## **Neutrino theory & phenomenology**

Michele Maltoni

Instituto de Física Teórica UAM/CSIC

XLII International Meeting on Fundamental Physics Benasque, Spain – January 27th, 2014

I. Neutrinos and the Standard Model

- II. Neutrino oscillations in vacuum
- III. Neutrino oscillations in matter
- IV. Global three-neutrino oscillations

## **Discovery of neutrinos**

- At end of 1800's radioactivity was discovered and three types of particles were identified:
   *α*, *β*, *γ*.
   *β*: an electron coming out of the radioactive nucleus.
- Energy conservation  $\Rightarrow e^-$  should have had a fixed energy

 $(A, Z) \rightarrow (A, Z+1) + e^{-} \Rightarrow E_e = M(A, Z+1) - M(A, Z)$ 

• But in 1914 James Chadwick showed that the electron energy spectrum is continuous:



Atisueu 0 0.2 0.4 0.6 0.8 1.0 1.2 Kinetic energy, MeV

⇒ Do we throw away the energy conservation?

Michele Maltoni <michele.maltoni@csic.es>

## **Discovery of neutrinos**

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate operation to save the "energy conservation principle".



In his letter addressed to the "Liebe Radioaktive Damen und Herren" (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tübingen, he put forward the hypothesis that a new particle exists as "constituent of nuclei", the "neutron"  $\nu$ , able to explain the continuous spectrum of nuclear beta decay:

 $(A,Z) \rightarrow (A,Z+1) + e^- + \nu$ 

- The ν is light (in Pauli's words: "the mass of the ν should be of the same order as the e mass"), neutral and has spin 1/2;
- In order to distinguish them from heavy neutrons, Fermi proposed to name them neutrinos.



## **Discovery of neutrinos**

- Muon neutrinos produced in **pion decay** (E<sub>ν</sub> ~ GeV) were detected at Brookhaven in 1962 [2] through *muon appearance*: v<sub>μ</sub> + n → μ<sup>-</sup> + p & v<sub>μ</sub> + p → μ<sup>+</sup> + n;
   ⇒ Nobel prize: Lederman, Schwartz & Steinberger, 1988
- Tau neutrinos produced in charmed meson decay (E<sub>ν</sub> ~ 100 GeV) were detected by the DONUT experiment at Fermilab in 2000 [3] through *tau appearance*. Tau tracks were distinguished from muon tracks due to the fast *tau decay*, which induced a "kink" in the track after ~ 2 mm.

[1] C. L. Cowan Jr. et al., Science 124 (1956) 103.

- [2] G. Danby et al., Phys. Rev. Lett. 9 (1962) 36.
- [3] K. Kodama et al. [DONUT Collaboration], Phys. Lett. B 504 (2001) 218 [hep-ex/0012035].

#### **Neutrino properties: interactions**

 Already in 1934, Hans Bethe and Rudolf Peierls showed that the cross section between ν and matter is very small:

$$\sigma^{\nu N} \sim 10^{-38} \text{ cm}^2 \; rac{E_{
u}}{\text{GeV}}$$

• Let's consider for example atmospheric  $\nu's$ :

$$\Phi_{\nu}^{\text{ATM}} = 1 \ \nu \text{ per cm}^2 \text{ per second}$$
 and  $\langle E_{\nu} \rangle = 1 \text{ GeV}$ 

• How many interact? In a human body:

$$N_{\text{int}} = \Phi_{\nu} \times \sigma^{\nu N} \times N_{\text{nucleons}}^{\text{human}} \times T_{\text{life}}^{\text{human}} \qquad (M \times T \equiv \text{Exposure})$$

$$N_{\text{nucleons}}^{\text{human}} = \frac{M^{\text{human}} \approx 80 \text{ kg}}{[\text{gr}]} \times N_A = 5 \times 10^{28} \text{ nucleons} \begin{cases} \text{Exposure}_{\text{human}} \\ \approx 6 \text{ Ton } \times \text{ year} \end{cases}$$

$$T_{\text{life}}^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec} \end{cases} \approx 6 \text{ Ton } \times \text{ year}$$

$$N_{\text{int}} = 1 \times (5 \times 10^{28}) \times (2 \times 10^9) \times 10^{-38} \sim 1 \text{ interaction per lifetime}$$

 $\Rightarrow$  Need huge detectors with Exposure  $\sim$  KTon  $\times$  year

#### Neutrino properties: mass

• Fermi proposed a kinematic search of  $v_e$  mass from beta spectra in <sup>3</sup>*H* beta decay:

$$^{3}H \rightarrow ^{3}He + e^{-} + \bar{\nu}_{e}$$

• For "allowed" nuclear transitions, the electron spectrum is given by phase space alone:

$$K(T) \equiv \sqrt{\frac{dN}{dT} \frac{1}{C_{p_e} E_e F(E_e)}} \propto \sqrt{(Q-T) \sqrt{(Q-T)^2 - m_\nu^2}}$$

where  $T = E_e - m_e$ , Q = maximum kinetic energy (for <sup>3</sup>*H* beta decay Q = 18.6 KeV)

•  $m_{\nu} \neq 0 \Rightarrow$  distortion from the straight-line at the end point of the spectrum

$$m_{\nu} = 0 \Rightarrow T_{\max} = Q$$
  
 $m_{\nu} \neq 0 \Rightarrow T_{\max} = Q - m_{\nu}$ 

- At present only a bound (Mainz & Troisk experiments):  $m_{\nu_e}^{\text{eff}} \equiv \sum m_j |U_{ej}|^2 < 2.2 \text{ eV}$  (at 95% CL)
- Katrin proposes to improve present sensitivity to  $m_{\text{eff}}^{\beta} \sim 0.2 \text{ eV}$ .



## Neutrino properties: helicity

• The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.

