# PROBING THE QCD MATTER WITH ALICE

ZAIDA CONESA DEL VALLE (INSTITUT DE PHYSIQUE NUCLEAIRE ORSAY, CNRS/IN2P3 - U. PARIS SUD, FRANCE) ON BEHALF OF THE ALICE COLLABORATION

DISCLAIMER: THIS IS A BIASED SELECTION OF ALICE RESULTS

- XLII INTERNATIONAL MEETING ON FUNDAMENTAL PHYSICS -

1





# OUTLINE

#### PROBING THE QCD MATTER, WHY AND HOW?



# OUTLINE

 $\frac{2\pi N_{ev}}{2\pi N_{ev}} \frac{d^2 N}{p_T dp_T dy} (GeV^2 c^2)$ 

10<sup>-2</sup>

10<sup>-3</sup>

10-4

10<sup>-5</sup>

10<sup>-6</sup>

10<sup>-7</sup>

AT.T-PREL-27968

#### PROBING THE QCD MATTER, WHY AND HOW?

#### **STUDYING THE BULK PROPERTIES** CHARGED PARTICLES, TRANSVERSE ENERGY, FLOW,...



PRL 106, 032301 (2011)



# OUTLINE

(GeV

 $\frac{1}{2\pi N_{ev}} \frac{d^2 N}{p_1 dp_1 dy} (0)$ 

10<sup>-2</sup>

10<sup>-3</sup>

10-4

10<sup>-5</sup>

10<sup>-6</sup>

10

T.T-PREL-2796

#### PROBING THE QCD MATTER, WHY AND HOW?

0-40% Pb-Pb, √s<sub>NN</sub> = 2.76 TeV

Direct photons

#### STUDYING THE BULK PROPERTIES **CHARGED PARTICLES, TRANSVERSE ENERGY, FLOW,...**



#### **HEAVY FLAVOR & QUARKONIA**



#### 1.4 Inclusive J/ $\psi \rightarrow \mu^{+}\mu^{-}$ , Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV and Au-Au $\sqrt{s_{NN}}$ = 0.2 TeV ALICE (arXiv:1311.0214), 2.5<y<4, 0<p\_<8 GeV/c global syst.= ± 15% 1.2 PHENIX (PRC 84(2011) 054912), 1.2 0.8 0.6 0.4 ₿ ₿ 0.2 Ð 0 250 300 350 400 200 **n** 50 100 150 $\langle N_{\rm part'}$

# PROBING THE QCD MATTER: WHY AND HOW ?





- Quantum ChromoDynamics vs Quantum ElectroDynamics
  - Mediator: gluon (color charge) vs photon (no charge)
  - Asymptotic freedom, vacuum polarization: in QED there is screening, and in QCD there is also anti-screening.
  - Solution Confinement: In the nature, quarks and gluons are confined in neutral color states, the mesons and the baryons.





### THE QUARK GLUON PLASMA





- > ρ<sub>B</sub> = 1, T ~ 0
  - 🎙 Nuclei
- $\succ~\rho_{\text{B}}\uparrow$  , T ~ 0
  - Neutron star cores
- $\succ$  ρ<sub>B</sub> = 0, T↑
  - $\clubsuit$  T\_c~ 170-194MeV,  $\epsilon_c\sim$  0.8GeV/fm³
  - Cross-over transition
  - Quark gluon plasma









"When the energy density ε exceeds some typical hadronic value (~ 1 GeV/fm<sup>3</sup>), matter no longer exists of separate hadrons (protons, neutrons, etc), but as their fundamental constituents, quarks and gluons. Because of the apparent analogy with similar phenomena in atomic physics we may call this phase of matter the QCD (or Quark Gluon) plasma."

E.V. Shuryak, Phys. Rept. 61 (1980) 71

"Above Tc, the medium consists of deconfined quarks and gluons. We emphasize that deconfinement does not imply the absence of interaction – it is only the requirement to form color neutral bound states that has been removed." H. Satz, J.Phys.G32:R25 (2006)































































- Experimental observables:
  - Solution Soluti Solution Solution Solution Solution Solution Solution S
  - Initial state: high-p⊤ photons, weak bosons (W & Z),...
  - ✤ Final state:
    - Hadronic: p<sub>T</sub> & η distributions, strange particles, particle correlations, the flow,...
    - Penetrating: vector mesons, quarkonia, jets,...













 $\epsilon \ll \epsilon_c$ 

T « T<sub>C</sub>



- Identify an observable which might be modified in the presence of a QGP (by theoretical basis).
- <sup>②</sup> Measure the observable in absence of medium effects, in p-p coll.
  - The baseline. Confront with theoretical predictions: the QCD reference?







 $\varepsilon \ll \varepsilon_{c}$ 

T « T<sub>C</sub>



- Identify an observable which might be modified in the presence of a QGP (by theoretical basis).
- <sup>②</sup> Measure the observable in absence of medium effects, in p-p coll.
  - The baseline. Confront with theoretical predictions: the QCD reference?
- In the presence of a cold nuclear environment, in p-A and/or d-A coll.

