Flavour physics (1)

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud 11, 91405 Orsay, France

XLII International Meeting on Fundamental Physics Benasque, 27 January 2014

S. Descotes-Genon (LPT)

Outline

• Why and how flavour is useful

- Basics of flavour physics
- CP-violation
- Neutral-meson mixing
- Effective approaches
- Flavour in the Standard Model
- Hints of NP in flavour data

Flavour physics

Particle physics

Central question of QFT-based particle physics

 $\mathcal{L} = ?$

Particle physics

Central question of QFT-based particle physics

 $\mathcal{L} = ?$

i.e. which degrees of freedom, symmetries, scales ?

SM best answer up to now, but

- neutrino masses
- dark matter
- dark energy
- baryon asymmetry of the universe
- hierarchy problem

 \implies 3 generations playing a particular role in the SM

S. Descotes-Genon (LPT)

Flavour in the SM

$$\mathcal{L}_{SM} = \mathcal{L}_{gauge}(A_a, \Psi_j) + \mathcal{L}_{Higgs}(\phi, A_a, \Psi_j)$$

Gauge part $\mathcal{L}_{gauge}(A_a, \Psi_j)$

- Highly symmetric (gauge symmetry, flavour symmetry)
- Well-tested experimentally (electroweak precision tests)
- Stable with respect to quantum corrections

Higgs part $\mathcal{L}_{Higgs}(\phi, A_a, \Psi_j)$

- Ad hoc potential
- Dynamics not fully tested
- Not stable w.r.t quantum corrections
- Origin of flavour structure of the Standard Model

Fermions in SM

- SM: $SU_C(3) \otimes SU_L(2) \otimes U_Y(1)$
 - Colour (for quarks only)
 - Weak isospin (for left-handed fermions only)
 - Hypercharge (for everybody)

Standard Model is chiral: distinction between left- and right-chiralities

• Helicity: Projection of spin on momentum

but notion which is frame dependent for massive particle

• Chirality: Lorentz-invariant equivalent, identical for m = 0

$$P_R = (1 + \gamma_5)/2$$
 $P_L = (1 - \gamma_5)/2$

 \Longrightarrow Left chirality with weak isospin, right chirality without

SM fermion assignments

Covariant derivative for fermions, involving $W^{1,2,3}$ and *B* gauge bosons $D_{\mu}\psi = (\partial_{\mu} - igW^{a}_{\mu}T^{a} - ig'YB_{\mu})\psi$

Using the physical W^+, W^-, Z^0 weak bosons and A_μ photon

$$egin{aligned} D_{\mu} &= \partial_{\mu} - rac{ig}{\sqrt{2}}(W^+_{\mu}T^+ + W^-_{\mu}T^-) - irac{g^2T^3 - g'^2Y}{\sqrt{g^2 + g'^2}}Z_{\mu} - irac{gg'}{\sqrt{g^2 + g'^2}}(T^3 + Y)A_{\mu} \ & ext{ where } Q = T_3 + Y ext{ and } e = rac{gg'}{\sqrt{g^2 + g'^2}} \end{aligned}$$

$$\begin{array}{ccccccc} & \text{Fields} & I_3 & Y & Q = I_3 + Y \\ E_L & \begin{pmatrix} \nu_e \\ e \end{pmatrix}_L & 1/2 & -1/2 & \begin{pmatrix} 0 \\ -1 \end{pmatrix} \\ e_R & e_R & 0 & -1 & -1 \\ \hline \nu_R & \nu_R & 0 & 0 & 0 \\ \hline Q_L & \begin{pmatrix} u_L \\ d_L \end{pmatrix}_L & 1/2 & 1/6 & \begin{pmatrix} 2/3 \\ -1/3 \end{pmatrix} \\ u_R & u_R & 0 & 2/3 & 2/3 \\ d_R & d_R & 0 & -1/3 & -1/3 \end{array}$$

- W[±] couples only to left-handed fermions in doublets
- ν_R no quantum numbers (needed only to provide masses to neutrinos)

S. Descotes-Genon (LPT)

Electroweak currents

Lagrangian for masless 1st generation $\psi \in \{E_L, e_R, Q_L, u_R, d_R\}$ in terms of mass-eigenstates for bosons

