Prospects on the measurement of the $B_s^{\ \theta} \rightarrow \phi \gamma$ photon polarization at LHCb

Pablo Ruiz Valls (IFIC, Valencia)

XLII International Meeting on Fundamental Physics Jan 27 2014

Outline

- Introduction
- A bit of theory
 - The $b \rightarrow s \gamma$ radiative penguin and the polarization fraction
 - The case of the B_s^{0} meson
 - Sensitivity to NP
- Probing the photon polarization in LHCb
- Conclusions

Introduction

- The field of flavor physics is consistently reaping results, with great agreement between experiment and theory.
 - No clear signal of Beyond Standard Model physics (...?)
 - But SM is not the end of the story
 - Known unknowns: Mass hierarchy, neutrino mixing, dark matter, etc...
- The quest for new physics

Introduction

- Tree Level processes
 - Production of particles (eg. Z boson)
 - Leading order decays (eg neutralino → 2ev)
- Loops
 - Sometimes appear as N[N...]LO corrections to amplitudes

Introduction

- But some processes are forbidden at tree level, such as Flavor changing neutral currents (FCNC), and the leading order must have loops
- Penguin diagrams
 - Great probes for NP
 - More rare than tree level decays
 - Small branching fractions
 - < O(10⁻⁵)
 - Experimentally challenging

XLII International Meeting on Fundamental Physics Jan 27 2014

The b \rightarrow sy penguin

The b → sγ transition, when described in the SM by the effective weak hamiltonian in terms of Wilson coefficients C_i and local operators O_i, the dominant contribution comes from the magnetic operator

$$O_{7\gamma} = \frac{e}{16\pi^2} [m_b(\overline{s}_{L\alpha}\sigma^{\mu\nu}b_{R\alpha}) + m_s(\overline{s}_{R\alpha}\sigma^{\mu\nu}b_{L\alpha})]F_{\mu\nu}$$

• In which the term proportional to m_s describes the emission of right handed photons, greatly suppressed wrt the left w^- , w^-

handed component, since $m_s/m_b \sim 0.023$

• How to access the polarization fraction experimentally?

XLII International Meeting on Fundamental Physics Jan 27 2014 Pablo Ruiz Valls

s

B meson decays

 Neutral mesons undergo flavor oscillations (mixing) through box diagrams, for the B^o meson:

 $A^{\Delta} = \sin(2\psi)\cos\phi \quad \tan\psi =$

 For B(B) mesons (at t=0) decaying to a CP eigenstate with a photon, the time dependent decay width is in general:

$$\Gamma(B_q(\bar{B}_q) \to f^{CP} \gamma)[t] \propto e^{-\Gamma_q t} \left(\cosh \frac{\Delta \Gamma_q t}{2} - A^{\Delta} \sinh \frac{\Delta \Gamma_q t}{2} \pm C \cos \Delta m_q t \mp S \sin \Delta m_q \right)$$

- With φ the mixing angle and tan ψ the 'wrongly' polarized fraction
 - $\Delta\Gamma_{q}$ (Δm_{q}) is the decay width (mass) difference of mass eigenstates

XLII International Meeting on Fundamental Physics Jan 27 2014

•

The $B_s^{\ 0}$ meson

 One can measure the time dependent CP asymmetry

$$A_{CP}(B_s^0 \to \phi \gamma)[t] = \frac{N_{\bar{B}_s^0 \to \phi \gamma}(t) - N_{B_s^0 \to \phi \gamma}(t)}{N_{\bar{B}_s^0 \to \phi \gamma}(t) + N_{B_s^0 \to \phi \gamma}(t)} = \frac{S \sin(\Delta m_q t) - C \cos(\Delta m_q t)}{\cosh(\frac{\Delta \Gamma_s}{2}t) - A^{\Delta} \sinh(\frac{\Delta \Gamma_s}{2}t)}$$

 $B_{s}^{0} \text{ meson 2012 PDG values}$ $B_{s}^{0} = \overline{b} s, \overline{B}_{s}^{0} = \overline{s} b$ $m_{B_{s}^{0}} = 5366.77 \pm 0.24 MeV$ $\tau = (1.497 \pm 0.015) \times 10^{-12} s$ $\Delta \Gamma_{B_{s}^{0}} = \Gamma_{B_{st}^{0}} - \Gamma_{B_{st}^{0}} = (0.100 \pm 0.013) \times 10^{-12} s^{-1}$ $\Delta m_{B_{s}^{0}} = m_{B_{st}^{0}} - m_{B_{st}^{0}} = (0.100 \pm 0.013) \times 10^{-10} MeV$