 $\varepsilon < \varepsilon_c$ T < T<sub>C</sub>

- Need to elucidate (between others...):
  - Modification of PDFs
  - Gluon saturation
  - Colour charge screening







 $\varepsilon \ll \varepsilon_{c}$ 

T « T<sub>C</sub>





 $\varepsilon < \varepsilon_{c}$  $T < T_{C}$ 

 $\epsilon > \epsilon_c$ 

 $T > T_C$ 

 $\succ$ 

 $\succ$ 

matter



## A ROUGH HOW TO GUIDE





"Few words" about what has been learned



#### SPS heavy-ion programme

- ♦ Took data from p to Pb, from  $\sqrt{s_{NN}}$  = 17 GeV to 30 GeV
- Experiments: NA44, NA45, NA49, NA50, NA60, WA97, WA98,...
- ♦ Observed (between others...):
  - Low-mass dilepton excess
  - Strangeness enhancement
  - Charmonium suppression
- Sconcluded:

there was "*experimental evidence for the formation of a new state of matter*", since their data could not be explained in terms of hadronic degrees of freedom alone. [Heinz & Jacob 2000] nucl-th/0002042

[Gonin 2001] INPC 2001

http://info.web.cern.ch/Press/PressReleases/Releases2000/PR01.00EQuarkGluonMatter.html 10th February 2000

Organisation Européenne pour la Recherche Nucléaire European Organization for Nuclear Research

New State of Matter created at CERN



At a special seminar on 10 February, spokespersons from the experiments on CERN\* 's Heavy Ion programme presented compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely.



XLII International Meeting on Fundamental Physics, 27th Jan -1st Feb

Z. Conesa del Valle

9

RHIC heavy-ion programme (from 2000 till today)

- Solution Takes data from p to Au, from  $\sqrt{s_{NN}}$  = 22 GeV to 200 GeV
- Experiments: PHENIX, STAR, PHOBOS, BRAHMS
- Observe (between others):
  - High- $p_T$  hadron suppression
  - Vanishing away-side-jet
  - Hydro and partonic flow
  - Charmonium suppression
  - Direct photon excess

#### ♦ Claim:

that "a strongly interacting matter was formed" ... "behaves more like a liquid"

[PHENIX] NP A757:184 (2005); nucl-ex/0410003 [STAR] NP A757:102 (2005); nucl-ex/0501009 [PHOBOS] NP A 757:28 (2005); nucl-ex/0410022 [BRAHMS] NP A757:1 (2005); nucl-ex/0410020

#### **RHIC Scientists Serve Up "Perfect" Liquid**

#### New state of matter more remarkable than predicted -- raising many new questions

http://www.bnl.gov/bnlweb/pubaf/pr/PR\_display.asp?prID=05-38 18th April 2005

April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the <u>Relativistic Heavy Ion Collider</u> (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In <u>peer-reviewed papers</u> summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a *liquid*.

"Once again, the physics research sponsored by the Department of Energy is producing historic results," said Secretary of Energy Samuel Bodman, a trained chemical engineer. "The DOE is the principal federal funder of basic research in the physical sciences, including nuclear and high-energy physics. With today's announcement we see that investment paying off."

"The truly stunning finding at RHIC that the new state of matter created in the collisions of gold ions is more like a liquid than a gas gives us a profound insight into the earliest moments of the universe," said Dr. Raymond L. Orbach, Director of the DOE Office of Science.

Also of great interest to many following progress at RHIC is the emerging connection between the collider's results and calculations using the methods of string theory, an approach that attempts to explain fundamental properties of the universe using 10 dimensions instead of the usual three spatial dimensions plus time.











ALICE RESULTS @ PB-PB 2.76TEV Some Global Observables, the Bulk



## THE ALICE EXPERIMENT





XLII International Meeting on Fundamental Physics, 27th Jan -1st Feb

Z. Conesa del Valle

11

## EVENT DISPLAY @ PB-PB 2.76TEV



2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x0000000D3BBE693



# EVENT DISPLAY @ PB-PB 2.76TEV



## DATA TAKING



- \* In proton proton collisions (2009, 2010, 2011, 2012)
  - MB trigger (V0, SPD) was favored on 2010 and 2011 data-taking
  - Rare triggers: EMCAL, MUON, TRD, T0
- In Pb-Pb collisions (2010, 2011)
  - MB (V0and) + MUON were the main triggers on 2010 data-taking
  - On the 2011 campaign, in addition to the MB trigger :
    - Centrality (0-10%, 10-50%) selection
    - MUON + EMCAL triggers
    - Data compression with the High Level Trigger
- ✤ In p-Pb collisions (2013)
  - MB (V0and) + MUON + EMCAL triggers
  - Data compression with the High Level Trigger



V0: 2.8< $\eta$ <5.1, -3.7< $\eta$ <-1.7 beam background rejection, centrality determination

Note: the values reported in this table illustrate the analyzed statistics for now

| System                 | рр                       | рр                  | рр                   | рр                  | Pb-Pb                | Pb-Pb                   | p-Pb                |
|------------------------|--------------------------|---------------------|----------------------|---------------------|----------------------|-------------------------|---------------------|
| √s <sub>NN</sub> [TeV] | 7                        | 7                   | 2,76                 | 2,76                | 2,76                 | 2,76                    | 5.02                |
| trigger                | MB                       | µ-trigger           | MB                   | µ-trigger           | MB                   | MB+Ctr+SM               | MB                  |
| Data-taking            | April-Aug 10             | April-Sept 10       | March 11             | March 11            | Nov 10               | <b>Nov 11</b>           | Jan 2013            |
| <l></l>                | 1.6 (5) nb <sup>-1</sup> | 16 nb <sup>-1</sup> | 1.1 nb <sup>-1</sup> | 20 nb <sup>-1</sup> | 2.7 μb <sup>-1</sup> | 23 - 6 μb <sup>-1</sup> | 49 μb <sup>-1</sup> |



Z. Conesa del Valle





- ★ Glauber model : geometrical picture of the collision
  - The nucleons are distributed following a known density distribution function ρ(r) (Wood-Saxon), as a function of their radius, usually measured experimentally;
  - The nucleons travel in straight-line trajectories and their trajectory does not change while passing through the nucleus;
  - The nucleons interact with a nucleon-nucleon inelastic cross section,  $\sigma_{NN}(\sqrt{s_{NN}})$ , measured in pp collisions, where  $\sqrt{s_{NN}}$  is the energy available in the nucleonnucleon (NN) center of mass. At 2.76 TeV  $\sigma_{NN}$  = 64 ± 5 mb.





