \frac{s_h c_h}{\sqrt{2}} \left[\bar{t}_L M_1 t_R + \text{h.c.} \right] + \dots$$

$$m_t \approx \frac{s_h c_h}{\sqrt{2}} \frac{M_1(0)}{\sqrt{Z_L Z_R}}$$

$$\begin{split} V(h) &= \frac{9}{2} \int \frac{d^4 Q}{(2\pi)^4} \ln \left(\Pi_0 + \frac{s_h^2}{2} \Pi_1 \right) \\ &- 6 \int \frac{d^4 Q}{(2\pi)^4} \left\{ \ln \left[\Pi_0^L + \frac{s_h^2}{2} \Pi_1^L \right] \\ &+ \ln \left[Q^2 \left(\Pi_0^L + \frac{s_h^2}{2} \Pi_1^L \right) \left(\Pi_0^R + \frac{s_h^2}{2} \Pi_1^R \right) - \frac{s_h^2 c_h^2}{2} M_1^2 \right] \right\} \end{split}$$

- Higgs searches @ LHC and constraints on new physics
- A Higgs boson has been discovered with m ${\sim}125~GeV$

- Higgs searches @ LHC and constraints on new physics
- A Higgs boson has been discovered with m ${\sim}125~GeV$
- 125 GeV is a very special value
 - In the SM

- Higgs searches @ LHC and constraints on new physics
- A Higgs boson has been discovered with m ${\sim}125~GeV$
- 125 GeV is a very special value
 - In the SM
 - And in BSM

Implications from Higgs mass

• Implications of the Higgs mass for SUSY (MSSM)

$$m_h^2 \cong M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left[\frac{1}{2} \tilde{X}_t + t + \frac{1}{16\pi^2} \left(\frac{3}{2} \frac{m_t^2}{v^2} - 32\pi\alpha_3 \right) \left(\tilde{X}_t t + t^2 \right) \right]$$

$$t = \log(M_{SUSY}^2 / m_t^2)$$

$$\tilde{X}_{t} = \frac{2X_{t}^{2}}{M_{SUSY}^{2}} \left(1 - \frac{X_{t}^{2}}{12M_{SUSY}^{2}} \right)$$

Carena et al '95, ...

Very sensitive to the stop mixing parameter Xt

Models that predict a low Xt are strongly constrained

• Implications of the Higgs mass for SUSY (MSSM)

$$m_h^2 \cong M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left[\frac{1}{2} \tilde{X}_t + t + \frac{1}{16\pi^2} \left(\frac{3}{2} \frac{m_t^2}{v^2} - 32\pi\alpha_3 \right) \left(\tilde{X}_t t + t^2 \right) \right]$$

$$t = \log(M_{SUSY}^2 / m_t^2)$$

$$\tilde{X}_{t} = \frac{2X_{t}^{2}}{M_{SUSY}^{2}} \left(1 - \frac{X_{t}^{2}}{12M_{SUSY}^{2}} \right)$$

Carena et al '95, ...

Constraints are significantly relaxed in extensions of the MSSM

- Implications of the Higgs mass for Composite Higgs
 - EWSB triggered by the top (gauge contribution aligned with zero vev)
 - Quartic coupling (therefore mass) typically too large
 - H mass compatible with 125 if top partners are light

$$m_h^2 \approx \frac{6}{\pi^2} \frac{m_t^2}{f^2} \frac{m_4^2 m_1^2}{m_1^2 - m_4^2} \log\left(\frac{m_1}{m_4}\right), \text{ (in } SO(5)/SO(4))$$

Quite generic in Composite Higgs models

Matsedonskyi, Panico, Wulzer '13; Redi, Tesi '12; Marzocca, Serone, Shu '12; Pomarol, Riva '12; Panico et al '13, De Simone et al '13

Implications from Higgs couplings

- Higgs searches @ LHC and constraints on new physics
- Its production cross section times BR are quite compatible with the SM Higgs ones (with large errors)

- Higgs searches @ LHC and constraints on new physics
- Its production cross section times BR are quite compatible with the SM Higgs ones (with large errors)
 - Constraints on new contributions are relatively mild:
 - SUSY:
 - Decoupling limit (mH, mA, mH+ heavy, h is SM-like)
 - Other constraints tend to make stop, bottom contributions to gg->H, ... small
- Higgs searches @ LHC and constraints on new physics
- Its production cross section times BR are quite compatible with the SM Higgs ones (with large errors)
 - Constraints on new contributions are relatively mild:
 - Composite Higgs Models:
 - Higgs couplings modified by v^2/f^2 effects.
 - Current constraints are weaker than EWPT
 - Contribution from top partners in loop-mediated processes tend to cancel due to symmetries

Implications from exotic Higgs searches

- Higgs searches @ LHC and constraints on new physics
- Searches for extra Higgses impose further constraints
 - But again they are not dramatic

 Φ

Implications from direct searches

- Implications of direct searches for SUSY:
 - SUSY has been "non-exotic" for quite some time
 - Huge list of different analyses targeting all imaginable signatures

