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Outline

Motivation for LQCD.

Lattice QCD for heavy quarks.

Leptonic b decays.

Semileptonic ¢ decays.

m Semileptonic b decays.
m Pitfalls: topology freezing.

m Outlook



Motivation

m Simple QCD matrix elements enter into weak decay rates
(CKM, unitarity).
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Motivation

m Simple QCD matrix elements enter into weak decay rates
(CKM, unitarity).
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Motivation

m Lattice QCD is a first principles calculation.

m In a full simulation, in principle no uncontrollable errors should
remain. Precision tool.
m Fixing the parameters
The free parameters in the lattice formulation are fixed by
setting a set of calculated quantities to their measured
physical values.
Quantities that can be accurately calculated from the lattice
and are measured with good precision experimentally.
m Scale: lattice spacing a:
m Quark masses: my 4, Mms, Mc, Mp.
Could be fixed, for example, by m., mg, m,,_, m,,.
m Large freedom in choosing the discretization: different
systematics.



Motivation

m Only a limited amount of quantities can be calculated
(precisely): spectroscopy of fundamental and first few excited
states, leptonic and semileptonic decay constants, quark
masses, etc.

m In the heavy quark sector (c and b) there are many gold-plated
states in the spectrum. We can test our calculations.

m Precision is crucial for searches of BSM physics. We need
good control over all systematic errors. Best if we have
independent calculations for crosscheck.



Meson Spectrum
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Heavy quarks on the lattice

Ap &~ M, > 2 (0.05fm)

Discretization errors: (aM)* (k
tipically 2)

b quark /\/

For light quarks, we need
La > m; (finite volume error)

light quark —— —

For heavy quarks, we would like
aM <1

Computational cost for ensemble generation grows with the lattice
spacing with ~ a~ %, with a large k (6, 7).



Heavy quarks on the lattice

Nonrelativistic effective theory Relativistic approach
m M large: non-relativistic m Use highly improved discretization
system (v2 = 0.1). + very fine lattices. We can do

this already for ¢ quarks. For b
quarks, needs extrapolation in M.

m Remove M from the
dynamics — effective theory
(NRQCD, HQET). m HISQ (highly improved staggered

m mp ~ 4 GeV, binding quarks): O(asa®, a*)
energies much smaller. m Twisted mass action: O(a?).

m Clover action: O(a?).
m Domain-wall/overlap action: O(a?)
(charm).



Heavy quarks on the lattice

Nonrelativistic effective theory

m Computationally cheap.

Relativistic approach

Computationally expensive

m Rest mass My and “kinetic
mass’ M.

m Needs matching to
continuum QCD. Difficult to
carry out to high orders.

Only one mass, Mj.

In formalisms with enough chiral
symmetry: PCAC —
non-renormalization of
pseudoscalar decay constants.

Using the same action for all
quarks is conceptually simpler.

Error cancelation in ratios. Can be
used as a lever.

More predictive, same action from
light to heavy sectors.



Heavy quarks on the lattice

m Relativistic calculation of ratios of
quark masses: mp/mec, mc/ms.

m Renormalization constants cancel:
lever.
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b leptonic decay constants
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b leptonic decay constants

HPQCD: Calculation on MILC Ny =241+ 1 HISQ sea, including
physical light quarks [arXiv:1309.4610].

Three lattice spacings, a ~ 0.09, 0.12, 0.15.

Improved NRQCD b quark, HISQ light valence quarks.

MBS — MB == 85(2) MeV

Fermilab/MILC calculation on MILC Nf =2 + 1 asqtad
configurations [1112.3978]. Three lattice spacings, a
~0.09,0.12,0.15 fm.

b quarks using Fermilab method, asqtad light valence quarks.

HPQCD FERMILAB/MILC
fg = 186(4) MeV fg = 196.9(8.9) MeV.
fa, = 224(5) MeV fa, = 242.0(9.5) MeV.

fa,/fz = 1.205(7) fa./fz = 1.229(0.026).



b leptonic decay constants

Alpha collaboration: calculation on CLS Nf = 2 configurations
[1210.7932].

Three lattice spacings, a ~ 0.05, 0.065, 0.075 fm.
HQET for b, NP improved Wilson for the light valence quarks.

fB = 193(9)51'31’(4))( MeV
st == 219(12)5tat MeV



b leptonic decay constants

ETM: calculation on Nf =2 + 1+ 1 twisted Wilson configurations
[1311.2837].

Twisted Wilson for valence light quarks, extrapolation on the
heavy quark mass to my.

Three lattice spacings, a ~ 0.062, 0.081, 0.089 fm.

fz = 196(9) MeV.
fa, = 235(9) MeV.

f
T = 1.201(25).



b leptonic decay constants

RBC-UKQCD: calculation on N = 2 + 1 domain wall
configurations [1311.0276].

Domain wall light valence quarks and NP-tuned clover relativistic b
quarks.