Using the electron capture reaction: (Eu=Europium, Sm=Samarium)  $e^{-} + {}^{152}Eu \rightarrow \nu + {}^{152}Sm^{*}$  ${}^{152}Sm^{*} \rightarrow {}^{152}Sm + \gamma$ with  $J(^{152}\text{Eu}) = J(^{152}\text{Sm}) = 0$ ,  $J(^{152}\text{Sm}^*) = 1$ .  $L(e^-) = 0$ • Angular momentum conservation  $\Rightarrow \begin{cases} J_z(e^-) = J_z(\nu) + J_z(\mathrm{Sm}^*) \\ = J_z(\nu) + J_z(\gamma) \\ \pm 1/2 = \mp 1/2 \quad \pm 1 \Rightarrow \end{cases} \quad J_z(\nu) = -\frac{1}{2}J_z(\gamma)$ • Nuclei are heavy  $\Rightarrow \vec{p}(^{152}\text{Eu}) \simeq \vec{p}(^{152}\text{Sm}) \simeq \vec{p}(^{152}\text{Sm}^*) = 0$ so momentum conservation  $\Rightarrow \vec{p}(v) = -\vec{p}(\gamma) \Rightarrow v$  helicity  $= \gamma$  helicity Goldhaber et al. found  $\gamma$  had negative helicity  $\Rightarrow | \nu$  has negative helicity

⇒ Thus so far  $\nu$  was a particle with  $m_{\nu} = 0$  and left handed. (because for massless fermions helicity= chirality...)

#### **Neutrinos in the Standard Model**

• The SM is a gauge theory based on the symmetry group

 $S U(3)_C \times S U(2)_L \times U(1)_Y \Rightarrow S U(3)_C \times U(1)_{EM}$ 

• LEP tested this symmetry to 1% precision and the missing particles t,  $v_{\tau}$  were found:

| $(1, 2)_{-1}$                                                                   | $(3, 2)_{1/3}$                                         | $(1, 1)_{-2}$ | $(3, 1)_{4/3}$ | $(3, 1)_{-2/3}$ |
|---------------------------------------------------------------------------------|--------------------------------------------------------|---------------|----------------|-----------------|
| $\left(\begin{array}{c} \mathbf{v}_{e} \\ e \end{array}\right)_{L}$             | $\left(\begin{array}{c} u^i\\ d^i\end{array}\right)_L$ | $e_R$         | $u_R^i$        | $d_R^i$         |
| $\left( \begin{array}{c} \mathbf{v}_{\mu} \\ \mu \end{array} \right)_{L}$       | $\left(\begin{array}{c} c^i\\ s^i\end{array}\right)_L$ | $\mu_R$       | $c_R^i$        | $S_R^i$         |
| $\left(\begin{array}{c} \boldsymbol{\nu}_{\tau} \\ \tau \end{array}\right)_{L}$ | $\left(\begin{array}{c}t^i\\b^i\end{array} ight)_L$    | $	au_R$       | $t_R^i$        | $b_R^i$         |

Notice there is no  $\nu_R$   $\Rightarrow$  Accidental global symmetry:  $B \times L_e \times L_\mu \times L_\tau$ 

• When SM was invented upper bounds on  $m_{\gamma}$ :

 $m_{\nu_e} < 2.2 \text{ eV}$  $({}^3\text{H} \rightarrow {}^3\text{He} + e^- + \bar{\nu}_e)$  $m_{\nu_{\mu}} < 190 \text{ KeV}$  $(\pi \rightarrow \mu + \nu_{\mu})$  $m_{\nu_{\tau}} < 18.2 \text{ MeV}$  $(\tau \rightarrow n\pi + \nu_{\tau}, \text{ with } n > 3)$ 

 $\Rightarrow$  Neutrinos are conjured to be **massless** and **left-handed**.

#### Neutrino masses: Dirac or Majorana?

• How to write a mass term for a fermion field? Two possibilities:

Dirac

$$\mathcal{L}^{\mathsf{D}} = -m\left(\overline{v_R}\,v_L + \overline{v_L}\,v_R\right)$$

 can be implemented in the SM via SSB as for up-type quarks:

 $\mathcal{L}^{\mathsf{D}} = -Y^{\ell} \,\overline{L_L} \,\Phi \,\ell_R - Y^{\nu} \,\overline{L_L} \,\tilde{\Phi} \,\nu_R + \mathsf{h.c.}$ 

• however, it requires **new** field  $v_R \Rightarrow$  SM extension!

Majorana

$$\mathcal{L}^{\mathsf{M}} = -\frac{1}{2}m\left(\overline{v_{L}^{C}}\,v_{L} + \overline{v_{L}}\,v_{L}^{C}\right)$$

- only  $v_L$  used  $\Rightarrow$  no new field required;
- breaks gauge simmetries ⇒ unthinkable for charged particles (Q is conserved);
- can't be written explicitly in the SM ⇒ should be generated *effectively* ⇒ SM extension!
- both possibilities are phenomenologically viable  $\Rightarrow$  most general case is to use <u>both</u>:

$$\mathcal{L} = -Y^{\ell} \overline{L_L} \Phi \ell_R - Y^{\nu} \overline{L_L} \tilde{\Phi} \nu_R - \frac{1}{2} M \overline{\nu_R^C} \nu_R + \text{h.c.}$$

•  $v_R$  is a singlet under SM symmetries  $\Rightarrow$  can have an explicit Majorana mass.

#### Effects of neutrino masses: oscillations

- If neutrinos have mass, a weak eigenstate  $|\nu_{\alpha}\rangle$  produced in  $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$  is a linear combination of the mass eigenstates  $(|v_i\rangle)$ :  $|v_{\alpha}\rangle = \sum_{i=1} U_{\alpha i} |v_i\rangle$ ;
- After a distance *L* (or time *t*) it evolves  $|v(t)\rangle = \sum_{i=1}^{n} U_{\alpha i} e^{-iE_{i}t} |v_{i}\rangle$ ; it can be detected with flavor  $\beta$  with probability  $P_{\alpha\beta}^{i=1} = |\langle v_{\beta} | v(t) \rangle|^{2}$ :

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}\left[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}\right] \sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i}^{n} \operatorname{Im}\left[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}\right] \sin\left(\Delta_{ij}\right),$$
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{\operatorname{eV}^{2}} \frac{L/E}{\operatorname{Km/GeV}}$$

- $P_{\alpha\beta}$  depends on *Theoretical* Parameters
  - $\Delta m_{ij}^2 = m_i^2 m_j^2$  The mass differences •  $U_{\alpha i}$  The mixing angles
- and on Two *Experimental* Parameters:
  - E The neutrino energy
  - Distance  $\gamma$  source to detector
- no information on mass scale nor Dirac/Majorana nature.