- The SM prediction for A^{Δ} is $0.047 \pm 0.025^{[Muheim et al., Phys.Lett.B664:174-179,2008]}$
- For B° mesons the sinh vanishes, since $\Delta\Gamma_{\rm d}$ is << 1
- The advantage of the B $_{_{\rm s}}^{\rm o}$ is that it has a sizable $\Delta\Gamma$
 - Sensitivity to the A^{Δ} parameter

XLII International Meeting on Fundamental Physics Jan 27 2014

The $B_{\rm s}^{\ 0}$ meson

• The general time dependent decay rate

$$\Gamma(B_q(\bar{B}_q) \to f^{CP} \gamma)[t] \propto e^{-\Gamma_q t} \left(\cosh \frac{\Delta \Gamma_q t}{2} - A^{\Delta} \sinh \frac{\Delta \Gamma_q t}{2} \pm C \cos \Delta m_q t \mp S \sin \Delta m_q t \right)$$

- This requires tagging, combined with the small statistics this results
 - LHCb effective tagging power $\sim 3.5\%$
- Without tagging, the time dependent decay rate reduces to

$$\Gamma(B_q)_{\text{Untagged}}[t] \propto e^{-\Gamma_q t} \left(\cosh \frac{\Delta \Gamma_q t}{2} - A^{\Delta} \sinh \frac{\Delta \Gamma_q t}{2} \right)$$

Sensitivity to NP

- Other models can be probed through this observable
 - In the Left Right Symmetric Model (LRSM), A[∆] can be as high as 0.7^[Atwood et al. arXiv:hep-ph/9704272v1]
 - Other models that involve new particles participating in the loop could modify the properties of this decay
 - Two Higgs doublet models (2HDM)
 - SUSY
 - Updated theoretical predictions would be desirable

The LHCb Detector

XLII International Meeting on Fundamental Physics Jan 27 2014

 $B_{s}^{0} \rightarrow \phi \gamma$ in LHCb

- 3 fb⁻¹ collected in 2011 (7 TeV)-2012 (8 TeV)
- Long shutdown (LS1) 2013-2014
- Accumulate up to 7 fb⁻¹ 2015-2017 at 14 TeV
- Upgrade in LS2 2018
- 5 fb⁻¹ per year to 50 fb⁻¹ in total
 - BaBar/Belle collected 1.2 $ab^{-1}at \Upsilon(4S)$
 - Mostly BB (1nb)
 - Belle II 50 ab⁻¹ expected (~2020)
- LHCb $pp \rightarrow b\overline{b}$ pair production cross section
 - 284 µb at 7 TeV^[Phys.Lett.B694:209-216,2010]
 - 527.3 µb at 14 TeV^[sim]
- Hadronization fraction to B_s^0 , $f_s = 9\%^{[Phys. Rev. D 85, 032008 (2012)]}$

XLII International Meeting on Fundamental Physics Jan 27 2014 Pablo Ruiz Valls

LHCb Integrated Luminosity

 $B_{s}^{0} \rightarrow \phi \gamma$ in LHCb

- We can then estimate a B^o production cross section
 - 51.2 µb at 7 TeV, 95 µb at 14 TeV
- Measurement of B^o_s production cross section at 7 TeV^[JHEPO8(2013)117] (including detector acceptance)

 $\sigma(pp \to B_s^0 + X) = 10.5 \pm 0.2 \,(\text{stat.}) \pm 0.8 \,(\text{syst.}) \pm 1.0 \,(\text{norm.}) \,\,\mu\text{b},$

- $BR(B_{s}^{0} \rightarrow \varphi \gamma) = (5.7 \pm 0.3) \cdot 10^{-5}$
- $BR(\phi \to K^{+}K^{-}) = 0.489 \pm 0.005$
- $B_s^0 \rightarrow \varphi(\rightarrow K^*K^-)\gamma$ produced per fb⁻¹
 - 584k at 7 TeV
 - 1086k at 14 TeV
- 52 M produced in total with 50 fb⁻¹ (without efficiencies)

XLII International Meeting on Fundamental Physics Jan 27 2014

 $B_{s}^{0} \rightarrow \phi \gamma$ in LHCb

- Acceptance and experimental efficiency (Trigger, Reconstruction, Selection...) further reduces the available signal yield
 - Current selection yield is $\sim 3k$ signal events with $3fb^{-1}$
 - Selection currently being optimized to maximize the efficiency
 - Multivariate methods studied considerably improve the signal yield wrt a cut based strategy
- Uncertainties are at present statistically dominated