Short Title of preliminary conference note	Date	√s (TeV)	L (fb ⁻¹)
2 photons + Etmiss [GGM] NEW	01/2014	8	20.3
1 lepton + bb(H) + Etmiss [EW production]	08/2013	8	20.3
Muon + displaced vertex [RPV]	08/2013	8	20.3
Multijets [RPV]	08/2013	8	20.3
2 leptons + jets + Etmiss [incl. squarks & gluinos]	08/2013	8	20.3
0 leptons + mono-jet/c-jets + Etmiss [Stop in charm+LSP]	07/2013	8	20.3
2 leptons + (b)jets + Etmiss [Medium stop, MVA]	07/2013	8	20.3
1-2 leptons + 3-6 jets + Etmiss [Incl. squarks & gluinos, mUED]	06/2013	8	20.3
0-1 leptons + >=3 b-jets + Etmiss [3rd gen. squarks]	06/2013	8	20.1
Long-lived sleptons	06/2013	8	15.9
2 leptons + Etmiss [EW production]	05/2013	8	20.3
0 leptons + 2-6 jets + Etmiss [Incl. squarks & gluinos]	05/2013	8	20.3
2 leptons (+ jets) + Etmiss [Medium stop]	05/2013	8	20.3
1 lepton + 4(1 b-)jets + Etmiss [Medium / heavy stop]	03/2013	8	20.7
3 leptons + Etmiss [EW production]	03/2013	8	20.7
4 leptons + Etmiss [EW production, RPV]	03/2013	8	20.7

- Implications of direct searches for SUSY:
 - SUSY has been "non-exotic" for quite some time
 - Huge list of different analyses targeting all imaginable signatures
 - Difficult to grasp all this information in terms of global impact on specific models

- Implications of direct searches for SUSY:
 - SUSY has been "non-exotic" for quite some time
 - Huge list of different analyses targeting all imaginable signatures
 - Difficult to grasp all this information in terms of global impact on specific models
 - Several options:
 - Choose one model and study all constraints
 - Use a phenomenological/statistical approach
 - Use general arguments based on naturalness and generic features

- Implications of direct searches for SUSY:
 - Choose one model and study all constraints
 - CMSSM: Universal soft terms at the GUT scale
 - Strongly constrained by direct searches but also by Higgs mass, DM and flavor

Buchmueller et al '13

	CMSSM	CMSSM	NUHM
Sparticle	$\mu > 0$	$\mu < 0$	$\mu > 0$
\tilde{g}	1810	(2100) (3200) 3540	1920
\tilde{q}_R	1620	(1900) 6300	1710
\tilde{t}_1	750	(950) 4100	(650) 1120
$\tilde{ au}_1$	340	(400) 4930	380
M_A	690	(1900) 3930	450

• Implications of direct searches for SUSY:

Taken from:

- Use a phenomenological/statistical approach
 - pMSSM: Reduce a bit the number of parameters and scan over them

- CMS data (and ATLAS also) is significantly impacting the pMSSM parameter space, excluding most, but certainly not all, of the high σ models.
- In the case of unexcluded high-σ models, small mass splittings are primarily to blame for lack of sensitivity. ⇒ might gain sensitivity using more refined analyses of current data.

But, there are many low- σ models that can only be explored with more energy and luminosity at the LHC. \Rightarrow both are coming!

J. Gunion, SUSY at the Near Energy Frontier, November 10, 2013 1

- Implications of direct searches for SUSY:
 - Use general arguments based on naturalness
 - What are the most likely features of a natural supersymmetric theory? Evans, Kats, Shih, Strassler '13
 - Large missing ET
 - Tops
 - Large particle multiplicity
 - ... and other things that are much easier to find
 - Not all models of natural SUSY have all three features but very few have none of them
 - Assuming gauginos are within LHC8 reach (~1.4 TeV), Higgsinos are natural (≤400 GeV), what is the impact of LHC searches?

- Implications of direct searches for SUSY:
 - Use general arguments based on naturalness
 - Assuming gauginos are within LHC8 reach (~1.4 TeV), Higgsinos are natural (≤400 GeV), what is the impact of LHC searches? Evans, Kats, Shih, Strassler '13

Vanilla spectrum with tops and missing ET strongly constrained

- Implications of direct searches for SUSY:
 - Use general arguments based on naturalness
 - Assuming gauginos are within LHC8 reach (~1.4 TeV), Higgsinos are natural (≤400 GeV), what is the impact of LHC searches?
 Evans, Kats, Shih, Strassler '13

Vanilla spectrum with tops and missing ET strongly constrained

Reducing missing ET can soften the constraints (only in small corners)

- Implications of direct searches for SUSY:
 - Use general arguments based on naturalness
 - Assuming gauginos are within LHC8 reach (~1.4 TeV), Higgsinos are natural (≤400 GeV), what is the impact of LHC searches?
 Evans, Kats, Shih, Strassler '13