## Two-neutrino oscillations in vacuum

 $i\frac{d\vec{v}}{dt} = \mathbf{H}\,\vec{v}; \qquad \mathbf{H} = \mathbf{U}\cdot\mathbf{H}_0^d\cdot\mathbf{U}^{\dagger};$ 

• Equation of motion (2 parameters):

$$\mathbf{O} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \qquad \mathbf{H}_0^d = \frac{1}{2\mathbf{E}_{\mathbf{v}}} \begin{pmatrix} -\Delta m^2 & 0 \\ 0 & \Delta m^2 \end{pmatrix}, \qquad \vec{\mathbf{v}} = \begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_X \end{pmatrix};$$

• 
$$P_{\text{osc}} = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L}{E_v}\right), P_{\alpha\alpha} = 1 - P_{\text{osc}};$$

• In real experiments v's are not monochromatic:

$$\langle \boldsymbol{P}_{\alpha\beta} \rangle = \frac{1}{N} \int \frac{d\Phi}{dE_{\nu}} \,\sigma_{CC}(E_{\nu}) \,\epsilon(E_{\nu}) \,\boldsymbol{P}_{\alpha\beta}(E_{\nu}) \,dE_{\nu}$$

- Maximal sensitivity for  $\Delta m^2 \sim E_{\nu}/L$ ;
- $\Delta m^2 \ll E_{\nu}/L \Rightarrow$  No time to oscillate  $\Rightarrow \langle P_{osc} \rangle \simeq 0$ ;
- $\Delta m^2 \gg E_{\nu}/L \Rightarrow \text{Averaged osc.} \Rightarrow \langle P_{\text{osc}} \rangle \simeq \frac{1}{2} \sin^2(2\theta).$





## **Atmospheric neutrinos**

• Atmospheric neutrinos are produced by the interaction of *cosmic rays* (*p*, He, ...) with the Earth's atmosphere:

1 
$$A_{cr} + A_{air} \rightarrow \pi^{\pm}, K^{\pm}, K^{0}, \dots$$
  
2  $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu},$   
3  $\mu^{\pm} \rightarrow e^{\pm} + \nu_{e} + \nu_{\mu};$ 

- at the detector, some v interacts and produces a charged lepton, which is observed;
- $\nu_{\mu}$  and  $\nu_{e}$  fluxes have large ( $\approx 20\%$ ) uncertainties;



• however, the  $v_{\mu}/v_{e}$  ratio is predicted with quite good accuracy ( $\approx 5\%$ ).

#### **Atmospheric neutrinos: experimental status**

- historically: { no deficit in iron calorimeters; deficit in water Cerenkov;
- possibly a mistake in water Cerenkov?
- ambiguity resolved by Soudan2 and MACRO;
- present data (SK): agreement in  $v_e$ , deficit in  $v_u$ ;
- SK deficit in  $v_{\mu}$ :  $\begin{cases} -\text{ grows with } L; \\ -\text{ decreases with } E_{\nu}; \end{cases}$
- deficit cannot be explained by uncertainties;
- solution:  $v_{\mu} \rightarrow v_{\tau}$  two-neutrino oscillations.





# Atmospheric v oscillations: parameter estimate

- Data:  $\begin{cases} \nu_e: \text{ good agreement with SM;} \\ \nu_{\mu}: \text{ visible deficit at low energy;} \end{cases}$
- $\Rightarrow$  oscillations in the  $\nu_{\mu} \rightarrow \nu_{\tau}$  channel.
  - From total contained event rates:



• From Angular Distribution:



• For  $E \sim 1$  GeV: deficit at  $L \sim 10^2 \div 10^4$  Km:  $\frac{\Delta m_{\rm atm}^2 [{\rm eV}^2] L[{\rm km}]}{2E_{\nu} [{\rm GeV}]} \sim 1$ 

 $\Rightarrow \Delta m_{\rm atm}^2 \sim 10^{-4} \div 10^{-2} \ {\rm eV}^2.$ 

#### Atmospheric neutrinos: where we are



Michele Maltoni <michele.maltoni@csic.es>

#### IMFP 2014, 27/01/2014

## Accelerator neutrino experiments

- $p + \text{target} \rightarrow \text{stuff} + \pi^{\pm}$ , then  $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$  (decay  $\mu^{\pm} \rightarrow e^{\pm} + \nu_{e} + \nu_{\mu}$  not exploited);
- detection: focus on  $v_{\mu}$  disappearance and  $v_e$  appearance. For the former:

| Exper | Length | Energy  | No-osc                                                                       | Observed                                                                     | Detector                             |
|-------|--------|---------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
| K2K   | 250 km | 1 GeV   | 88 (v <sub>µ</sub> )                                                         | 56 (v <sub>µ</sub> )                                                         | single-ring $\mu$ -like events in SK |
| MINOS | 735 km | 3 GeV   | $\begin{array}{c} 3564 \ (\nu_{\mu}) \\ 464 \ (\bar{\nu}_{\mu}) \end{array}$ | $\begin{array}{c} 2894 \ (\nu_{\mu}) \\ 357 \ (\bar{\nu}_{\mu}) \end{array}$ | dedicated far detector               |
| T2K   | 295 km | 0.6 GeV | 196 (v <sub>µ</sub> )                                                        | 58 (v <sub>µ</sub> )                                                         | single-ring $\mu$ -like events in SK |

• Result: various experiments observed a clear **energy-dependent**  $v_{\mu}$  deficit.