$$\begin{split} \mathcal{L}_{gauge,\psi} &= \sum_{\psi} \bar{\psi} \mathcal{D} \psi = \sum_{\psi} \bar{\psi} \partial \psi + g(W_{\mu}^{+} J_{W^{+}}^{\mu} + W_{\mu}^{-} J_{W^{-}}^{\mu} + Z_{\mu} J_{Z}^{\mu}) + e A_{\mu} J_{em}^{\mu} \\ J_{W^{+}}^{\mu} &= \frac{1}{\sqrt{2}} (\bar{\nu}_{L} \gamma^{\mu} e_{L} + \bar{u}_{L} \gamma^{\mu} d_{L}) \qquad J_{W^{-}}^{\mu} = \frac{1}{\sqrt{2}} (\bar{e}_{L} \gamma^{\mu} \nu_{L} + \bar{d}_{L} \gamma^{\mu} u_{L}) \\ J_{Z}^{\mu} &= \frac{1}{c_{W}} \Biggl\{ \frac{1}{2} \bar{\nu}_{L} \gamma_{\mu} \nu_{L} + \Biggl(s_{W}^{2} - \frac{1}{2} \Biggr) \bar{e}_{L} \gamma_{\mu} e_{L} + s_{W}^{2} \bar{e}_{R} \gamma_{\mu} e_{R} \\ &+ \Biggl(\frac{1}{2} - \frac{2}{3} s_{W}^{2} \Biggr) \bar{u}_{L} \gamma^{\mu} u_{L} - \frac{2}{3} s_{W}^{2} \bar{u}_{R} \gamma^{\mu} u_{R} + \Biggl(\frac{1}{3} s_{W}^{2} - \frac{1}{2} \Biggr) \bar{d}_{L} \gamma^{\mu} d_{L} + \frac{1}{3} s_{W}^{2} \bar{d}_{R} \gamma^{\mu} d_{R} \Biggr\} \\ J_{em}^{\mu} &= -\bar{e} \gamma^{\mu} e + \frac{2}{3} \bar{u} \gamma^{\mu} u - \frac{1}{3} \bar{d} \gamma^{\mu} d \end{split}$$

- $c_W = g/\sqrt{g^2 + g'^2}, s_W = \sqrt{1 c_W^2}$ weak mixing $(W^3_\mu, B_\mu) \leftrightarrow (Z^0_\mu, A_\mu)$ • charged-currents only left-handed $\psi_L = [(1 - \gamma_5)/2]\psi$
- neutral currents both left- and right-handed (and vector for photon)

From BEH to CKM

General Yukawa interaction between Higgs and (3 families of) quarks $\mathcal{L}_{Hiaas.quarks} = \bar{Q}_{I}^{i} Y_{D}^{ik} d_{B}^{k} \phi + \bar{Q}_{I}^{i} Y_{II}^{ik} u_{B}^{k} \phi_{c} + h.c. + \dots$

Vacuum expectation value for Higgs $\langle \phi \rangle \neq$ 0 yields mass matrices

$$\mathcal{L}_{Higgs,quarks} = ar{d}_L^i M_D^{ik} d_R^k + ar{u}_L^i M_U^{ik} u_R^k + \dots$$

Diagonalise the mass matrices to get mass eigenstates ψ'

$$m_q = \frac{y_q \langle \phi \rangle}{\sqrt{2}}$$
 $M_D = \text{diag}(m_d, m_s, m_b)$ $M_U = \text{diag}(m_u, m_c, m_t)$

which are different from weak-interaction eigenstates ψ

$$U = \begin{pmatrix} u \\ c \\ t \end{pmatrix} = V_u \begin{pmatrix} u' \\ c' \\ t' \end{pmatrix} \qquad D = \begin{pmatrix} d \\ s \\ b \end{pmatrix} = V_d \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}$$

 \implies Potential misalignement between (unitary) rotations: $V_u \neq V_d$

S. Descotes-Genon (LPT)

CKM and flavour-changing charged currents

Charged currents in mass eigenstates involve matrix V

$$J^{\mu}_{W} = \bar{u}^{i}_{L} \gamma^{\mu} d^{i}_{L} \rightarrow \bar{u}^{\prime}_{L} V^{\dagger}_{u} \gamma^{\mu} V_{d} d^{\prime}_{L} = \bar{u}^{\prime}_{L} V \gamma^{\mu} d^{\prime}_{L}$$

Flavour-changing charged currents between generations at tree-level

$$\frac{g}{\sqrt{2}} \left[\bar{u}_{Li} \mathbf{V}_{ij} \gamma^{\mu} \mathbf{d}_{Lj} \mathbf{W}^{+}_{\mu} + \bar{\mathbf{d}}_{Lj} \mathbf{V}^{*}_{ij} \gamma^{\mu} u_{Li} \mathbf{W}^{-}_{\mu} \right]$$

unitary Cabibbo-Kobayashi-Maskawa matrix (linked to electroweak symmetry breaking)

In $SM_{m_{\nu}\neq0}$, there is an equivalent mixing matrix for leptons U_{PMNS}

FCNC or flavour-changing neutral currents

Neutral currents remain flavour-diagonal in mass eigenstates

$$\begin{split} \bar{u}_{L}^{i} \gamma^{\mu} u_{L}^{i} &\to \bar{u}_{L}^{\prime} V_{u}^{\dagger} \gamma^{\mu} V_{u} u_{L}^{\prime} = \bar{u}_{L}^{\prime} \gamma^{\mu} u_{L}^{\prime}, \\ \bar{d}_{L}^{i} \gamma^{\mu} d_{L}^{i} &\to \bar{d}_{L}^{\prime} V_{d}^{\dagger} \gamma^{\mu} V_{d} d_{L}^{\prime} = \bar{d}_{L}^{\prime} \gamma^{\mu} d_{L}^{\prime}, \end{split}$$

No flavour-changing neutral currents within or between generations ... but only at tree level ! They can occur in loops