\*





- \* The collision centrality determines the number of nucleons participating on the collision and the remaining spectator nucleons
  - ZDCs (~116m from IP) measure the spectator nucleons
  - Other detectors (V0, SPD, TPC) are sensitive to the participating nucleons
- Experimental centrality determination
  - "Fit" the multiplicity distributions with a Glauber MC: V0 amplitude, SPD clusters, TPC tracks
  - Energy deposit on the ZDCs (z~116m) and ZEMs (z~7.5m)









- \* The collision centrality determines the number of nucleons participating on the collision and the remaining spectator nucleons
  - ZDCs (~116m from IP) measure the spectator nucleons
  - Other detectors (V0, SPD, TPC) are sensitive to the participating nucleons
- Experimental centrality determination
  - "Fit" the multiplicity distributions with a Glauber MC: V0 amplitude, SPD clusters, TPC tracks
  - ► Energy deposit on the ZDCs (z~116m) and ZEMs (z~7.5m)







## PARTICLE IDENTIFICATION



- ✤ Diverse detectors for PID vs p
- \* TPC: Specific energy deposit
- ITS: energy deposit (SDD+SPD)
- **\*** TOF: time of flight ( $\sigma$ ~85ps)
  - Observed 10 anti-alpha candidates in 2011 Pb-Pb data

**ITS** 

ALICE Performance

2/6/2011

ITS stand-alone tracks

PbPb @\s = 2.76 TeV (2010 data)





700

600

500

400

300

200

100

е

10<sup>-1</sup>

dE/dx (keV/300µm)

p (GeV/c)





- \* Charged particle multiplicity and transverse energy
  - Information about initial conditions and dynamics of nucleus-nucleus collisions
    - energy density of the system
    - gluon saturation
  - Mechanisms of particle production
    - Soft: N<sub>ch</sub> ~ Npart
    - Hard: N<sub>ch</sub> ~ Ncoll
- ★ Femptoscopy: system size and lifetime
- ✤ Soft light hadrons
  - Characterize the freeze-out
    - Chemical:  $T_{ch} \leq T_c$  inelastic scattering ceases
    - Kinetic:  $T_{fo} \leq T_{ch}$ : elastic scattering ceases
  - Constrain the system dynamical evolution
- ✤ Elliptic Flow
  - Collective behavior
  - Early dynamics









- Charged particle multiplicity measured from SPD tracklets
- Charged particle density at mid-rapidity in PbPb at 2.76 TeV
  - $dN_{ch}/d\eta \sim 1600$  for 0-5% CC
  - 1.9 x p-p ( $\sqrt{s_{NN}}$ = 2.36 TeV)  $\Rightarrow$  nuclear amplification !
  - ~2.2 x RHIC (Au-Au,  $\sqrt{s_{NN}}$ = 0.2 TeV)
- \* The dependence on centrality
  - Similar trend at RHIC and LHC
  - Good "matching" to the pp reference
  - The shape indicates a different behavior for N<sub>part</sub> > 100
  - It seems better reproduced by saturation models than models with pQCD processes with soft interactions.
    Note, that models are evolving...









#### Charged particle multiplicity measured ₩ from SPD tracklets

- Charged particle density at mid-rapidity in ₩ PbPb at 2.76 TeV
  - $dN_{ch}/d\eta \sim 1600$  for 0-5% CC
  - 1.9 x p-p (√s<sub>NN</sub>= 2.36 TeV)  $\Rightarrow$  nuclear amplification !
  - ~2.2 x RHIC (Au-Au,  $\sqrt{s_{NN}}= 0.2 \text{ TeV}$ )
- The dependence on centrality \*
  - Similar trend at RHIC and LHC
  - Good "matching" to the pp reference
  - The shape indicates a different behavior for  $N_{part} > 100$
  - It seems better reproduced by saturation models than models with pQCD processes with soft interactions. Note, that models are evolving...









#### **TRANSVERSE ENERGY**







- Charged particles transverse energy measured by the tracking detectors
- ★ Total transverse energy extrapolated from MC (factor 0.55)
- \* Comparing RHIC (Au-Au,  $\sqrt{s_{NN}}$  = 0.2 TeV) to LHC (Pb-Pb,  $\sqrt{s_{NN}}$  = 2.76 TeV)
  - Increase of about a factor 2.5 (2.7)
  - Grows faster than with a simple logarithmic law
  - Similar trend vs centrality at RHIC and LHC


ALICE

- \* Consistent behavior of  $dE_T/d\eta$  and  $dN_{ch}/d\eta$
- \* Both increase with  $\sqrt{s_{NN}}$
- \* Show a steady rise from peripheral to central collisions
- \* E<sub>T</sub>/N<sub>ch</sub> independent of centrality
- \* E<sub>T</sub>/N<sub>ch</sub> slightly increases with energy