Michele Maltoni <michele.maltoni@csic.es>

#### IMFP 2014, 27/01/2014

Joint interpretation of atmospheric and accelerator ( $\nu_{\mu}$ ) data

- Hypothesis:  $v_{\mu} \rightarrow v_{\tau}$  mass-induced oscillations;
- CPT conservation  $\Rightarrow$  same behavior of v and  $\bar{v}$  in atmospheric and accelerator data;
- model perfectly explains all the data with only two parameters: ( $\Delta m_{\rm atm}^2$ ,  $\theta_{\rm atm}$ ).



#### **Reactor neutrino experiments**

- Electron antineutrinos  $(\bar{\nu}_e)$  produced by nuclear fission in reactor's core;
- experimental setup: search for  $\bar{\nu}_e$  disappearance,  $\langle L \rangle \approx 0.1 \rightarrow 1$  km;
- early 2012: positive signal from DOUBLE-CHOOZ [4], DAYA-BAY [5], RENO [6];
- present status: oscillations established @  $9\sigma$  from the combination of all the data.



[4] M. Ishitsuka [DOUBLE-CHOOZ], talk presented at Neutrino 2012, Kyoto, Japan, June 3–9, 2012.

- [5] F.P. An *et al.* [DAYA-BAY], arXiv:1310.6732, submitted to Phys. Rev. Lett.
- [6] S.H. Seo [RENO], talk presented at Neutrino Telescopes 2013, Venice, Italy, March 11–15, 2013.

#### II. Neutrino oscillations in vacuum



- New oscillation channel:  $v_e \rightarrow v_e \Rightarrow$  same  $\Delta m_{\text{atm}}^2$  as ATM, but different angle  $\theta_{\text{rea}}$ ;
- <u>sizable deficit</u> at the **far** detector  $\Rightarrow$  oscillations  $\Rightarrow$  **lower** bound on  $\theta_{rea}$  and  $\Delta m_{atm}^2$ ;
- <u>smaller deficit</u> at the **near** detector  $\Rightarrow$  not-toomuch oscillations  $\Rightarrow$  **upper** bound on  $\Delta m_{\text{atm}}^2$ .



[5] F.P. An *et al.* [DAYA-BAY], arXiv:1310.6732.
[6] S.H. Seo [RENO], talk presented at NeuTel 2013.
[7] J. Kameda [T2K], talk presented at TAUP 2013.



#### Michele Maltoni <michele.maltoni@csic.es>

#### IMFP 2014, 27/01/2014

#### **Two-neutrino oscillations in matter**

- If  $\nu$  cross matter regions (Sun, Earth...) it interacts *coherently*
- But different flavors have different interactions:



• To include this effect: potential in the evolution equation

$$i\frac{d}{dt}\begin{pmatrix} \mathbf{v}_e\\ \mathbf{v}_X \end{pmatrix} = \begin{bmatrix} \Delta m^2 \\ 4E_v \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} \pm \begin{pmatrix} V_e & 0 \\ 0 & V_X \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} \mathbf{v}_e\\ \mathbf{v}_X \end{pmatrix},$$
$$V_e = \sqrt{2} G_F \left( N_e - \frac{1}{2} N_n \right), \qquad V_\mu = V_\tau = \sqrt{2} G_F \left( -\frac{1}{2} N_n \right), \qquad V_s = 0,$$

 $N_{e(n)}$  = electron (neutron) density,

sign = + (-) for neutrinos (antineutrinos).

 $\Rightarrow$  Modification of mixing angle and oscillation wavelength.

#### Matter effects: effective mass and mixing

• For neutrinos (up to an irrelevant multiple of the identity matrix):

$$\mathbf{H} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \cdot \begin{pmatrix} -\Delta & 0 \\ 0 & \Delta \end{pmatrix} \cdot \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} + \begin{pmatrix} A & 0 \\ 0 & -A \end{pmatrix}, \quad \Delta \equiv \frac{\Delta m^2}{4E_v}, \quad A = \frac{V_e - V_X}{2};$$

- note that the hamiltonian H(x) depends on the position along the neutrino trajectory;
- in general, for  $x_1 \neq x_2$  we have  $[\mathbf{H}(x_1), \mathbf{H}(x_2)] \neq 0$ ;
- however, for any given x we can diagonalyze H(x):

$$\mathbf{H} = \begin{pmatrix} \cos \theta_m(x) & \sin \theta_m(x) \\ -\sin \theta_m(x) & \cos \theta_m(x) \end{pmatrix} \cdot \begin{pmatrix} -\Delta_m(x) & \mathbf{0} \\ \mathbf{0} & \Delta_m(x) \end{pmatrix} \cdot \begin{pmatrix} \cos \theta_m & -\sin \theta_m(x) \\ \sin \theta_m(x) & \cos \theta_m(x) \end{pmatrix}$$

and comparing with the previous expression:

$$\Delta_m \cos(2\theta_m) = \Delta \cos(2\theta) - A \\ \Delta_m \sin(2\theta_m) = \Delta \sin(2\theta) \qquad \Rightarrow \qquad \begin{cases} \Delta_m = \sqrt{[\Delta \cos(2\theta) - A]^2 + [\Delta \sin(2\theta)]^2} \\ \tan(2\theta_m) = \frac{\Delta \sin(2\theta)}{\Delta \cos(2\theta) - A} \end{cases}$$

• for antineutrinos, just replace  $A \rightarrow -A$ .

Matter effects: level crossing and resonant enhancement

• From the previous transparency:

$$\Delta_m \cos(2\theta_m) = \Delta \cos(2\theta) - A \\ \Delta_m \sin(2\theta_m) = \Delta \sin(2\theta) \end{cases} \Rightarrow \tan(2\theta_m) = \frac{\Delta \sin(2\theta)}{\Delta \cos(2\theta) - A};$$

- choosing  $\Delta_m$  with the same sign as  $\Delta$ , we see that:
  - $-\cos(2\theta_m)$  and  $\cos(2\theta)$  have  $\frac{\text{the same}}{\text{opposite}}$  sign if  $\Delta \cos(2\theta) \stackrel{>}{<} A$ ;
  - $-\theta_m$  is maximal (45°) for  $\Delta \cos(2\theta) = A$ , even if  $\theta$  is small;
  - the value  $A_R = \Delta \cos(2\theta)$  is called *resonant density*.
- for constant matter density, we can define the oscillation lenght in matter as:

$$L_m^{
m osc} = L_0^{
m osc} \frac{\Delta}{\Delta_m}$$
 with  $L_0^{
m osc} = \frac{\pi}{\Delta};$ 

• no level crossing occur if  $\Delta \cos(2\theta)$  and A have opposite sign.