However, SM FCNC heavily suppressed by two mechanisms

- Loop: Higher order in pert. theory (suppr. by powers of g, g')
- GIM: Vanish in degenerate case $m_u = m_c = m_t$ (proportional to $V_{tb}^* V_{ts} + V_{cb}^* V_{cs} + V_{ub}^* V_{us} = 0$)

S. Descotes-Genon (LPT)

CP-violation

CP and CKM

C (Charge conjugation) and P (Parity) combined in *CP*

- $\bar{\psi}_1 \gamma_\mu (1 \gamma_5) \psi_2 \rightarrow \bar{\psi}_2 \gamma_\mu (1 \gamma_5) \psi_1$ $\bar{\psi}_1 \gamma_\mu (1 + \gamma_5) \psi_2 \rightarrow \bar{\psi}_2 \gamma_\mu (1 + \gamma_5) \psi_1$ (at (\vec{x}, t) and $(-\vec{x}, t)$ respectively)
- symmetry of QCD/QED, but symmetry for weak interactions ?

$$\begin{split} & \mathcal{W}_{\mu}^{+}\bar{u}_{i}\mathcal{V}_{ij}\gamma^{\mu}(1-\gamma_{5})d_{j} + \mathcal{W}_{\mu}^{-}\bar{d}_{j}\mathcal{V}_{ij}^{*}\gamma^{\mu}(1-\gamma_{5})u_{i} \\ \rightarrow & \mathcal{W}_{\mu}^{-}\bar{d}_{i}\mathcal{V}_{ij}\gamma^{\mu}(1-\gamma_{5})u_{j} + \mathcal{W}_{\mu}^{+}\bar{u}_{j}\mathcal{V}_{ij}^{*}\gamma^{\mu}(1-\gamma_{5})d_{i} \end{split}$$

Weak interactions are CP-invariant if V is real

For N_g generations, V contains

- $(N_g 1)(N_g 2)/2$ phases
- *N_g*(*N_g* − 1)/2 moduli

Structure of CKM matrix

For two generations, 1 modulus, no phase, no CP violation (Cabbibo)

$$V = \begin{bmatrix} V_{ud} & V_{us} \\ V_{cd} & V_{cs} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

For three generations, 3 moduli and 1 phase, a unique source of CP violation in quark sector (Kobayashi-Maskawa)

$$V = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \simeq \begin{bmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{bmatrix} + O(\lambda^4)$$

where we have exploited the observed hierarchy of matrix elements $(V = 1 + O(\lambda), \text{ close to unity})$ \implies extremely predictive model for CP violation embedded in SM

S. Descotes-Genon (LPT)

Unitarity triangles

Many unitarity relations, e.g., related to 4 neutral mesons (no top)

$$\begin{array}{ll} \bullet \ B_d \ {\rm meson} \ ({\rm bd}): & V_{ud} \ V_{ub}^* + V_{cd} \ V_{cb}^* + V_{td} \ V_{tb}^* = 0 & (\lambda^3, \lambda^3, \lambda^3) \\ \bullet \ B_s \ {\rm meson} \ ({\rm bs}): & V_{us} \ V_{ub}^* + V_{cs} \ V_{cb}^* + V_{ts} \ V_{tb}^* = 0 & (\lambda^4, \lambda^2, \lambda^2) \\ \bullet \ K \ {\rm meson} \ ({\rm sd}): & V_{ud} \ V_{us}^* + V_{cd} \ V_{cs}^* + V_{td} \ V_{ts}^* = 0 & (\lambda, \lambda, \lambda^5) \\ \bullet \ D \ {\rm meson} \ ({\rm cu}): & V_{ud} \ V_{cd}^* + V_{us} \ V_{cs}^* + V_{ub} \ V_{cb}^* = 0 & (\lambda, \lambda, \lambda^5) \\ \end{array}$$

Representation of (ρ, η) through rescaled triangles

In practice, always B_d unitarity triangle (but only 2 parameters out of 4)

A handle on the CKM matrix

Measurements in terms of hadrons, not of quarks !

- $d \rightarrow u$: Nuclear physics (superallowed β decays)
- $s \rightarrow u$: Kaon physics (KLOE, KTeV, NA62)
- $c \rightarrow d, s$: Charm physics (CLEO-c, Babar, Belle, BESIII)
- $b \rightarrow u, c$ and $t \rightarrow d, s$: B physics (Babar, Belle, CDF, DØ, LHCb)
- $t \rightarrow b$: Top physics (CDF/DØ, ATLAS, CMS)

Determine structure of CKM matrix from $|V_{ij}|$ (CP-allowed processes) and/or arg(V_{ij}) (CP-violating processes)

S. Descotes-Genon (LPT)

Long-distance QCD

Take processes conjugate under CP

$$\begin{array}{lcl} b \to u & : & \mathcal{A}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu}) \propto V_{ub} \times F_{B \to \pi} \\ \bar{b} \to \bar{u} & : & \mathcal{A}(B^0 \to \pi^- \ell^+ \nu) \propto V_{ub}^* \times F_{B \to \pi} \end{array}$$

where $F_{B\to\pi}$ form factor defined from $\langle \pi^+ | \bar{u} \gamma_\mu (1 - \gamma_5) b | \bar{B} \rangle$ encoding hadronisation of quarks into hadrons

General feature : flavour processes with

- weak part : odd under CP (phase from CKM)
- strong part : even under CP (phase from strong interaction)
- |V_{ij}| via CP-conserving quantity (|A|²) from rates where hadronic quantities are crucial
- arg V_{ij} via CP-violating quantity (Re($A_1A_2^*$), Im($A_1A_2^*$)) from asymmetries where hadronic quantities may cancel out CP-violation from relative phases between conjugate proc.