Vanilla spectrum with tops and missing ET strongly constrained

Reducing missing ET can soften the constraints (only in small corners)

Reducing tops and missing ET provides another difficult to explore corner

- Implications of direct searches for SUSY:
 - Use general arguments based on naturalness
 - Assuming gauginos are within LHC8 reach (~1.4 TeV), Higgsinos are natural (≤400 GeV), what is the impact of LHC searches?
 Evans, Kats, Shih, Strassler '13
 - It is not easy to avoid all three features: missing ET, tops and high multiplicities
 - Natural SUSY not excluded but extensively probed by LHC 8
 - High-multiplicity searches (BH motivated) help closing difficult corners of parameter space

- Implications of direct searches for CHM:
 - CHM predict:
 - Light (-ish) vector-like quarks, possibly with exotic charges (top partners) and sizeable couplings to t,b and W, Z
 - Relatively heavy (~few TeV) vector resonances with small couplings to light SM fermions

De Simone, Matsedonskyi, Rattazzi, Wulzer '13

- Implications of direct searches for CHM:
 - New quark searches and impact on CHM
 - Current bounds on top partners consider pair production (but are quite general on decays)

- Implications of direct searches for CHM:
 - New quark searches and impact on CHM
 - Current bounds on top partners consider pair production (but are quite general on decays)
 - Large EW couplings: single production relevant

- Implications of direct searches for CHM:
 - New quark searches and impact on CHM
 - Current bounds on top partners consider pair production (but are quite general on decays)
 - Large EW couplings: single production relevant

- Implications of direct searches for CHM:
 - New quark searches and impact on CHM
 - Current bounds on top partners consider pair production (but are quite general on decays)
 - Large EW couplings: single production relevant
 - Current bounds ~ TeV: natural region non-trivially probed

- Implications of direct searches for CHM:
 - New vector searches and impact on CHM
 - Vector resonances in CHM are not your average Z':
 - Small coupling to light fermions (DY suppressed)
 - Large BR into heavy particles (W, Z, t, Q if open)
 - Several models, not yet adopted by experimental collaborations, beyond the old RS one

Matsedonskyi, Panico, Wulzer '13; Redi, Tesi '12; Marzocca, Serone, Shu '12; Pomarol, Riva '12; Panico et al '13, De Simone et al '13

 EW resonances difficult to find (even more so in unitarization of longitudinal gauge boson scattering), heavy gluon more likely

Contino et al. '10-11 but see also Espriu, Yencho '13

- Implications of direct searches for CHM:
 - Heavy gluon searches at the LHC
 - First benchmark (IR_SM_RS):
 - Same coupling to all SM fermions: narrow dijet resonances
 - Second benchmark (UV_lightSM_RS):
 - Couplings to light SM particles suppressed, couplings to top quite large: not so narrow ttbar resonances
 - Third benchmark (partialcompositeness_toppartners):
 - Decay to top partners open, very large width unless strong coupling not so strong, non-trivial decays (not only to tops), dijets relevant again

- Implications of direct searches for CHM:
 - Heavy gluon searches at the LHC

- Implications of direct searches for CHM:
 - Heavy gluon searches at the LHC

Final Thoughts

- I've tried to argue that naturalness is a good guiding principle
- The lack of experimental evidence of BSM physics forces us to re-consider our assumptions

No significant departures observed, we exclude your model

Nah! That's 'cause you were looking only at the simplest possible realization of the model. You are just starting to explore the relevant parameter space of my model

But it is what you told me to look for!

Yep, I know, but what you should be really looking for is ...

Final Thoughts

- I've tried to argue that naturalness is a good guiding principle
- The lack of experimental evidence of BSM physics forces us to re-consider our assumptions
- Models that survive experimental scrutiny are typically "not so simple" But it is important to realize that good "more

But it is important to realize that good "more contrived" models produce cancellations via new symmetries

Final Thoughts

- I've tried to argue that naturalness is a good guiding principle
- The lack of experimental evidence of BSM physics forces us to re-consider our assumptions
- Models that survive experimental scrutiny are typically "not so simple" But it is important to realize that good "more
- Example:

But it is important to realize that good "more contrived" models produce cancellations via new symmetries

- Light vector-like quarks mixing strongly with first generation
 SM quarks were thought to be experimentally excluded.
- Custodial symmetry can provide the required protection to make them compatible with experiment
 Carena, Pontón, J.S., Wagner '06-'07; Atre, Carena, Han, J.S. '09; Atre et al '11; Atre, Chala, J.S. '13

Conclusions

- We have good arguments to expect new physics at the TeV scale
- The LHC is consistently probing it (and finding nothing so far)
- LHC7/8 is starting to explore the interesting region of parameter space in the simplest/most natural models
- There is still plenty of room for discovery at the LHC13
 - Realistic models can easily be beyond run I reach
 - Realistic models are likely to be somewhat elusive
- If someone asks me in 20 years: "Why did you do BSM?"

Thank you!

CLASS O