## CHARGED PARTICLES AND TRANSVERSE ENERGY



- ✤ In the central collisions, at LHC
  - $dN_{ch}/d\eta \sim 1.9 \text{ x p-p} (\sqrt{s_{NN}}= 2.36 \text{ TeV})$ Grows faster than scaling from pp to AA
  - $dN_{ch}/d\eta \sim 2.2 \text{ x RHIC}$
  - $dE_T/d\eta \sim 2.7 \times RHIC$ Grows faster than with a logarithmic law
- \* The energy density, Bjorken scenario
  - after the initial hard collisions, the partons are created in about  $\tau_{strong} \approx 1/\Lambda_{QCD} \sim 1$  fm/c,
  - at that time the colliding nuclei have already passed through τ<sub>cross</sub> = 2R/γ;
  - that the system expands in a homogeneous and longitudinal manner, thus particle multiplicities present a plateau at mid-rapidity
- The energy density : at RHIC ετ ≈ 5-10 GeV/(fm<sup>2</sup>c) at LHC ετ ~ 15-30 GeV/(fm<sup>2</sup>c) ⇒ The system is hotter and denser !







## **DIRECT PHOTONS**





- **\*** NLO calculations in agreement with the spectrum for  $p_T > 4$  GeV/c
- ★ Low p<sub>T</sub> part fit with exponential
  - T = 304 ± 51 MeV for central Pb-Pb collisions at  $\sqrt{s_{NN}}$  = 2.76 TeV.
  - ► That's ~1.4 x RHIC or 3.4 trillion Kelvin.
  - That's 40x hotter than the core of a supernova, 250000x hotter than the center of the sun.



## **AZIMUTHAL ANISOTROPY**



A. Toia, seminar Paris AL



Elliptic flow  $\equiv v_2 \equiv 2^{nd}$  Fourier component

- Boosted momentum emission wrt reaction plane
- ✤ Gases explode into vacuum uniformly in all directions.
- ★ Liquids flow violently along the short axis and gently along the long axis.
- \* We can observe the medium and understand if it is more liquid-like or gas-like.





## ELLIPTIC FLOW



### Pb-Pb at 2.76 TeV

- \* At RHIC, it was concluded that the medium behaves as an ideal fluid with a shear viscosity over entropy ( $1 < 4\pi(\eta/s)_{QGP} < 2.5$ ). Extremely strong interaction between partons in the QGP. Song H et al, Phys. Rev. Lett. 109, 192301 (2011), arXiv:1011.2783
- \* Hydrodynamic behavior continues at LHC v2 ( $p_T$  int.) LHC ~ 1.3 x ( $p_T$  int.) RHIC
- ★ The overall increase is consistent with the increased radial expansion leading to a higher mean p<sub>T</sub>







## ELLIPTIC FLOW



## Pb-Pb at 2.76 TeV

- \* At RHIC, it was concluded that the medium behaves as an ideal fluid with a shear viscosity over entropy ( $1 < 4\pi(\eta/s)_{QGP} < 2.5$ ). Extremely strong interaction between partons in the QGP. Song H et al, Phys. Rev. Lett. 109, 192301 (2011), arXiv:1011.2783
- \* Hydrodynamic behavior continues at LHC v2 ( $p_T$  int.) LHC ~ 1.3 x ( $p_T$  int.) RHIC
- The overall increase is consistent with the increased radial expansion leading to a higher mean p<sub>T</sub>





- Strong mass dependence, predicted by viscous hydro.
   (Heinz et. al, arXiv:1105.3226)
- \* Radial flow too small from hydro for protons
  - Hadronic re-scatterings play an important role in flow development



\* Strong suppression in the most central Pb-Pb collisions

14

12

10

p<sub>\_</sub> (GeV/c)

p-Pb at 5.02 TeV Pb-Pb at 2.76 TeV

\* Consistent measurements of charged particles RAA by CMS & ALICE

16

18

20

- ★ Charged particles are more suppressed at LHC than at RHIC
   ⇒ Low pt bump likely due to initial state effects and collective flow
  - $\Rightarrow$  Evidence of strong parton energy loss and large medium density
  - $\Rightarrow$  High p<sub>T</sub> behavior seemingly reproduced by pQCD elastic &/or inelastic energy loss

0.4

0.2

0

2

[ALICE Coll. PRL110.082302]

8

6

Δ







- \* Strong suppression in the most central Pb-Pb collisions
- ★ Consistent measurements of charged particles R<sub>AA</sub> by CMS & ALICE
- ★ Charged particles are more suppressed at LHC than at RHIC
   ⇒ Low pt bump likely due to initial state effects and collective flow
  - ⇒ Evidence of strong parton energy loss and large medium density
  - $\Rightarrow$  High p<sub>T</sub> behavior seemingly reproduced by pQCD elastic &/or inelastic energy loss