S. Descotes-Genon (LPT)

CP violation in decay

CP-conjugate processes $B \to f$ and $\overline{B} \to \overline{f}$ (*B* charged or neutral)

$$A_f = \sum_k A_k e^{i\delta_k} e^{i\phi_k}$$
 $\bar{A}_{\bar{f}} = \sum_k A_k e^{i\delta_k} e^{-i\phi_k}$
CP-even strong phases ϕ_k : *CP*-odd weak phases

$$\left| rac{A_f}{\overline{A}_{\overline{f}}}
ight|
eq 1 \Longrightarrow CP$$
 violation in decay

 δ_k :

CP violation in decay

CP-conjugate processes $B \to f$ and $\overline{B} \to \overline{f}$ (*B* charged or neutral)

$$A_f = \sum_k A_k e^{i\delta_k} e^{i\phi_k} \qquad \bar{A}_{\bar{f}} = \sum_k A_k e^{i\delta_k} e^{-i\phi_k}$$

 δ_k : *CP*-even strong phases

 ϕ_k : *CP*-odd weak phases

$$\left|rac{A_f}{ar{A}_{ar{f}}}
ight|
eq 1 \Longrightarrow CP$$
 violation in decay

Asymmetry of the form $\frac{\Gamma(B \to f) - \Gamma(\bar{B} \to \bar{f})}{\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f})} \propto \sin(\phi_i - \phi_j)\sin(\delta_i - \delta_j)$

- need two different contributions with different strong phases
- strong and weak phases from decay

Observed in *K*-decays (ϵ'), $B^0 \to K^+\pi^-$, $\pi^+\pi^-$, ηK^{*0} ... but weak phases do not only occur in decays

S. Descotes-Genon (LPT)

Neutral-meson mixing

Neutral-meson mixing

 $\begin{array}{l} \mbox{Loops allow } \Delta F = 2 \ \mbox{FCNC} \\ \implies \mbox{neutral-meson mixing possible} \end{array}$

$$\frac{d}{dt} \left(\begin{array}{c} |M(t)\rangle \\ |\bar{M}(t)\rangle \end{array} \right) = \left(M - \frac{i}{2} \Gamma \right) \left(\begin{array}{c} |M(t)\rangle \\ |\bar{M}(t)\rangle \end{array} \right)$$

Quantum-Mech. for $M = K^0, D^0, B^0_d, B^0_s$, with M and Γ hermitian

- Γ from restriction to 2 states
- mixing due to non-diagonal terms $M_{12} i\Gamma_{12}/2$

Neutral-meson mixing

 $\begin{array}{l} \mbox{Loops allow } \Delta F = \mbox{2 FCNC} \\ \Longrightarrow \mbox{neutral-meson mixing possible} \end{array}$

$$\frac{d}{dt} \left(\begin{array}{c} |M(t)\rangle \\ |\bar{M}(t)\rangle \end{array} \right) = \left(M - \frac{i}{2} \Gamma \right) \left(\begin{array}{c} |M(t)\rangle \\ |\bar{M}(t)\rangle \end{array} \right)$$

Quantum-Mech. for $M = K^0, D^0, B^0_d, B^0_s$, with M and Γ hermitian

- Γ from restriction to 2 states
- mixing due to non-diagonal terms $M_{12} i\Gamma_{12}/2$

Diagonalisation: physical $|M_{H,L}\rangle$ of masses $M_{H,L}$, widths $\Gamma_{H,L}$

 $|M_L
angle=
ho|M
angle+q|ar{M}
angle, \qquad |M_H
angle=
ho|M
angle-q|ar{M}
angle \qquad |
ho|^2+|q|^2=1$

In terms of M_{12} , $|\Gamma_{12}|$ and $\phi = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$

- Mass difference $\Delta M = M_H \dot{M}_L = 2|M_{12}|$
- Width difference $\Delta \Gamma_q = \Gamma_L \Gamma_H = 2|\Gamma_{12}|\cos(\phi)$
- Mixing coefficients *p* and *q*