$B_s^{\ 0} \rightarrow \phi \gamma$ photon polarization

- We aim to measure the photon polarization fraction
- Currently the fit framework is under development, several options being explored
 - Untagged ML B^o_s proper time fit
 - The proper time acceptance function must be well determined
 - Extract the proper time acceptance function from a fit to control channels (complementary)
 - $B^0 \rightarrow K^{*0} \gamma$
 - Higher yield
 - $B_s^0 \rightarrow J/\psi \varphi$
 - Cleaner channel

XLII International Meeting on Fundamental Physics Jan 27 2014 Pablo Ruiz Valls

 $B_s^0 \rightarrow \phi \gamma$ proper time acceptance function

$B_s^{\ 0} \rightarrow \phi \gamma$ photon polarization

- Fit framework under development, several options being explored
 - Binned proper time ratio $(B_s^0 \rightarrow \varphi \gamma / B^0 \rightarrow K^{*0} \gamma)$
 - Similar resolution functions
 - Acceptance ratio is flat and well known after carefully designing the selection
 - Statistical sensitivity to A^{Δ} under study
 - estimated around 0.3 for $3k B_s^{\circ}$ events

φγ/K*γ acceptance ratio

XLII International Meeting on Fundamental Physics Jan 27 2014

Conclusions

- Precision measurements of radiative B decays allow probing BSM physics
- Untagged $B_{_{s}}^{~0} \rightarrow \varphi \gamma \,$ photon polarization measurement in progress
 - Sensitivity to $A^{\Delta} \sim$ 0.3 for 3k signal events, statistically dominated
 - Expected to be \sim 0.2 with the next data taking period
 - <0.1 with the upgraded run (50fb⁻¹)
 - Systematics associated to proper time acceptance look under control

$$A^{\Delta} = \sin(2\psi)\cos\phi \quad \tan\psi = \frac{\overline{B} \to f^{CP} \gamma_R}{\overline{B} \to f^{CP} \gamma_L}$$

Thanks for your attention

Backup Slides

Formulae

• $b \rightarrow s\gamma/g$ weak effective Hamiltonian in OPE

$$H_{eff} = \frac{-G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\sum_{i=1}^{6} C_i \cdot O_i + C_{7\gamma} \cdot O_{7\gamma} + C_{8G} \cdot O_{8G} \right)$$

Radiative decays at LHCb

• LHCb has published measurements on radiative decays such as

• The ratio of Branching fractions of $B^0 \rightarrow K^{*0}\gamma$ and $B_s^0 \rightarrow \varphi\gamma$

$$\frac{\mathcal{B}(B^0 \to K^{*0} \gamma)}{\mathcal{B}(B^0_s \to \phi \gamma)} = 1.23 \pm 0.06 \,(\text{stat.}) \pm 0.04 \,(\text{syst.}) \pm 0.10 \,(f_s/f_d)$$

• The direct CP violation in $B^0 \rightarrow K^{*0}\gamma$

$$\mathcal{A}_{CP}(B^0 \to K^{*0}\gamma) = (0.8 \pm 1.7 \,(\text{stat.}) \pm 0.9 \,(\text{syst.}))\%$$

Both Nuclear Physics, Section B 867 (2013), pp. 1-18

- Most precise measurements to date

More on these results during the LHC session in V. Rives Molina talk

Radiative decays at LHCb

• CP and up-down asymmetries in $B^+ \rightarrow (K\pi\pi)^+\gamma \text{ decay}^{[LHCb-CONF-2013-009]}$

• The branching fraction of $B^0 \rightarrow K^{*0}e^+e^-$ at low dilepton mass^[arXiv:1304.3035, submitted to JHEP]

 $\mathcal{B}(B^0 \to K^{*0} e^+ e^-)^{30-1000 \,\text{MeV}/c^2} = (3.1 \,{}^{+0.9}_{-0.8} \,{}^{+0.2}_{-0.3} \pm 0.2) \times 10^{-7}$

XLII International Meeting on Fundamental Physics Jan 27 2014

LHCb Tagging Power

- CP asymmetry measurements require flavor tagging
- Low tagging power [New J. Phys. 15 (2013) 053021]

Tagging efficiency $\epsilon = \frac{\text{Tagged Candidates}}{\text{All Candidates}}$ Mistag probability $\omega = \frac{\text{Tagged wrong}}{\text{Tagged}}$ Dilution $D = (1 - 2\omega)$ Combined tagging power $\epsilon D^2 = 3.5 \pm 0.5\%$

- Small BR + Small tagging power
- Great reduction of the statistical power