#### Matter effects: the adiabaticity condition

• The evolution equation can be rewritten in the basis of the *instantaneous mass eigen-states in matter*:

$$i\frac{d}{dx}\begin{pmatrix}\nu_1^m\\\nu_2^m\end{pmatrix} = \begin{pmatrix}-\Delta_m(x) & -i\dot{\theta}_m(x)\\i\dot{\theta}_m(x) & \Delta_m(x)\end{pmatrix}\cdot\begin{pmatrix}\nu_1^m\\\nu_2^m\end{pmatrix};$$

- note that, in general, the two mass eigenstates v<sub>1</sub><sup>m</sup> and v<sub>2</sub><sup>m</sup> mix in the evolution, therefore they are NOT energy eigenstates;
- ⇒ the evolution is called *adiabatic* when the non-diagonal term  $i\dot{\theta}_m(x)$  can be neglected, so that the MASS eigenstates are also ENERGY eigenstates;
  - from the definition of  $\theta_m$  we can derive the *adiabaticity condition*:

$$\dot{\theta}_m = \frac{\Delta \sin^2(2\theta)}{2\Delta_m} \dot{A} \implies \Delta_m(x) \gg \frac{\Delta \sin(2\theta) A}{2\Delta_m(x)^2} \left| \frac{\dot{A}}{A} \right|;$$

• the strongest condition is realized when  $\Delta_m(x)$  is minimum, *i.e.*, at the resonance.

Defining: 
$$Q \equiv \frac{\Delta \sin^2(2\theta)}{h_R \cos(2\theta)}$$
 with  $h_R \equiv \left|\frac{\dot{A}}{A}\right|_R \Rightarrow$  adiabaticity condition:  $Q \gg 1$ .

#### Matter effects: the adiabatic regime

• Survival amplitude of  $v_e$  produced in matter at  $x_0$  and exiting matter at  $x_1$ :

 $A_{ee} = \sum_{i,j,m,n} \left\langle v_e(x_1) \,|\, v_j(x_1) \right\rangle \left\langle v_j(x_1) \,|\, v_n(x_R) \right\rangle \left\langle v_n(x_R) \,|\, v_m(x_R) \right\rangle \left\langle v_m(x_R) \,|\, v_i(x_0) \right\rangle \left\langle v_i(x_0) \,|\, v_e(x_0) \right\rangle$ 

where  $x_R$  is the position at which the resonance occurs.

- We have  $\langle v_e(x_1) | v_1(x_1) \rangle = \cos \theta$  and  $\langle v_e(x_1) | v_2(x_1) \rangle = \sin \theta$ ;
- analogously,  $\langle v_1(x_0) | v_e(x_0) \rangle = \cos \theta_m$  and  $\langle v_2(x_0) | v_e(x_0) \rangle = \sin \theta_m$ ;
- assuming adiabaticity:  $\langle v_m(x_R) | v_i(x_0) \rangle = \delta_{im} e^{i\phi_i}$  and  $\langle v_j(x_1) | v_n(x_R) \rangle = \delta_{jn} e^{i\varphi_j}$ ;
- also, in the adiabatic case  $\dot{\theta}_m(x_R)$  is negligible  $\Rightarrow \langle v_n(x_R) | v_m(x_R) \rangle = \delta_{mn}$  and:

$$P_{ee} = \cos^2 \theta_m \cos^2 \theta + \sin^2 \theta_m \sin^2 \theta + \frac{1}{2} \sin(2\theta_m) \sin(2\theta) \cos(2\delta)$$
  
with  $\delta = \int_{x_0}^{x_1} \Delta_m(x) dx = \int_{x_0}^{x_1} \sqrt{[\Delta \cos(2\theta) - A(x)]^2 + [\Delta \sin(2\theta)]^2} dx$   
• if  $\delta \gg 1 \Rightarrow \cos(2\delta)$  is averaged  $\Rightarrow P_{ee} = \frac{1}{2} [1 + \cos(2\theta_m) \cos(2\theta)].$ 

#### **III. Neutrino oscillations in matter**

## Solar neutrinos

- Neutrinos are by *nuclear reactions* in the core of the Sun;
- 2 mechanisms: pp chain and CNO cycle;
- both give  $4p \rightarrow^4 \text{He} + 2e^+ + 2v_e + \gamma$ .





## The solar neutrino problem

- Nuclear reactions (**pp-chain** & CNO-cycle) produce *electron neutrinos* of various energies;
- during the last 40 years, a number of underground experiments has measured their flux in different energy windows;
- it is found that ALL the experiments observe a deficit of about 30 60%;
- the deficit is NOT the same for all the experiments, and shows a clear energy dependence;
- it is **not possible** to reconcile the data with the Standard Solar Model (SSM) by simply readjusting the parameters of the model;
- the deficit is maximum for CC (v<sub>e</sub>), reduced for ES (v<sub>e</sub> + ξv<sub>μ/τ</sub>), and absent for NC (v<sub>e</sub> + v<sub>μ/τ</sub>).