Pb-Pb at 2.76 TeV

# ALICE RESULTS: PP & PB-PB FOCUS ON HEAVY FLAVOR AND QUARKONIA



## KEYWORDS: HEAVY QUARKS AS QGP PROBES



Q

- Production in nucleon-nucleon collisions: pp collisions
  - Production time  $\tau_p \sim 0.05 0.15$  fm/c
  - Tool to test pQCD calculations
- \* Nuclear environment influence: p-A collisions
  - Shadowing (PDF modifications in nuclei) and Gluon saturation
  - Tool to study high-density small-x gluons
- ✤ Effects in a QGP: A-B collisions
  - ► Energy loss in the QGP (high p<sub>T</sub>)
  - Thermalisation in the QGP (low p<sub>T</sub>)
  - Probe the QCD medium



g

لأوووو

g QQQQQQ



Cartoons just for illustration





## KEYWORDS: HEAVY QUARKS AS QGP PROBES



Q

- Production in nucleon-nucleon collisions: pp collisions
  - Production time  $\tau_p \sim 0.05 0.15$  fm/c
  - Tool to test pQCD calculations
- \* Nuclear environment influence: p-A collisions
  - Shadowing (PDF modifications in nuclei) and Gluon saturation
  - Tool to study high-density small-x gluons
- ✤ Effects in a QGP: A-B collisions
  - Energy loss in the QGP (high p<sub>T</sub>)
  - ► Thermalisation in the QGP (low p<sub>T</sub>)
  - Probe the QCD medium



g

لأوووو

g QQQQQQ



Cartoons just for illustration





## KEYWORDS: HEAVY QUARKS AS QGP PROBES



Q

- Production in nucleon-nucleon collisions: pp collisions
  - Production time  $\tau_p \sim 0.05 0.15$  fm/c
  - Tool to test pQCD calculations
- \* Nuclear environment influence: p-A collisions
  - Shadowing (PDF modifications in nuclei) and Gluon saturation
  - Tool to study high-density small-x gluons
- ✤ Effects in a QGP: A-B collisions
  - Energy loss in the QGP (high p<sub>T</sub>)
  - ► Thermalisation in the QGP (low p<sub>T</sub>)
  - Probe the QCD medium



g

لأوووو

g 499999







Cartoons just for illustration







- Production in nucleon-nucleon collisions
  - $\,\, \& \,\,$  Ressonances formation time  $\tau_{f}$  ~ 0.4 1.0 fm/c Decay time  $\tau_{d}$  ~ 1000 fm/c

#### Dissociation

Example: by color screening, based on IQCD calculations that predict sequential states dissociation

|               | $J/\psi(1S)$ | $\chi_c(1P)$ | $\psi'(2S)$ | Ύ(1S) | $\chi_b(1P)$ | Υ'(2S) | $\chi_b'(\rm 2P)$ | Υ″(3S) |
|---------------|--------------|--------------|-------------|-------|--------------|--------|-------------------|--------|
| M [GeV]       | 3.10         | 3.41         | 3.69        | 9.46  | 9.86         | 10.02  | 10.23             | 10.36  |
| $E_s^i$ [GeV] | 0.64         | 0.20         | 0.05        | 1.10  | 0.67         | 0.54   | 0.31              | 0.20   |
| $T_d/T_c$     | 2.1          | 1.16         | 1.12        | > 4.0 | 1.76         | 1.60   | 1.19              | 1.17   |

[Satz, JPG 32 R25 (2006)]

#### Regeneration

Recombination of heavy quarks.

- Important feed-down
  - $\checkmark~$  40% for the J/ $\Psi$  from  $\chi_{c}$  and  $\Psi'$
  - $\checkmark~45\%$  from higher ressonances for the  $\Upsilon$  (30% for the  $\Upsilon$ )
- Charmonia are produced both in prompt and non-prompt (b-decays) processes









- Production in nucleon-nucleon collisions
  - ${\ensuremath{\,{}^{\scriptstyle \mbox{\tiny \$}}}}$  Ressonances formation time  $\tau_f$  ~ 0.4 1.0 fm/c Decay time  $\tau_d$  ~ 1000 fm/c

#### Dissociation

Example: by color screening, based on IQCD calculations that predict sequential states dissociation

|                            | $J/\psi(1S)$ | $\chi_c(1P)$ | $\psi'(2S)$  | Ύ(1S)      | $\chi_b(1P)$ | $\Upsilon'(2S)$ | $\chi_b'(\rm 2P)$ | Υ″(3S)       |
|----------------------------|--------------|--------------|--------------|------------|--------------|-----------------|-------------------|--------------|
| M [GeV]                    | 3.10         | 3.41         | 3.69         | 9.46       | 9.86         | 10.02           | 10.23             | 10.36        |
| $E_s^* [GeV]$<br>$T_d/T_c$ | 0.64<br>2.1  | 0.20<br>1.16 | 0.05<br>1.12 | 1.10 > 4.0 | 0.67<br>1.76 | $0.54 \\ 1.60$  | 0.31 1.19         | 0.20<br>1.17 |

[Satz, JPG 32 R25 (2006)]

#### ✤ Regeneration

Recombination of heavy quarks.













- Production in nucleon-nucleon collisions
  - ${\ensuremath{\,{}^{\scriptstyle \mbox{\tiny \$}}}}$  Ressonances formation time  $\tau_f$  ~ 0.4 1.0 fm/c Decay time  $\tau_d$  ~ 1000 fm/c

#### Dissociation

Example: by color screening, based on IQCD calculations that predict sequential states dissociation

|               | $J/\psi(1S)$ | $\chi_c(1P)$ | $\psi'(2S)$ | Ύ(1S) | $\chi_b(1P)$ | $\Upsilon'(2S)$ | $\chi_b'(\rm 2P)$ | Υ″(3S) |
|---------------|--------------|--------------|-------------|-------|--------------|-----------------|-------------------|--------|
| M [GeV]       | 3.10         | 3.41         | 3.69        | 9.46  | 9.86         | 10.02           | 10.23             | 10.36  |
| $E_s^i$ [GeV] | 0.64         | 0.20         | 0.05        | 1.10  | 0.67         | 0.54            | 0.31              | 0.20   |
| $T_d/T_c$     | 2.1          | 1.16         | 1.12        | > 4.0 | 1.76         | 1.60            | 1.19              | 1.17   |

[Satz, JPG 32 R25 (2006)]

#### Regeneration

Recombination of heavy quarks.