Time evolution

Evolution of mass eigenstates in terms of CP-eigenstates

$$|M(t)
angle=g_+(t)|M
angle+rac{q}{p}g_-(t)|ar{M}
angle\,,\quad |ar{M}(t)
angle=rac{p}{q}g_-(t)|M
angle+g_+(t)|ar{M}
angle$$

with time dependences

$$[g_+(0)=1,g_-(0)=1]$$

$$g_{+}(t) = e^{-iMt}e^{-\Gamma t/2} \left[\cosh\frac{\Delta\Gamma t}{4}\cos\frac{\Delta M t}{2} - i\sinh\frac{\Delta\Gamma t}{4}\sin\frac{\Delta M t}{2}\right]$$

$$g_{-}(t) = e^{-iMt}e^{-\Gamma t/2} \left[-\sinh\frac{\Delta\Gamma t}{4}\cos\frac{\Delta M t}{2} + i\cosh\frac{\Delta\Gamma t}{4}\sin\frac{\Delta M t}{2}\right]$$

with average masses and widths M, Γ , as well as differences $\Delta\Gamma$, ΔM

Four very different mesons

- $K: \Delta m \sim \Delta \Gamma \sim \Gamma: K_L$ (long) and K_S (short) rather than heavy-light
- D: very little D before decay
- *B*: ΔΓ ≃ 0
- $B_s: \Delta m \gg \Gamma$: very rapid oscillations

S. Descotes-Genon (LPT)

Oscillations

B-factories (Babar/Belle)

- Coherent production $\Upsilon(4S) \rightarrow B_d \overline{B}_d$ [idem with B_s at $\Upsilon(5S)$]
- Flavour tagged through one decay, which fixes the flavour of the other *B* and starts the clock for its evolution t = 0
- Low statistics, but very good control of kinematics

Hadronic machines (CDF/DØ/LHCb)

- Incoherent production of b-hadrons from pp collisions
- Possibility of oscillations for both tagging and signal *b*-hadrons (40% B_d, 10% B_s)
- High statistics, but less good control of kinematics

S. Descotes-Genon (LPT)

Time-dependent decay rates

$$\begin{split} \Gamma(M(t) \to f) &= N_f^2 |A_f|^2 e^{-\Gamma t} \Biggl\{ \frac{1 + |\lambda_f|^2}{2} \cosh \frac{\Delta \Gamma t}{2} + \frac{1 - |\lambda_f|^2}{2} \cos(\Delta M t) \\ &- \operatorname{Re} \lambda_f \sinh \frac{\Delta \Gamma t}{2} - \operatorname{Im} \lambda_f \sin(\Delta M t) \Biggr\} \\ \Gamma(\bar{M}(t) \to f) &= N_f^2 |A_f|^2 \left| \frac{p}{q} \right|^2 e^{-\Gamma t} \Biggl\{ \frac{1 + |\lambda_f|^2}{2} \cosh \frac{\Delta \Gamma t}{2} - \frac{1 - |\lambda_f|^2}{2} \cos(\Delta M t) \\ &- \operatorname{Re} \lambda_f \sinh \frac{\Delta \Gamma t}{2} + \operatorname{Im} \lambda_f \sin(\Delta M t) \Biggr\} \end{split}$$

- Decay amplitudes $A_f = A(M \to f), \ \bar{A}_f = A(\bar{M} \to f)$
- Ratio of mixing and decay amplitude parameters

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f}$$

• Similar possibilities with *f* replaced by *CP*-conjugate \overline{f}

CP violation in mixing

Neutral mass eigenstates not necessarily CP-eigenstates $|M_L\rangle = p|M\rangle + q|\bar{M}\rangle \qquad |M_H\rangle = p|M\rangle - q|\bar{M}\rangle$ $\left|\frac{q}{p}\right| \neq 1 \implies CP$ violation in mixing

CP violation in mixing

Neutral mass eigenstates not necessarily CP-eigenstates

$$egin{aligned} |M_L
angle &= p|M
angle + q|ar{M}
angle & |M_H
angle &= p|M
angle - q|ar{M}
angle \ &\left|rac{q}{p}
ight|
eq 1 \Longrightarrow CP ext{ violation in mixing} \end{aligned}$$

- flavour-specific decays ($\bar{A}_f = A_{\bar{f}} = 0$)
- with no CP-violation in decay $(|A_f| = |\bar{A}_{\bar{f}}|)$
- weak phase from mixing only

"Wrong-sign" semileptonic decays $(\ell^- \leftarrow \bar{B}(b\bar{d}) \leftrightarrow B(\bar{b}d) \rightarrow \ell^+)$ $a_{SL} = \frac{\Gamma(\bar{B}^0(t) \rightarrow \ell^+ \nu X) - \Gamma(B^0(t) \rightarrow \ell^- \bar{\nu} X)}{\Gamma(\bar{B}^0(t) \rightarrow \ell^+ \nu X) + \Gamma(B^0(t) \rightarrow \ell^- \bar{\nu} X)} = \frac{|p|^4 - |q|^4}{|p|^4 + |q|^4}$

Seen for *K* meson (ϵ_K),

but tiny asymmetry in SM for $B_{d,s}$ mesons, q/p almost a pure phase

CPV in interf. between decay with & w/o mixing

For decays into *CP*-eigenstate: $M \to f_{CP}$ and $M \to \overline{M} \to f_{CP}$ interfere

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} \neq \pm 1 \implies CP$$
-violation in interference...