#### IMFP 2014, 27/01/2014

#### **Solar Neutrinos: Flavor Conversion Probabilities**

| Experiment | $E_{th}$ (MeV)    | Туре | Detection                             | R <sub>th</sub>                                                                                     |
|------------|-------------------|------|---------------------------------------|-----------------------------------------------------------------------------------------------------|
| Gallium    | $E_{\nu} > 0.233$ | CC   | $^{71}$ Ga( $\nu, e^{-}$ ) $^{71}$ Ge | $0.54 \langle P_{ee} \rangle_L + 0.36 \langle P_{ee} \rangle_I + 0.10 f_B \langle P_{ee} \rangle_H$ |
| Homestake  | $E_{\nu} > 0.814$ | CC   | $^{37}$ Cl( $\nu, e^{-}$ ) $^{37}$ Ar | $0.24 \langle P_{ee} \rangle_I + 0.76 f_B \langle P_{ee} \rangle_H$                                 |
| Super-K    | $E_{e} > 5$       | ES   | $v_x e^- \rightarrow v_x e^-$         | $f_B \left[ \langle P_{ee} \rangle_H + 0.15 \left( 1 - \langle P_{ee} \rangle_H \right) \right]$    |
| SNO-CC     | $T_{e} > 5$       | CC   | $v_e d \rightarrow ppe^-$             | $f_B \langle P_{ee} \rangle_H$                                                                      |
| SNO-NC     | $T_{\gamma} > 5$  | NC   | $v_x d \to v_x d$                     | $f_B$                                                                                               |
| SNO-ES     | $T_{e} > 5$       | ES   | $v_x e^- \rightarrow v_x e^-$         | $f_B \left[ \langle P_{ee} \rangle_H + 0.15 \left( 1 - \langle P_{ee} \rangle_H \right) \right]$    |

Oscillation channel:

• data: NC  $\rightarrow$   $f_B$  and CC, ES  $\rightarrow \langle P_{ee} \rangle_L, \langle P_{ee} \rangle_I, \langle P_{ee} \rangle_L;$ 

• the  $v_e$  survival probability:

 $\begin{cases} P_{ee} > 1/2 \text{ at low } E_{\nu}; \\ P_{ee} < 1/2 \text{ at high } E_{\nu}. \end{cases}$ 



## **Propagation in the Sun: the MSW effect**

• For  $R < 0.9R_{\odot}$  the solar matter density can be approximated by an exponential:

$$N_e(r) = N_e(0) \exp\left(-\frac{r}{r_0}\right), \qquad r_0 = \frac{R_\odot}{10.54} = 6.6 \times 10^7 \text{ m} = 3.3 \times 10^{-14} \text{ eV}^{-1};$$

- $P_{ee}^{\odot}$  depends on the relative size of  $\Delta \cos(2\theta)$  versus  $A_{\text{prod}} = \sqrt{2}G_F N_e(x_{\text{prod}})/2$ :
- $-\Delta \cos(2\theta) \gg A_{prod}$ : matter effects negligible, propagation occurs as in vacuum:

$$P_{ee}^{\odot} = 1 - \frac{1}{2}\sin^2(2\theta) > \frac{1}{2};$$

 $- \Delta \cos(2\theta) ≥ A_{prod}$ : no level crossing. The adiabatic approximation is valid:

$$P_{ee}^{\odot} = \frac{1}{2} \left[ 1 + \cos(2\theta_m) \cos(2\theta) \right] > \frac{1}{2} ;$$

-  $\Delta \cos(2\theta) < A_{\text{prod}}$  and  $Q \gg 1$ : level crossing occurs. Adiabatic approximation valid:

$$P_{ee}^{\odot} = \frac{1}{2} \left[ 1 + \cos(2\theta_m)\cos(2\theta) \right] \left| < \frac{1}{2} \right|;$$

where the last disequality is due to the fact that  $\cos(2\theta_m)$  and  $\cos(2\theta)$  have now opposite sign. This is known as MSW effect.

-  $\Delta \cos(2\theta) < A_{\text{prod}}$  and  $Q \leq 1$ : the adiabatic approximation is no longer valid.

### Manifestation of the MSW effect in the Sun

• Full numerical calculations:  $P_{ee}^{\odot} < 1/2$  is possible  $\Rightarrow$  MSW effect is realized.



[8] M.C. Gonzalez-Garcia, Y. Nir, Rev. Mod. Phys. 75 (2003) 345 [hep-ph/0202058].

#### Michele Maltoni <michele.maltoni@csic.es>

#### Transition between vacuum and MSW regime in solar data

• Evolution: 
$$i\frac{d\vec{v}}{dt} = \begin{bmatrix} \Delta m_{sol}^2 \begin{pmatrix} -\cos 2\theta_{sol} & \sin 2\theta_{sol} \\ \sin 2\theta_{sol} & \cos 2\theta_{sol} \end{pmatrix} \pm \sqrt{2}G_F N_e \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \vec{v}, \quad \vec{v} = \begin{pmatrix} v_e \\ v_a \end{pmatrix};$$
  
• limits:  $P_{ee} \approx 1 - \frac{1}{2}\sin^2 2\theta_{sol}$  for low-E (Cl, Ga);  $P_{ee} \approx \sin^2 \theta_{sol}$  for high-E (SK, SNO);

- solar region determined by high-E data, low-E contribution marginal;
- SNO-NC measurement confirms the SSM prediction of the <sup>8</sup>B flux.



## The KamLAND reactor experiment

- Nuclear fission reactions in nuclear power plants produce *elec*tron anti-neutrinos;
- neutrino flux from many plants in Japan measured by Kam-LAND (average baseline:  $\approx 180$  km);
- an energy-dependent deficit of  $\bar{\nu}_e$  is observed.
- solution: v<sub>e</sub> → v<sub>active</sub> conversion due to non-zero neutrino masses and flavor mixing;
- CPT conservation ⇒ physics of solar (v) and KamLAND (v
   neutrino conversion must be the same;
- only  $P_{ee}$  measured  $\Rightarrow$  same relevant parameters as solar experiments:  $\theta_{sol}$  and  $\Delta m_{sol}^2$ ;
- neutrino oscillation hypothesis provides perfect agreement between solar and KamLAND data.

[9] A. Gando et al. [KamLAND collaboration], arXiv:1303.4667 [hep-ex].