- Production in nucleon-nucleon collisions
  - ${\ensuremath{\, \$}}$  Ressonances formation time  $\tau_f$  ~ 0.4 1.0 fm/c Decay time  $\tau_d$  ~ 1000 fm/c

#### Dissociation

Example: by color screening, based on IQCD calculations that predict sequential states dissociation

|               | $J/\psi(1S)$ | $\chi_c(1P)$ | $\psi'(2S)$ | Ύ(1S) | $\chi_b(1P)$ | $\Upsilon'(2S)$ | $\chi_b'(\rm 2P)$ | Υ″(3S) |
|---------------|--------------|--------------|-------------|-------|--------------|-----------------|-------------------|--------|
| M [GeV]       | 3.10         | 3.41         | 3.69        | 9.46  | 9.86         | 10.02           | 10.23             | 10.36  |
| $E_s^i$ [GeV] | 0.64         | 0.20         | 0.05        | 1.10  | 0.67         | 0.54            | 0.31              | 0.20   |
| $T_d/T_c$     | 2.1          | 1.16         | 1.12        | > 4.0 | 1.76         | 1.60            | 1.19              | 1.17   |

[Satz, JPG 32 R25 (2006)]

### Regeneration

Recombination of heavy quarks.

- Important feed-down
  - $\checkmark~$  40% for the J/ $\Psi$  from  $\chi_{c}$  and  $\Psi'$
  - $\checkmark~45\%$  from higher ressonances for the  $\Upsilon$  (30% for the  $\Upsilon$ )
- Charmonia are produced both in prompt and non-prompt (b-decays) processes











- Production in nucleon-nucleon collisions
  - ${\ensuremath{\, \$}}$  Ressonances formation time  $\tau_f$  ~ 0.4 1.0 fm/c Decay time  $\tau_d$  ~ 1000 fm/c

#### Dissociation

Example: by color screening, based on IQCD calculations that predict sequential states dissociation

|               | $J/\psi(1S)$ | $\chi_c(1P)$ | $\psi'(2S)$ | Ύ(1S) | $\chi_b(1\mathrm{P})$ | Υ'(2S) | $\chi_b'(\rm 2P)$ | Υ″(3S) |
|---------------|--------------|--------------|-------------|-------|-----------------------|--------|-------------------|--------|
| M [GeV]       | 3.10         | 3.41         | 3.69        | 9.46  | 9.86                  | 10.02  | 10.23             | 10.36  |
| $E_s^i$ [GeV] | 0.64         | 0.20         | 0.05        | 1.10  | 0.67                  | 0.54   | 0.31              | 0.20   |
| $T_d/T_c$     | 2.1          | 1.16         | 1.12        | > 4.0 | 1.76                  | 1.60   | 1.19              | 1.17   |

[Satz, JPG 32 R25 (2006)]

#### Regeneration

Recombination of heavy quarks.

- Important feed-down
  - $\checkmark~$  40% for the J/ $\Psi$  from  $\chi_{c}$  and  $\Psi'$
  - $\checkmark~45\%$  from higher ressonances for the  $\Upsilon$  (30% for the  $\Upsilon$ )
- Charmonia are produced both in prompt and non-prompt (b-decays) processes













- Production in nucleon-nucleon collisions
  - $\,\, \& \,\,$  Ressonances formation time  $\tau_{f}$  ~ 0.4 1.0 fm/c Decay time  $\tau_{d}$  ~ 1000 fm/c

#### Dissociation

Example: by color screening, based on IQCD calculations that predict sequential states dissociation

|               | $J/\psi(1S)$ | $\chi_c(1P)$ | $\psi'(2S)$ | Ύ(1S) | $\chi_b(1P)$ | Υ'(2S) | $\chi_b'(\rm 2P)$ | Υ″(3S) |
|---------------|--------------|--------------|-------------|-------|--------------|--------|-------------------|--------|
| M [GeV]       | 3.10         | 3.41         | 3.69        | 9.46  | 9.86         | 10.02  | 10.23             | 10.36  |
| $E_s^i$ [GeV] | 0.64         | 0.20         | 0.05        | 1.10  | 0.67         | 0.54   | 0.31              | 0.20   |
| $T_d/T_c$     | 2.1          | 1.16         | 1.12        | > 4.0 | 1.76         | 1.60   | 1.19              | 1.17   |

[Satz, JPG 32 R25 (2006)]

#### Regeneration

Recombination of heavy quarks.