$$\frac{\Gamma(\bar{M}(t) \to f) - \Gamma(M(t) \to f)}{\Gamma(\bar{M}(t) \to f) + \Gamma(M(t) \to f)} = -\frac{A_{CP}^{dir}\cos(\Delta M t) + A_{CP}^{mix}\sin(\Delta M t)}{\cosh(\Delta\Gamma t/2) + A_{CP}^{dr}\sinh(\Delta\Gamma t/2)} + O\left(1 - \left|\frac{q}{p}\right|^2\right)$$

$$A_{CP}^{dir} = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \quad A_{CP}^{mix} = -\frac{2\mathrm{Im} \lambda_f}{1 + \lambda_f|^2} \quad A_{CP}^{\Delta\Gamma} = -\frac{2\mathrm{Re} \lambda_f}{1 + \lambda_f|^2} \quad |A_{CP}^{dir}|^2 + |A_{CP}^{mix}|^2 + |A_{CP}^{\Delta\Gamma}|^2 = 1$$

- weak phase from both mixing and decay
- if one weak phase dominates decay amplitudes ["golden modes"]

•
$$|A_f| = |\bar{A}_f|$$
 and $A_{CP}^{dir} = 0$

- λ_f pure weak phase and $A_{CP}^{mix} = \text{Im } \lambda_f$ $B_d \to J/\psi K_S, B_s \to J/\psi \phi$
- if A has comparable amplitudes with different weak phases, interpretation more difficult $B \rightarrow \pi K \dots$

S. Descotes-Genon (LPT)

Two decades of CKM

1995

2004

S. Descotes-Genon (LPT)

The current status of CKM

 $egin{aligned} |V_{ud}|,\,|V_{us}|,\,|V_{cb}|,\,|V_{ub}|_{SL} \ B &
ightarrow au
 &
ightarr$

$$egin{aligned} &A = 0.823^{+0.012}_{-0.033}\ &\Delta = 0.2246^{+0.019}_{-0.0001}\ &ar{
ho} = 0.129^{+0.018}_{-0.009}\ &ar{\eta} = 0.348^{+0.012}_{-0.012}\ &(68\%\ {
m CL}) \end{aligned}$$

S. Descotes-Genon (LPT)

Effective approaches

Quark flavour parameters and SM

Important, unexplained hierarchy among 10 of 19 params of $SM_{m_{\nu}=0}$

- Mass (6 params, a lot of small ratios of scales)
- CP violation (4 params, strong hierarchy between generations)

Quark flavour parameters and SM

Important, unexplained hierarchy among 10 of 19 params of $SM_{m_{\nu}=0}$

- Mass (6 params, a lot of small ratios of scales)
- CP violation (4 params, strong hierarchy between generations) With interesting phenomenological consequences
 - CP asymmetries from a single parameter
 - Quantum sensitivity (via loops) to large range of scales
 - Suppression of Flavour-Changing Neutral Currents

Very significant constraints on any NP extension

Good track record: charm (no $K_L \rightarrow \mu \mu$), 3rd family (ϵ_K), m_c (Δm_K), m_t (Δm_B)

A multi-scale problem

• Tough multi-scale challenge with 3 interactions intertwined

• Several steps to separate/factorise scales BSM \rightarrow SM+1/ Λ (Λ_{EW}/Λ) \rightarrow \mathcal{H}_{eff} (m_b/Λ_{EW}) \rightarrow eff. th. (Λ_{QCD}/m_b)

A multi-scale problem

- Tough multi-scale challenge with 3 interactions intertwined
- Several steps to separate/factorise scales BSM \rightarrow SM+1/ Λ (Λ_{EW}/Λ) $\rightarrow H_{eff}$ (m_b/Λ_{EW}) \rightarrow eff. th. (Λ_{QCD}/m_b)
- Th problem from hadronisation of quarks into hadrons: description/parametrisation in terms of QCD quantities decay constants, form factors, bag parameters...
- Long-distance non-perturbative QCD: source of uncertainties lattice QCD simulations, effective theories...

$\mathcal{H}_{\textit{eff}}$: From Fermi to electroweak

Fermi-like approach : separation between different scales

- Short distances : numerical coefficients
- Long distances : local operator

$\mathcal{H}_{\textit{eff}}:$ From Fermi to electroweak

Fermi-like approach : separation between different scales

- Short distances : numerical coefficients
- Long distances : local operator

Before/below SM, Fermi theory carried info on yesterday's NP (=EW)

- G_F: scale of "new physics"
- O_i: interaction with left-handed fermions, through charged spin 1
- Obviously not all info (gauge structure, Z⁰...), but a good start, especially if you cannot excite the NP degrees of freedom directly

S. Descotes-Genon (LPT)

$\mathcal{H}_{\textit{eff}}$: From heavy quarks to SM (1)

Taking into account one (or more) gluons

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cb}^* V_{ud} [C_1(\mu) \mathbf{Q}_1(\mu) + C_2(\mu) \mathbf{Q}_2(\mu)]$$

$$\begin{aligned} & \mathbf{Q}_{1} = (\bar{b}_{\alpha} c_{\beta})_{V-A} (\bar{u}_{\beta} d_{\alpha})_{V-A} & (\bar{b}c)_{V-A} = \bar{b} \gamma_{\mu} (1 - \gamma_{5}) c \\ & \mathbf{Q}_{2} = (\bar{b}_{\alpha} c_{\alpha})_{V-A} (\bar{u}_{\beta} d_{\beta})_{V-A} \end{aligned}$$