#### IMFP 2014, 27/01/2014

 $\tan^2 \theta_{12}$ 

#### Three neutrino oscillations

• Equation of motion: 6 parameters (including CP violating effects):

$$i\frac{d\vec{v}}{dt} = H \vec{v}; \qquad H = U_{\text{vac}} \cdot D_{\text{vac}} \cdot U_{\text{vac}}^{\dagger} \pm V_{\text{mat}};$$

$$U_{\text{vac}} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta_{\text{cP}}} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta_{\text{cP}}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \underbrace{\begin{smallmatrix} i\eta_1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix};$$

$$D_{\text{vac}} = \frac{1}{2E_v} \Big[ \operatorname{diag}\left(0, \Delta m_{21}^2, \Delta m_{31}^2\right) + \underbrace{\check{v}}_{\text{vac}} \Big]; \qquad V_{\text{mat}} = \sqrt{2}G_F N_e \operatorname{diag}\left(1, 0, 0\right).$$

#### **Connection with two-neutrino oscillations**

- **Solar** parameters  $\Delta m_{sol}^2$  and  $\theta_{sol}$  are identified with  $\Delta m_{21}^2$  and  $\theta_{12}$ ;
- atmospheric parameters  $\Delta m_{\rm atm}^2$  and  $\theta_{\rm atm}$  are identified with  $\Delta m_{31}^2$  and  $\theta_{23}$ ;
- reactor angle  $\theta_{rea}$  involved in reactor experiments corresponds to  $\theta_{13}$ ;
- **CP-violating** phase  $\delta_{CP}$  is a genuine  $3\nu$  feature, with no two-neutrino counterpart;
- smallness of  $\theta_{13}$  and  $\Delta m_{21}^2 / \Delta m_{31}^2$  implies that solar and atm sectors are decoupled.

## Effect of $\theta_{13}$ on solar & KamLAND data

•  $v_e$  survival probability:

$$P_{ee} \approx \begin{cases} \text{Kam: } \cos^4 \theta_{13} \left( 1 - \sin^2 2\theta_{12} \sin^2 \Delta_{21} \right), \\ \text{low-E: } \cos^4 \theta_{13} \left( 1 - \frac{1}{2} \sin^2 2\theta_{12} \right), \\ \text{high-E: } \cos^4 \theta_{13} \sin^2 \theta_{12}; \end{cases}$$

- When  $\theta_{13}$  increases:
  - KamLAND region shifts to smaller  $\theta_{12}$ ;
  - solar region moves to larger θ<sub>12</sub> (high-E data dominate over low-E ones);
- therefore, a non-zero value of θ<sub>13</sub> reduces the tension between solar and KamLAND data [10, 11];
- however, a small tension in  $\Delta m_{21}^2$  remains.



[10] G.L. Fogli *et al.*, Phys. Rev. Lett. **101** (2008) 141801 [arXiv:0806.2649].
[11] T. Schwetz, M.A. Tortola, J.W.F. Valle, New J. Phys. **10** (2008) 113011 [arXiv:0808.2016].

#### Accelerator experiments: v<sub>e</sub>

• Minos and T2K  $\nu_{\mu} \rightarrow \nu_{e}$  appearance:

| Exper                    | No-osc                             | Observed                         |
|--------------------------|------------------------------------|----------------------------------|
| MINOS                    | 69.1 ( <u>v</u> e)                 | 88 ( <mark>v</mark> e)           |
| $(\alpha_{\rm lem}>0.7)$ | 10.5 ( <del>v</del> <sub>e</sub> ) | 12 ( <del>v</del> <sub>e</sub> ) |
| T2K                      | 4.6 ( <u>v</u> <sub>e</sub> )      | 28 ( <mark>v</mark> e)           |

•  $v_e \operatorname{excess} \Rightarrow \theta_{13} > 0 \Rightarrow \operatorname{reactor} data.$ 





Michele Maltoni <michele.maltoni@csic.es>

## $\theta_{13}$ : REACTOR versus LBL-appearance data

- In principle, REA + LBL-APP + LBL-DIS can fix the  $\theta_{23}$  octant [12]:
  - **REACTORS**: measure  $\sin^2(2\theta_{rea}) \equiv \sin^2(2\theta_{13})$ ;
  - LBL-DIS: measure  $\sin^2(2\theta_{dis})$ , with  $\sin^2 \theta_{dis} \equiv \cos^2 \theta_{13} \sin^2 \theta_{23}$ ;
  - LBL-APP: measure  $\sin^2(2\theta_{app}) \equiv \sin^2(2\theta_{13}) 2 \sin^2 \theta_{23}$  and  $\delta_{cP}$ ;
- in practice, putting explicit numbers:
  - from **REACTORS**:  $\sin^2(2\theta_{13}) \simeq 0.09$ ;
  - from LBL-DIS:  $\sin^2(2\theta_{\text{dis}}) \simeq 0.97$  implies  $\sin^2 \theta_{23} = 0.42$  or 0.60;
  - hence, REA + LBL-DIS imply  $\sin^2(2\theta_{app}) = 0.076$  or 0.108;
- both values of  $\sin^2(2\theta_{app})$  are in similar agreement with LBL-APP.



[12] G.L. Fogli et al., Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254].



#### Michele Maltoni <michele.maltoni@csic.es>

#### IMFP 2014, 27/01/2014

## Octant and hierarchy discrimination in atmospheric data

• Excess of *e*-like events, 
$$\delta_e \equiv N_e/N_e^0 - 1$$
:  
 $\delta_e \simeq (\bar{r}\cos^2\theta_{23} - 1) P_{2\nu}(\Delta m_{21}^2, \theta_{12}) \quad [\Delta m_{21}^2 \text{ term}]$   
 $+ (\bar{r}\sin^2\theta_{23} - 1) P_{2\nu}(\Delta m_{31}^2, \theta_{13}) \quad [\theta_{13} \text{ term}]$   
 $- \bar{r}\sin\theta_{13}\sin 2\theta_{23} \operatorname{Re}(A_{ee}^*A_{\mu e}); \quad [\delta_{CP} \text{ term}]$ 

with  $\bar{r} \equiv \Phi^0_{\mu} / \Phi^0_e$ ;

- similar but less pronounced effects also appear in μ-like events (not discussed here);
- resonance in  $P_{2\nu}(\Delta m_{31}^2, \theta_{13}) \Rightarrow$  enhancement of  $\nu$ ( $\bar{\nu}$ ) oscillations for normal (inverted) hierarchy  $\Rightarrow$ <u>hierarchy discrimination</u>;
- $\delta_e$  distinguishes between light and dark side  $\Rightarrow$ <u>octant discrimination</u>;
- present data: excess in *e*-like sub-GeV events ⇒ preference for light side.