Two lattice spacings, a ~ 0.09, 0.11 fm.
Errors are statistical for now.

fz = 191(6) MeV.
fa, = 233(5) MeV.

f
e = 1.20(2).



b leptonic decay constants

HPQCD: calculation on MILC Ny = 2 + 1 asqtad configurations
[1110.4510].

HISQ valence quarks, extrapolation on the heavy quark to m,.
5 values of the lattice spacing, from a ~ 0.15 fm to ~ 0.045 fm.
fg, = 225(4) MeV.

fg could be calculated directly, but much more expensive.



b leptonic decay constants
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b leptonic decay constants

HPQCD13 ——
FERMILAB/MILC11 L
ETM13 i
RBC/UKQCD13 | L




D semileptonic decays

M3 — M2 M3 — M?

(K|V*|D) = f,(q°) P%ﬂ%—T’(q“ +fo(q2)%q"

dr(D — Ktv) G2V
dqg? - 2478

PIf ()

m Theory/experiment comparison of functions of g°.

m For D — K(), the experiment and lattice kinematic regions
mostly overlap: stringent test of LQCD.



D — K(m)lv

FNAL/MILC (arXiv:1211.4964): 2 + 1 asqtad sea, asqtad light
valence, heavy clover c valence.

L B L L B
s — SU(3) SXPT fittoD — mdata

L SR B B AL B I B ]

— SU(3) SXPT fitto D — K data L — . CLEO-c |

of « CLEO-c ] [ ]
P - BABAR { .

fplus_over_fplus fid
fplus_over_fplus fid
w

P I I
125 15 175



D — K(m)lv

We would like a model-independent procedure for comparison of
experimental and theoretical results: z-expansion:

V@ Vit

z= ty = (mD + mK)2
Ve — @+t — &
Maps the semi-leptonic region, 0 < g® < t_, to the interior of the
unit circle.
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D — Klv

HPQCD (arXiv:1305.1462): 2 + 1 asqtad sea, HISQ valence,
D— K.
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Insensitivity to the spectator quark.



Bin-by-bin comparison
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b semileptonic decays

m Bs = Klv |Vl
m B — KII : sensitive to new physics.
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B — Kil

HPQCD (Phys.Rev. D88 (2013) 054509;Phys.Rev.Lett. 111

(2013) 162002)

2+1 asqtad sea, HISQ light valence, NRQCD b.

m;/ms down to 1/10.

z expansion to extrapolate in g2. |z| < 0.16.
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Branching fraction ratios: potentially sensitive to new physics

i
qhgh dq? dB,,/dq?

lo

fq";'gh dg? dB. /dq

low

2 2
RY(Giows qhigh)

RE(4MT, Qo) = 1.00029(69),
T 2
R(14.18 GeV?, ghy) 1.174(40),
RI(14.18 GeV? qy) = 1.178(41),
R7(14.18 GeV?, q2,,) = 1.176(40).



B — Kil

FNAL/MILC (arxiv:1312.3197)

2+1 asqtad sea, asqtad light valence, clover(FNAL) b.
0.12 to 0.06 fm, m;/ms down to 1/10.

z expansion to extrapolate in g2. |z| < 0.16.

Errors = 3 — 8% for g? > 17GeV2.
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Towards relativistic b pitfalls: Topology freezing

m In the continuum a — 0, we expect the sectors of different

topological charle Q to become separated by infinite barriers.

m Montecarlo integrated autocorrelation time: 7j,; = a—~.

m For Q?, z compatible with 5 (arXiv:1211.5069).
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Towards relativistic b pitfalls: Topology freezing

What to do?

m New algorithms.

m Open boundary conditions (arXiv:1105.4749).

m Maybe topology change does not matter for most observables?
m Simulate in a fixed sector: larger finite volume effects.

m But how can we be sure that it is safe?



Outlook

m LQCD is by now a mature tool for QCD calculations of
(some) quantities of phenomenological relevance, both as a
non-perturbative test of QCD itself and as a fundamental
input for BSM physics.

m Many accurate calculations across the entire QCD range, from
light to heavy states, with no free parameters. With different
discretizations, different systematics. Numerous crosschecks.

m Already many lattice calculations of relevant matrix elements,
in particular in flavour physics.

m Effective theory methods and relativistic ones will be
complementary, at least for now. Use ratios + relativistic
methods. Different systematics.



Outlook

m To increase precision in relativistic calculations we will need to
go to smaller lattice spacings.
In principle straightforward (computing time), but there may
be problems: topology freezing.

m We start to have ensembles at the physical light quark
masses. Less dependence on chiral extrapolations, (playtool
for theorists).

m In spectroscopy and some decay constants we have reached a
level of precision (sub-percent) where isospin and
electromagnetic effects have to be taking seriously and
calculated, no only estimated. Already in progress.

m There is still much scope for improvement.
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