- new colour structures (flipped indices α, β)
- divergences absorbed by renormalisation
- C_1 and C_2 calculable fonctions of μ as perturbative series in α_s
- μ separation scale between short- and long-distance physics

S. Descotes-Genon (LPT)

$\mathcal{H}_{\textit{eff}}$: From heavy quarks to SM (2)

 $A(B \rightarrow H) = \sum_{i} V_{CKM,i} C_i(\mu) \langle Q_i \rangle(\mu)$

- Simplification of the problem, keeping only relevant d.o.f.
- Matching to fundamental theory at a high scale $\mu_0 = O(M_W, m_t)$
- Evolution down to $\mu_b = O(m_b)$ done by renormalisation group \implies resummation of large logs $\alpha_s(\mu_b)^n \log^k(\mu_b^2/\mu_0^2)$ in $C(\mu_b)$

$\mathcal{H}_{\textit{eff}}$: From heavy quarks to SM (2)

 $A(B \rightarrow H) = \sum_{i} V_{CKM,i} C_i(\mu) \langle Q_i \rangle(\mu)$

- Simplification of the problem, keeping only relevant d.o.f.
- Matching to fundamental theory at a high scale $\mu_0 = O(M_W, m_t)$
- Evolution down to $\mu_b = O(m_b)$ done by renormalisation group \implies resummation of large logs $\alpha_s(\mu_b)^n \log^k(\mu_b^2/\mu_0^2)$ in $C(\mu_b)$

$\mathcal{H}_{\textit{eff}}$: From heavy quarks to SM (2)

 $A(B \rightarrow H) = \sum_{i} V_{CKM,i} C_i(\mu) \langle Q_i \rangle(\mu)$

- Simplification of the problem, keeping only relevant d.o.f.
- Matching to fundamental theory at a high scale $\mu_0 = O(M_W, m_t)$
- Evolution down to $\mu_b = O(m_b)$ done by renormalisation group \implies resummation of large logs $\alpha_s(\mu_b)^n \log^k(\mu_b^2/\mu_0^2)$ in $C(\mu_b)$

- Current-curent
 - $(\bar{b}u)_{V-A}(\bar{u}d)_{V-A}$,
 - $(\bar{b}_i u_j)_{V-A} (\bar{u}_j d_i)_{V-A}$

- Current-curent
 - $(\bar{b}u)_{V-A}(\bar{u}d)_{V-A}$,
 - $(\bar{b}_i u_j)_{V-A} (\bar{u}_j d_i)_{V-A}$
- QCD penguins
 - $(\bar{b}d)_{V-A}\sum_{q}(\bar{q}q)_{V\pm A}$,
 - $(\bar{b}_i d_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V\pm A}$

- Current-curent
 - $(\bar{b}u)_{V-A}(\bar{u}d)_{V-A}$,
 - $(\bar{b}_i u_j)_{V-A} (\bar{u}_j d_i)_{V-A}$
- QCD penguins
 - $(\bar{b}d)_{V-A}\sum_{q}(\bar{q}q)_{V\pm A}$,
 - $(\bar{b}_i d_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V\pm A}$
- Electroweak penguins
 - $(\bar{b}d)_{V-A}\sum_{q}e_{q}(\bar{q}q)_{V\pm A}$,
 - $(\bar{b}_i d_j)_{V-A} \sum_q e_q (\bar{q}_j q_i)_{V\pm A}$

- Current-curent
 - $(\bar{b}u)_{V-A}(\bar{u}d)_{V-A}$,
 - $(\bar{b}_i u_j)_{V-A} (\bar{u}_j d_i)_{V-A}$
- QCD penguins
 - $(\bar{b}d)_{V-A}\sum_{q}(\bar{q}q)_{V\pm A}$,
 - $(\bar{b}_i d_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V\pm A}$
- Electroweak penguins
 - $(\bar{b}d)_{V-A}\sum_{q}e_{q}(\bar{q}q)_{V\pm A}$,
 - $(\bar{b}_i d_j)_{V-A} \sum_q e_q (\bar{q}_j q_i)_{V\pm A}$
- Magnetic operators
 - $\frac{e}{8\pi^2}m_b\bar{s}\sigma^{\mu\nu}(1+\gamma_5)bF_{\mu\nu}$,
 - $\frac{g}{8\pi^2}m_b\bar{s}\sigma^{\mu\nu}(1+\gamma_5)bG_{\mu\nu}$