#### IMFP 2014, 27/01/2014

## Octant and hierarchy: present status

## $\theta_{23}$ octant

- Deviation of θ<sub>23</sub> from maximal mixing is a physical effect, which follows from:
  - excess of events in sub-GeV *e*-like data;
  - zenith distorsion in multi-GeV *e*-like data;
- the effect is not statistically significant, but it is well understood and clearly visible;
- found also by other Fogli et al. [12], but not by SK.

## Mass hierarchy

- Matter effects enhanced for larger θ<sub>13</sub> ⇒ sensitive to specific range of θ<sub>13</sub>;
- no meaningful preference for NH or for IH.

#### Michele Maltoni <michele.maltoni@csic.es>



#### **Global three-neutrino oscillations**

## Neutrino oscillations: where we are

- Global 6-parameter fit (including  $\delta_{\text{CP}}$ ):
  - Solar: CI + Ga + SK(1-4) + SNO-full (I+II+III) + Borexino;
  - Atmospheric: SK-1 + SK-2 + SK-3 + SK-4;
  - Reactor: KamLAND + Chooz + Palo-Verde
     + Double-Chooz + Daya-Bay + Reno;
    - Accelerator: Minos (DIS+APP) + T2K (DIS+APP);
- best-fit point and  $1\sigma$  ( $3\sigma$ ) ranges:

$$\begin{split} \theta_{12} &= 33.57 \substack{+0.77 \\ -0.75} \left( \substack{+2.44 \\ -2.20} \right), \qquad \Delta m_{21}^2 &= 7.45 \substack{+0.19 \\ -0.16} \left( \substack{+0.60 \\ -0.47} \right) \times 10^{-5} \text{ eV}^2, \\ \\ \theta_{23} &= \begin{cases} 41.9 \substack{+0.5 \\ -0.4} \left( \substack{+12.6 \\ -4.7 \right), \\ 50.3 \substack{+1.6 \\ -2.5} \left( \substack{+4.2 \\ -13.1 \right), \end{cases}} \right) \qquad \Delta m_{31}^2 &= \begin{cases} -2.337 \substack{+0.062 \\ -0.062} \left( \substack{+0.185 \\ -0.191 \right) \times 10^{-3} \text{ eV}^2, \\ +2.417 \substack{+0.014 \\ -0.014} \left( \substack{+0.206 \\ -0.171 \right) \times 10^{-3} \text{ eV}^2, \end{cases} \\ \\ \theta_{13} &= 8.73 \substack{+0.35 \\ -0.36} \left( \substack{+1.03 \\ -1.17 \right), \qquad \delta_{\text{CP}} &= 341 \substack{+58 \\ -46} \left( \text{any} \right); \end{split}$$

• neutrino mixing matrix:





[13] M.C. Gonzalez-Garcia *et al.*, JHEP **12** (2012) 123 [arXiv:1209.3023].

[14] M.C. Gonzalez-Garcia *et al.*, NuFIT 1.2 (2013), http://www.nu-fit.org.

#### Michele Maltoni <michele.maltoni@csic.es>

#### IMFP 2014, 27/01/2014

#### What's still missing?

- Neutrino oscillation parameters still to be measured:
  - **value** of  $\delta_{CP}$ , and whether it differs from 0 and  $\pi$  (CP violation);
  - size and sign of  $\sin^2 \theta_{23} 1/2$  (the  $\theta_{23}$  octant);
  - **sign** of  $\Delta m_{31}^2$  (neutrino mass hierarchy);
- data that we will almost certainly have (taken from Table 1 of Ref. [15]):

| Setup        | $t_{\nu}$ [yr] | $t_{\bar{\nu}}$ [yr] | P <sub>Th</sub> or P <sub>Target</sub> | <i>L</i> [km] | Detector technology | m <sub>Det</sub> |
|--------------|----------------|----------------------|----------------------------------------|---------------|---------------------|------------------|
| Double Chooz | -              | 3                    | 8.6 GW                                 | 1.05          | Liquid scintillator | 8.3 t            |
| Daya Bay     | -              | 3                    | 17.4 GW                                | 1.7           | Liquid scintillator | 80 t             |
| RENO         | -              | 3                    | 16.4 GW                                | 1.4           | Liquid scintillator | 15.4 t           |
| T2K          | 5              | -                    | 0.75 MW                                | 295           | Water Cerenkov      | 22.5 kt          |
| ΝΟνΑ         | 3              | 3                    | 0.7 MW                                 | 810           | TASD                | 15 kt            |

plus two atmospheric neutrino detectors: ICECUBE Deep-Core and INO;

• can we answer the remaining questions with this?  $\Rightarrow$  [Lasserre's talk].

[15] P. Huber, M. Lindner, T. Schwetz, W. Winter, JHEP **0911** (2009) 044 [arXiv:0907.1896].

#### Summary

- Most of the present data from solar, atmospheric, reactor and accelerator experiments are well explained by the 3v oscillation hypothesis. The three-neutrino scenario is robust;
- the discovery of large θ<sub>13</sub> is a major breakthrough, and marks the beginning of a new phase in neutrino phenomenology.
- the next step involve searching for CP violation, for non-maximal  $\theta_{23}$ mixing and for the neutrino mass hierarchy. With present / approved facilities it may not be easy.



[14] M.C. Gonzalez-Garcia et al., NuFIT 1.2 (2013), http://www.nu-fit.org.