- Important feed-down
  - $\checkmark~$  40% for the J/ $\Psi$  from  $\chi_{c}$  and  $\Psi'$
  - $\checkmark~45\%$  from higher ressonances for the  $\Upsilon$  (30% for the  $\Upsilon$ )
- Charmonia are produced both in prompt and non-prompt (b-decays) processes











## D MESONS AT Y < 0.8

13



Selection strategy, topological cuts: displaced vertexes Impact parameter of the tracks, Angle between the meson flight line and the particle momentum. Particle identification: TPC + TOF (K identification)



 $D^0 \rightarrow K \pi (K \pi \pi \pi)$ 

Kin

TOF:  $K/p/\pi$  PID

**TPC: tracking,**  $K/p/\pi$  PID

**ITS: vertexing, tracking** 

 $D^+ \rightarrow K \pi \pi$ 



XLII International Meeting on Fundamental Physics, 27th Jan -1st Feb



 $B + D \rightarrow e^{\pm} + X$ **B** (tagging) $\rightarrow$  e<sup>±</sup> + X J/ψ, ψ', Ƴ,...→ e<sup>+</sup> + e<sup>-</sup> 13 EMCAL, TOF, TRD, TPC:  $e/\pi$  PID **TPC, ITS: tracking ITS: vertexing** High quality tracks Electron identification: TPC+TOF (pp, p-Pb, Pb-Pb) + TRD (pp for now) +EMCAL (pp, Pb-Pb)











## CHARM AND BEAUTY CROSS SECTIONS



[ALICE Coll. arXiv: 1208.1902 (2012), [ALICE Coll. JHEP 07 (2012) 191] JHEP1211 (2012) 065]  $d\sigma_{b\overline{b}}/dy$  (µb) ALICE extr. unc.  $\sigma_{cc}^{cc}$  (hb) ALICE, pp  $\sqrt{s}$ = 7 TeV, lyl<0.9 ALICE (total unc. ALICE extr. unc. CDF RunII, pp √s= 1.96 TeV, lyl<0.6 ATLAS Preliminary (total unc.) ATLAS extr. unc. UA1, pp vs= 0.63 TeV, lyl<1.5 LHCb Preliminary (total unc.) PHENIX, pp  $\sqrt{s}$ = 0.2 TeV, lyl<0.35 PHENIX STAR FONLL HERA-B (pA)  $10^{3}$ E653 (pA) E743 (pA) 10 NA27 (pA) NA16 (pA) E769 (pA) NLO (MNR 10<sup>2</sup> Charm Beauty 10 E 10<sup>4</sup> 10<sup>3</sup>  $10^{2}$ 10 10<sup>4</sup>  $10^{3}$ 10<sup>2</sup> √s (GeV) ALI-PUB-15089  $\sqrt{s}$  (GeV) ALI-PUB-39852

- Their cross section evolution with  $\sqrt{s}$  is well described by pQCD.
- → ~560 µb × 950 collisions / 42mb ~ 13 cc pairs in 0-10% AuAu at 200 GeV
- → ~5 mb × 1500 collisions / 65mb ~ 115 cc pairs in 0-10% PbPb at 2.76 TeV



- \* Charged particle multiplicity in high-multiplicity pp collisions at 7 TeV is larger than the multiplicity in the peripheral CuCu collisions at 200 GeV
- \* Similar increase of prompt-D and J/ψ production vs multiplicity
- \* No clear  $p_T$  dependence on the prompt-D relative yields vs multiplicity
- \* Hints for multi-parton interactions at a hard scale in pp collisions

[ALICE Coll, Phys.Lett.B712 (2012) 165-175]

[B.Alveretal (PHOBOS Coll.), Phys.Rev.C83,024913(2011).]

## **OPEN HF IN P-PB COLLISIONS**





- Good agreement with MNR calculations with EPS09 shadowing
- Also well described by CGC predictions
- Nuclear effects expected to be small for high p<sub>T</sub> Pb-Pb collisions



- Good agreement with MNR calculations with EPS09 shadowing
- Also well described by CGC predictions
- ➡ Nuclear effects expected to be small for high p<sub>T</sub> Pb-Pb collisions







- Strong heavy flavor suppression
- Similar HF decay e (|y|<0.6) and μ (2.5<y<4.0) R<sub>AA</sub> in 0-10%







- Strong heavy flavor suppression
- Similar HF decay e (|y|<0.6) and μ (2.5<y<4.0) R<sub>AA</sub> in 0-10%







- Strong heavy flavor suppression
- Similar HF decay e (|y|<0.6) and μ (2.5<y<4.0) R<sub>AA</sub> in 0-10%
- → they are also comparable with D mesons R<sub>AA</sub> (|y|<0.5) in 0-7.5% considering the semileptonic decay kinematics (p<sub>T</sub><sup>e</sup> ~ 0.5 p<sub>T</sub><sup>B</sup> at high p<sub>T</sub>)





Pb-Pb at 2.76 TeV

XLII International Meeting on Fundamental Physics, 27th Jan -1st Feb

ALICE





## CHARM AND BEAUTY SUPPRESSION





Theory: Parton energy loss depends on the parton mass (dead cone effect), so it suggests  $\Delta E_b < \Delta E_c$ 

Pb-Pb at 2.76 TeV

In central collisions, for  $p_T>6$  GeV/c, non-prompt J/ $\psi$  (CMS) are less suppressed than prompt D mesons, albeit the difference on the b/c average  $p_T$ .

Caveats:  $< p_T > B/D$  hadrons  $\neq$  b/c quarks fragmentation of b/c  $\Rightarrow$  Need models With this

With this selection: •B <p<sub>T</sub>> ~ 11 GeV •D <p<sub>T</sub>> ~ 10 GeV

WHDG - collisional + radiative energy loss in anisotropic medium

Good agreement with both measurements.

Vitev – radiative + dissociation

Relative good description, but underestimates non-prompt  $J/\psi$  for peripheral classes.