- Current-curent
 - $(\bar{b}u)_{V-A}(\bar{u}d)_{V-A}$,
 - $(b_i u_j)_{V-A} (\bar{u}_j d_i)_{V-A}$
- QCD penguins
 - $(\bar{b}d)_{V-A}\sum_{q}(\bar{q}q)_{V\pm A}$,
 - $(\bar{b}_i d_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V\pm A}$
- Electroweak penguins
 - $(\bar{b}d)_{V-A}\sum_{q}e_{q}(\bar{q}q)_{V\pm A}$,
 - $(\bar{b}_i d_j)_{V-A} \sum_q e_q (\bar{q}_j q_i)_{V\pm A}$
- Magnetic operators
 - $\frac{e}{8\pi^2}m_b\bar{s}\sigma^{\mu\nu}(1+\gamma_5)bF_{\mu\nu}$,
 - $\frac{g}{8\pi^2}m_b\bar{s}\sigma^{\mu\nu}(1+\gamma_5)bG_{\mu\nu}$
- $\Delta B = 2$ operators
 - $(\bar{b}d)_{V-A}(\bar{b}d)_{V-A}$

- Current-curent
 - $(\bar{b}u)_{V-A}(\bar{u}d)_{V-A}$,
 - $(\bar{b}_i u_j)_{V-A} (\bar{u}_j d_i)_{V-A}$
- QCD penguins
 - $(\bar{b}d)_{V-A}\sum_{q}(\bar{q}q)_{V\pm A}$,
 - $(\bar{b}_i d_j)_{V-A} \sum_q (\bar{q}_j q_i)_{V\pm A}$
- Electroweak penguins
 - $(\bar{b}d)_{V-A}\sum_{q}e_{q}(\bar{q}q)_{V\pm A}$,
 - $(\bar{b}_i d_j)_{V-A} \sum_q e_q (\bar{q}_j q_i)_{V\pm A}$
- Magnetic operators
 - $\frac{e}{8\pi^2}m_b\bar{s}\sigma^{\mu\nu}(1+\gamma_5)bF_{\mu\nu}$,
 - $\frac{g}{8\pi^2}m_b\bar{s}\sigma^{\mu\nu}(1+\gamma_5)bG_{\mu\nu}$
- $\Delta B = 2$ operators
 - $(\bar{b}d)_{V-A}(\bar{b}d)_{V-A}$
- Semileptonic operators
 - $(\bar{b}s)_{V-A}(\bar{e}e)_{V/A}$

$\mathcal{H}_{\textit{eff}}\text{:}$ From SM to NP

SM = effective low-energy theory from an underlying, more fundamental and yet unknown, theory

At low energies, below the scale Λ of new particles

$$\mathcal{L}_{SM+1/\Lambda} = \mathcal{L}_{gauge}(A_a, \Psi_j) + \mathcal{L}_{Higgs}(\phi, A_a, \Psi_j) + \sum_{d \ge 5} \frac{c_n}{\Lambda^{d-4}} O_n^{(d)}(\phi, A_a, \Psi_j)$$

$\mathcal{H}_{\textit{eff}}$: From SM to NP

SM = effective low-energy theory from an underlying, more fundamental and yet unknown, theory

At low energies, below the scale Λ of new particles

$$\mathcal{L}_{SM+1/\Lambda} = \mathcal{L}_{gauge}(A_a, \Psi_j) + \mathcal{L}_{Higgs}(\phi, A_a, \Psi_j) + \sum_{d \ge 5} rac{\mathcal{C}_n}{\Lambda^{d-4}} O_n^{(d)}(\phi, A_a, \Psi_j)$$

New operators O_n , suppressed by powers of Λ

- Describe impact of New Physics on "low-energy" physics
- Made of SM fields, compatible with its symmetries,
 e.g., dim. 5 effective neutrino mass term (g^{ij}/Λ)ψⁱ_Lψ^{Tj}_Lφφ^T
- Split high energies c_n and low energies O_n , separated by scale Λ

$\mathcal{H}_{\textit{eff}}$: From SM to NP

SM = effective low-energy theory from an underlying, more fundamental and yet unknown, theory

At low energies, below the scale Λ of new particles

$$\mathcal{L}_{SM+1/\Lambda} = \mathcal{L}_{gauge}(A_a, \Psi_j) + \mathcal{L}_{Higgs}(\phi, A_a, \Psi_j) + \sum_{d \ge 5} rac{\mathcal{C}_n}{\Lambda^{d-4}} O_n^{(d)}(\phi, A_a, \Psi_j)$$

New operators O_n , suppressed by powers of Λ

- Describe impact of New Physics on "low-energy" physics
- Made of SM fields, compatible with its symmetries,
 e.g., dim. 5 effective neutrino mass term (g^{ij}/Λ)ψⁱ_Lψ^{Tj}_Lφφ^T
- Split high energies c_n and low energies O_n , separated by scale Λ
- New d.o.f. and energy scale of NP ?
- Symmetries and structure ?

High- p_T expts Flavour expts

Different processes for different goals

SM expected to be dominant (tree dominated) [semi/leptonic dec.] Metrology of SM SM and NP competing (loop dominated) [rare processes] Constraints on NP SM very small ("forbidden" by SM symmetry) [ultrarare processes] Smoking guns of NP

Separation between the last two categories hinge on theorists' beliefs concerning the size of NP, theoretical accuracy of SM prediction and experimental measurements...

Processes of interest

Examples of these processes will be covered in the next two sessions, from SM and from NP points of view

S. Descotes-Genon (LPT)