[BAMPS: J. Phys. G 38 (2011) 124152; Phys. Lett. B 717 (2012) 430] [WHDG: J. Phys. G 38 (2011) 124114] [Vitev: R. Sharma, I. Vitev and B. W. Zhang, Phys. Rev. C80 (2009) 054902; Y. He, I. Vitev and B. -W. Zhang, Phys. Lett. B 713 (2012) 224]



non-prompt J/ $\psi$ .







- D meson v<sub>2</sub> (5.7σ effect in 2<p<sub>T</sub><6 GeV/c)</li>
- HF electron  $v_2 > 0$  at low  $p_T$  (>3 $\sigma$  effect in 2< $p_T$ <3 GeV/c)
- Similar to that of charged particles

### Suggesting:

 $\Rightarrow$  low p<sub>T</sub> charm quarks take part in the collective motion of the system  $\Rightarrow$  can constrain path length dependence of energy loss at high p<sub>T</sub>, but not sufficient precision with the current statistics





## HF RAA AND V2 VS MODELS





The simultaneous description of HFe and D-meson R<sub>AA</sub> and v<sub>2</sub> is challenging

Many models
 appearing. A more
 systematic data/
 theory comparison
 might help the
 interpretation

## J/ $\psi$ production in P-PB





 $R_i^{\text{Pb}}(x,$ 

0.4

0.2

0.0

CGC calculations disfavoured

K.J Eskola et al, JHEP04 (2009) 065. I.Helenius et al, arXiv:1205.5359 [hep-ph]



10<sup>-1</sup>

10<sup>-2</sup>

10<sup>-3</sup>

# J/ $\psi$ R<sub>AA</sub> vs $\sqrt{s_{NN}}$ and Centrality





Au-Au at 200 GeV \* Clear suppression of J/ $\psi$  production in the most central events

- \* Inclusive J/ $\psi$  R<sub>AA</sub>( $p_T$ >0) at LHC does not show a centrality dependence
- \* LHC J/ $\psi$  R<sub>AA</sub>(p<sub>T</sub>>0) in the most central class is higher than at RHIC
  - but the rapidity ranges and centre of mass energy are different,
  - thus cold nuclear matter effects are expected to be different

arXiv: 1202.1383 (2012); arXiv: 1103.6269; arXiv: nucl-ex/0611020; arXiv: 1311.0214







- \* J/ $\psi$  R<sub>AA</sub> shows a larger suppression at forward than at mid-rapidity
- Different trend of J/ψ R<sub>AA</sub> vs p<sub>T</sub>
  - ► Clear suppression at high p<sub>T</sub>
  - Hint of J/ $\psi$  regeneration at low  $p_T$  ?
  - Note, data belong to different rapidity ranges.
     Need a precise measurement of the total charm cross section and of the cold nuclear matter effects (pPb+Pbp)



Pb-Pb at 2.76 TeV Au-Au at 200 GeV
## **J/ψ FLOW (V<sub>2</sub>)**





- \* Hint of non-zero  $v_2$  at intermediate  $p_T$  in semi-peripheral reactions
- ★ In agreement with transport models including suppression and regeneration mechanisms
   ⇒ favors scenario with a significant fraction of J/ψ production originated in the deconfined phase





- \* Similar J/ $\psi$  and Y suppression pattern with centrality (p<sub>T</sub>-integrated)
- \* Consistent ALICE and CMS results, small rapidity dependence
- \* In agreement with model calculations within uncertainties



## SUMMARY



- The bulk properties of the system show a smooth transition from RHIC  $\rightarrow$  LHC
  - Energy density > 15 GeV/fm<sup>3</sup>  $\rightarrow$  x2.5 RHIC
  - Temperature =  $304 \pm 51 \text{ MeV} \rightarrow x1.4 \text{ RHIC}$
  - Elliptic flow  $\rightarrow$  x1.3 RHIC as expected from hydro-dynamical calculations with viscous corrections and hadronic re-scattering
- The penetrating probes of the interaction : Heavy flavor production is suppressed in the most central collisions
  - ▶ Both at RHIC and LHC ⇒ Suffer from parton energy loss
  - Similar for pions and D mesons for p<sub>T</sub> >5 GeV/c
    ⇒ Consistent with colour charge dependence
  - Larger for D mesons than for non-prompt J/ψ for p<sub>T</sub> >6 GeV/c ⇒ Consistent with expected parton mass dependence
  - Positive  $v_2$  for  $p_T > 2$ . D-meson  $v_2$  similar to that of light hadrons  $\Rightarrow$  low  $p_T$  c-quarks participate to the system collective motion
- Quarkonia production
  - Low  $p_T J/\psi R_{AA}$  does not show a centrality dependence, which differs from RHIC data
  - High  $p_T J/\psi$  are more suppressed in the most central events wrt the most peripheral
  - $\blacktriangleright\quad \text{Hint of non-zero } v_2 \text{ at intermediate } p_T \ \Rightarrow \text{Regeneration is at play } ?$
  - $\blacktriangleright$  Y RAA presents a similar pattern to the J /  $\psi$  one
  - ➡ Need precise measurements down to p<sub>T</sub>~0 both in pA and AA over a wide y-range
  - Require models describing both pA and AA measurements: p<sub>T</sub>, y, v<sub>2</sub> and their centrality dependence. Quarkonia models should also be able to reproduce HF.



## BACK UP



## HFE-HADRON CORRELATIONS IN P-PB





resemble the double-ridge of hadron-hadron correlation



0

0.5

ALI-PREL-61949

PRELIMINARY

5

 $\Delta \phi$  (rad)